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A SIMPLE COUNTEREXAMPLE FOR THE

PERMANENT–ON–TOP CONJECTURE

HOANG ANH TRAN

Abstract. The permanent-on-top conjecture (POT) was an important conjecture on the largest
eigenvalue of the Schur power matrix of a positive semi-definite Hermitian matrix, formulated by
Soules. The conjecture claimed that for any positive semi-definite Hermitian matrix H , per(H)
is the largest eigenvalue of the Schur power matrix of the matrix H . After half a century, the
POT conjecture has been proven false by the existence of counterexamples which are checked
with the help of computer. It raises concerns about a counterexample that can be checked by
hand (without the need of computers). A new simple counterexample for the permanent-on-top
conjecture is presented which is a complex matrix of dimension 5 and rank 2.
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