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A SIMPLE COUNTEREXAMPLE FOR THE
PERMANENT-ON-TOP CONJECTURE

HOANG ANH TRAN

(Communicated by S. VaroSanec)

Abstract. The permanent-on-top conjecture (POT) was an important conjecture on the largest
eigenvalue of the Schur power matrix of a positive semi-definite Hermitian matrix, formulated by
Soules. The conjecture claimed that for any positive semi-definite Hermitian matrix H, per(H)
is the largest eigenvalue of the Schur power matrix of the matrix H. After half a century, the
POT conjecture has been proven false by the existence of counterexamples which are checked
with the help of computer. It raises concerns about a counterexample that can be checked by
hand (without the need of computers). A new simple counterexample for the permanent-on-top
conjecture is presented which is a complex matrix of dimension 5 and rank 2.

1. Introduction and notations

The symbol S, denotes the symmetric group on n objects. The permanent of a
square matrix is a vital function in linear algebra that is similar to the determinant.
For an nx n matrix A= (a;;) with complex coefficients, its permanent is defined as
per(A) = Yoes, ITL1 & o(i) - BY /1 we mean the set of all nx n positive semi-definite
Hermitian matrices. The Schur power matrix of a given nx n matrix A= (a;;), denoted
by 7(A), is a n! x n! matrix with the elements indexed by permutations ¢, 7 € Sp:

n

7oz (A) = [ Tas(i)()-
i1

CONJECTURE 1. The permanent-on-top conjecture (POT) [9]: Let H bean nxn
positive semi-definite Hermitian matrix, then per(H) is the largest eigenvalue of w(H).

In 2016, Shchesnovich provided a 5-square, rank 2 counterexample to the perma-
nent-on-top conjecture with the help of computer [ 8].
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DEFINITION 1. Foran nxn matrix A= (aj), let da be a function S, — C de-
fined by

n
= Hao(i)i
i=1

This function is also caIIed the “diagonal product” function [1]. Then we can define
det(A) = Soes, (—1)%9")da(0) and per(A) = Soes, da(o).

For any n-square matrix A and 1,J C [n], A[l,J] denotes the submatrix of A
consisting of entries which are the intersections of i-th rows and j-th columns where
iel, jed. Wedefine A(l,J) = All¢,J3°.

In this paper, we shall study the properties of the spectrum of the Schur power
matrix by examining the spectra of the matrices % (A) which are defined in the manner:

For any 1 < k < n, the matrix 6} (A) is a matrix of size (i) x (i) with its (I,J)
entry (I and J are k-element subsets of [n]) defined by per(A[l,J]).per(A[l ¢,J3°).
There is another conjecture on these matrices %y (A) which states that:

CONJECTURE 2. Pate'sconjecture[7]: Let A be an nx n positive semi-definite
Hermitian matrix and k be a positive integer number less than n, then the largest eigen-
value of i (A) is per(A).

Pate’s conjecture is weaker than the permanent-on-top conjecture POT because it
is well-known that every eigenvalue of % is also an eigenvalue of the Schur power
matrix. In the case k=1, in [1], it was conjectured that per(A) is necessarily the
largest eigenvalue of %3 (A) if A€ s#,. Stephen W. Drury has provided an 8-square
matrix as a counterexample for this case in the paper [2]. Besides, Bapat and Sunder
raise a question as follows:

CONJECTURE 3. Bapat & Sunder conjecture: Let A and B = (bjj) be nxn pos-
itive semi-definite Hermitian matrices, then

per(AcB) < per(A Hbl.

where Ao B is the entrywise product (Hadamard product).

The Bapat & Sunder conjecture is weaker than the permanent-on-top conjecture
and has been proved false by a counterexample which is a positive semi-definite Hermi-
tian matrix of order 7 proposed by Drury [3]. In the present paper, a new simple coun-
terexample for the permanent-on-top conjecture and Pate’s conjecture is presented. It
has size 5 x 5 and rank 2.

CONJECTURE 4. The Lieb permanent dominance conjecture 1966 [4]: Let H be
a subgroup of the symmetric group S, and let y be a character of degree m of H. Then

—Zx H < per(A)

O'EH

holds for all n x n positive semi-definite Hermitian matrix A.
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The permanent dominance conjecture is weaker than the permanent-on-top con-
jecture and still open. The POT conjecture was proposed by Soules in 1966 as a strategy
to prove the permanent dominance conjecture.

DEFINITION 2. The elementary symmetric polynomialsin n variables X1,X, ..., %n
are e for k=0,1,...,n. In this paper, we define ey(x;) for i =1,2,....n to be the
elementary symmetric polynomial of degree k in n— 1 variables obtained by erasing
variable x; from the set {x1,X2,...,Xn} and, for any subset | C [n], the notation ey[l]
denote the elementary symmetric polynomial of degree k in |I| variables x;’s, i € 1.

2. Associated matrices

We define the associated matrix of a matrix representation W : Sy — GLn(C) with
respect to a n x n matrix A by:

Mw(A) = Y da(c)W(a).
oES

PROPOSITION 2.1. The Schur power matrix of a given nx n Hermitian matrix A
is the associated matrix of the left-regular representation with respect to A.

Proof. Take a look at the (o, t) entry of M (A) which is

n
Y da(n)=da(cot?) :Hao(i)r(i)
NES, Not=0 i=1

the right side is the (o, 7) entry of =(A). O

Let us now consider two important matrices €1 (A) and %2(A) that shall appear
frequently from now on.

DEFINITION 3. Let A4 : S — GL(E) (C) be the matrix representation given by
the permutation action of S, on ([E]) )

PROPOSITION 2.2. For any nx n Hermitian matrix A, the matrix €x(A) is the
matrix M_s (A).

We obtain directly the statement that every eigenvalue of matrix M _ (A) is an
eigenvalue of the associated matrix of the left-regular representation which is the Schur
power matrix. Consequently, Pate’s conjecture is weaker than the permanent-on-top
conjecture(PQOT).
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3. Several propertiesof the Schur power matrix and %31 (A) inrank 2 case

The main object of this section is n x n positive semi-definite Hermitian matrices
of rank 2. We know that every matrix A € J#;, of rank 2 can be written as the sum
V1V +Vov5 where vy and v, are two column vectors of order n.

DEFINITION 4. A matrix A € 77, is called “formalizable” if A can be written in
the form vqv; +v,v; and every element of vy vector is non-zero.

DEFINITION 5. The formalized matrix A’ of a given formalizable matrix A de-
fined in the manner: if A= vyv] +wV; and v = (a,...,an)", & #0Vi=1,...,n;
Vo = (by,...,bn)T then A’ =v3V}+vav; where v = (1,...,1)T and vy = (%""’%)T'

PROPOSITION 3.1. Let A € %, be aformalizable matrix, then
n
n(A) = [Tlal’r(A).
i=1

Proof. We compare the (o, 7)-th entries of two matrices.

n

n n b .
or(A) = [1(@s i @) + bsi ey = [T1al T1 (1 + a:—i')
. 1 |

o

i i=1 i

T(i))
(M)

REMARK 1. The same result will be obtained with the matrices € (A) and 6 (A).
It is obvious to see that if the matrix A is a counterexample for the permanent-on-top
conjecture and Pate’s conjecture then so is A’. Assume that we have an unformalizable
matrix B € 57 of rank 2 that is a counterexample for the permanent-on-top conjecture
and Pate’s conjecture. That also implies that there is a column vector x such that the
following inequality holds

E

Il
iR

ai|?nsr(A). O

-

Il
iR

X*m(B)x
——2 > per(B).
e~ Per®)

By continuity and B = w* 4 uu*, we can change slightly the zero elements of the vector
v such the the inequality remains. Therefore, if the permanent-on-top conjecture or
Pate’s conjecture is false for some positive semi-definite Hermitian matrix of rank 2
then so is the permanent-on-top conjecture and Pate’s conjecture for some formalizable
matrices. That draws our attention to the set of all formalizable matrices.

For any nx n positive semi-definite Hermitian matrix A of rank 2 there exist
two eigenvectors of v and u of A such that A= w* 4+ uu*. Let u;,v; be the i-th
row elements of v and u respectively for i = 1,n. In the case A has a zero row then
per(A) = 0 and the Schur power matrix and matrices € (A) of A are all zero matrices,
there is nothing to discuss. Otherwise, every row of A has a non-zero element (so does
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every column since A is a Hermitian matrix) which means that for any i = 1,n, the
inequalities |vi|? + |ui|? > 0 hold. Besides, A can be rewritten in the form

(sin(x)v+ cos(x)u) (sin(x)v+ cos(x)u)* + (cos(X)v — sin(x)u) (cos(x)v — sin(x)u)”

vx € [0,27]

and the system of n equations sin(x)vi + cos(x)u; = 0, i = 1,n takes finite solutions
in the interval [0,2x]. Therefore, there exists x € [0,2x] satisfying that (sin(x)v+
cos(x)u) has every element different from 0. Hence, every rank 2 positive semi-definite
Hermitian that has no zero-row is formalizable. Several properties about the formalized
matrices are presented below.

Let H € o4 be a formalizable matrix of the form H = w* + uu* where v =
(1,...,1)T and u= (x1,%,...,%,)" . We recall quickly the Kronecker product [ 10].

DEFINITION 6. The Kronecker product (also known as tensor product or direct
product) of two matrices A and B of sizes mx n and sx t, respectively, is defined to
be the (ms) x (nt) matrix

anBapB...anB
anBa»B...anB
ARB= . .

an B apB ...amnB

LEMMA 1. The upper bound of rank of the Schur power matrix of rank 2: If A is
nx n of rank 2 then rank of (A) isnot larger than 2" —n.

Proof. We observe that rank(A) = 2 implies that dim(Im(A)) =2 and dim(Ker(A))
=n—2. Let (w,t) be an orthonormal basis of the orthogonal complement of Ker(A) in
C", then denote v= Aw, u= At. Thus, A can be rewritten in the form vw* + ut* where
V= (a,...,a,)", u=(by,...,by)". Itis obviousthat Im(A) = (v,u). Let us denote the
Kronecker product of n copies of the matrix A by ®"A. The mixed-product property
of Kronecker product implies that Im(®"A) = ({®]' i, ti € {v,u}}). Furthermore,
the Schur power matrix of A is a diagonal submatrix of ©"A obtained by deleting all
entries of ®"A that are products of entries of A having two entries in the same row or
column. Let define the function f in the manner that

fo{elt, te{vu}} -V
and the o-th element of f(®[;c;) vector of order n! is [T, ti(c(i)) where t;(j) is
the j-th row element of the column vector t;. Let 2 = {f(® ;ti), ti € {v,u}} then #
is a generator of Im(rz(A)) since m(A) is a principal matrix of ®"A and Im(®"A) =
({@M4ti, ti € {v,u}}). We partition Z into disjoint sets S

k=0,1,...,n, Sc={f(®1t), ti € {v,u}, v appears k times in the Kronecker product}.
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Hence, forany k=1,2,...,n the o-th row element of the sum vector ¥,cg W is

S o Moo= S Ha [0

I<ig<..<ig<n j= +1 I<ip<..<ig<n = t=k+1
1<ig1<...<In<n 1<ig41<...<In<n

and § = {(1,,1,...,1)T}. Therefore, for any k=1,...,n then SoU S is linearly
dependent. Hence, by deleting an arbitrary element of each set Sy , k=1,...,n, then
it still remains a generator of Im(z(H)). Thus

rank(z(A)) = dim(Im(z(A))) < |8|—n=2"-n. O

LEMMA 2. The permanent of a formalized matrix [5]:

per(H Zk' (n—K)!exl?.

Proof. We show that

S
n
=nl+ Y > Xy XK Kol

oeSk=11<i1<...<ig<n

=nl+) > XX D Xoiy) - Xo(iy)

k=11<i<...<ig<n oeS

n
:n!+z 2 KI(n—K)!xi, ... %, &
k=11<i;<...<ig<n
n
=Y Kn-K!le? O
k=0

We use the elementary symmetric polynomials to examine entries of €1 (H) with
the (i, j)-th entry defined by (1+ xiXj).per(H(i|j)) and

per(H(ilj) = Y  [IQ+x%qm)

oeS; o(i)= jl;ﬁl

= Z Z Z Xig - XX (ig) - - - Xo(iy)

0€Sy; o(i)=j k=01<i1 <...<i<n; im#A Ym=1,...k

- 3 KI(n—1—K)Ix;, ... % &(X])

k=01<iy<...<ig<n, im#i

n—1
= 3 KI(n—1—k)lex)ax).
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And notice that
& =Xe 1(X)+e(x)vk=1,...,n

Then
H) 1@
perr(] ) _ ﬁkgok!(n—k)nekl2
= (n—1)!(|eo?+ |enl?)
n-1 o
- M(X.ek 1(%) 4 &%) (Xj €11 (X)) + (X))
k=1
Hence
(1-+x5).per(H (1)) - 2
= kl(n—k)! , :
_ug'l(k!(n_l_k)!_?) e (%) & (;)
+((k—1)!(n—k)! @)Xﬂ( 1()Xj & 1(X))
w(xle‘ 1(X)&(X}) +Xjek—1(Xj )& (X))
kzl (n—1-k (kex(xi) — (n— K)xiex—1.(%)) (Kex(x}) — (N —K)Xje—1(x}))
n— l
Z Hn—1-kt (nex(xi) — (n—K)ex) (nex(xj) — (n—K)ex).

Therefore, we have the following proposition.

PROPOSITION 3.2. Thematrix 1(H) can berewritten in the form

per k—1)!(n—1—k)!

W*Z

wherev=(1,...,1)T oforder n,for k=1,....n—1, vk = (..., nex(x) — (n—K)

©1(H) =

Vk\/;

i-th element

PROPOSITION 3.3. Forany k=1,....n—1, (v,v) =0.

Proof.

&,...)" .
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PROPOSITION 3.4. Therank of 41(H) isthe cardinality of the set {x;,i = 1,n}.
Informula, rank(%1(H)) = [{x;,i = 1,n}|.

Proof. For the i-th element of v, we have

nex(xi) — (N—k)ex = kex — nxigc_1(x) = kek+n2 X
i=

which leads us to a conclusion that (v,v1,...,Vn_1) = (Po,-.., Pn—1) Where

- j T
pi=C..., X ,...)
~—
i-th element

which is equal to |{x;,i = 1,n}| by the determinantal formula of Vandermonde matri-
ces. O

PROPOSITION 3.5. Thedeterminant of €71 (H) isgiven by

det(%l(H)):perr(]H)rﬁ n(k—1)!(n— 1K)t T — x>
k=1 i<j

Proof. Case1: There are indices i and j such that x; = x; then rank(¢1(H)) <n
that is equivalent to det(%1(H)) =0.
Case 2: x;’s are distinct then {v,v1,...,v,_1} makes a basis of C". Therefore,

%1(H) is similar to the Gramian matrix of n vectors {\/perr(]H)v; \/(k_l)!<2_l_k)!v1<
kz—l,n—l}. Thus

det(%i (H)) = det (G <\/perr(1H)v; \/(k_l)!(:_l_k)!vh k=Tn—1 1))

~ per(H) =t (k—1){(n—1—Kk)!
= ; kl:Il .

-det(G(v,va,...,Vn-1)).

And from the proof of proposition 3.4, we obtain that

1... kex (n—1)en_1
0...(-1)%ne_1 (—1)%nen_»

(V1. Vne1) = (Po, PLy--» Pne1) | o (~1)ine;

0. . =y
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The matrix in the right side is the transition matrix given by

(~D'nej_; ifi>1
The (i, j)-thentry= ¢ (j—1)gj_1 ifi=1landj>1
1 if (i,]) = (1,1)

with conventionthat ey = 1; g =0 if t < 0. Moreover, we observe that the transition
matrix is an upper triangular matrix with the absolute value of diagonal entries equal to
n except the (1,1)-th entry equal to 1 and (po, p1,- .., Pn—1) IS @ Vandermonde matrix.
Hence

er(H) =t

det(#1(H)) = P r(1 ) n(k—1)I(n—1—Kk)!-det(G(po, p1,---5Pn-1))
k=1
er(H) "=t

_B ) )T n(k=1)1(n—1—K)1- | det(po. pr. ... pr_1)
k=1
n—1

PertH) T n(k— 1)1(n—1— k)t T —xi[
n k=1 i<j

The right side is also equal to O if there are indices i # j such that x; = X;. Hence the
equality holds in both cases. [

REMARK 2. From the proposition 3.5, we are able to calculate the determinant of
%1(H) of any positive semi-definite Hermitian matrix H of rank 2 in the way:

Let A be an nx n positive semi-definite Hermitian matrix of rank 2 then A can be
written in the form w* + uu* with v;,u; are the i-th elements of v and u respectively.
Then the following formula for the determinant of %1 (H) is achieved.

THEOREM 1. Let H = w* 4+ uu* be an n x n positive semi-definite Hermitian
matrix then:

n—1
det(%l(H)):perr(]H)H n(k—1)1(n— 1K)t TTvuj —vjuil
k=1 i<j

where v; and u; are i-th elements of the vector v and u respectively.

4. A counterexamplefor the conjectures1 and 2inthecase n=5
Let us take the values of uj’sand v;’s, ac R

u=a,Ww=—-au=-a,u=au=0vi=1vVi=1,...,5
thene, =y =e3=65;=0, &g = —a*.
For any matrix of the form, the spectrum of €1 (H) is determined clearly by the
mentioned above properties and theorems.
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By lemma 3.1, rank(m(H)) < 2% —5 = 27 which means that there are at most 27
positive eigenvalues.

By lemma 3.2,

per(H) = 120+ 24|e; |2 + 12|y | + 12| €3] + 24|e4]2 + 120 s
= 120 + 24a°

and the proposition 3.2 implies that

er(H 6 2 2 6
G(H) =" Sl ZVAVL + ZVaVo + V3V + £ VaVg
5 5 5 5 5
where
—5ai —5a2 5adi at
5a 5a2 5a° a*
vi=| 5a |, w=|-5a|, wz=|-5a%|, w=| a
—5a 5a2 —5a3 at
0 0 0 —4a*

Notice that {v,v1,Vvo,V3,Vv4} is orthogonal, thus those vectors are eigenvectors of €1 (H)
corresponding to the eigenvalues

6 2
per(H) = 120+ 24a®, : [va]|? = 12022, : 2|2 = 40a%,

2 2 6 6 2 8
— =4 — =24a°.
gllvs|®=402", v a
We replace a2 = c, then tr(m(H)) = 120(1 + c)*. The spectrum of €1 (H) is
{120 + 24c*,120c,40c?,40¢3, 24¢* .

Moreover, every eigenvalue of ;1 (H) except per(H) is an eigenvalue of 7(H) with
multiplicity at least 4 and, every eigenvalue of %»(H) except eigenvalues of %71 (H)
is an eigenvalue of (H) with multiplicity at least 5. Therefore, if we can calculate
the sum and the sum of squares of at most 2 unknown positive eigenvalues of w(H),
then the spectrum is determined. We compute the trace of >(H). The (i, ])(i, j)-th
diagonal entry of %, (H) is given by

per(H[{i. j}.{i,j}])-per(H({i, j}.{i.i}))
= 2+ leu[{i, I HP + 2 el{i, }]1P)
x (6-+2lew[{i, 1) ° + 2 el{i, ] 117 +6es[{i, i} ).
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Hence, we use the table to represent all the diagonal entries of %> (H).

Coordinates Values
(1,2)(1,2) (2+2¢+ 2¢2) (6 + 4c+2¢2)
(1,3)(1,3) (2+2¢2)(6 + 2¢2)
(1,4)(1,4) (2+2¢+2¢2)(6+4c+2c?)
(1,5)(1,5) (24 ¢)(6+2c+2c2+6C3)
(2,3)(2,3) (2+2¢+2¢2)(6+4c+2c?)
(2,4)(2,4) (2 +2¢2)(6 + 2¢?)
(2,5)(2,5) (2+¢)(6+2c+2c2+ 6¢3)
(3,4)(3,4) (2+2¢+2¢2)(6+4c+2c?)
(4,5)(4,5) (24 ¢)(6+2c+2c2+6C3)
tr(%2(H)) | 1204 48c*+ 104c® + 152¢? + 120c

Furthermore, we use the symmetric polynomials to calculate the sum of all squares of
eigenvalues.
2

5
H=3Y [T+ ug Ty
0eS 1€ |i=1
5 2
=120 ) H 1+ uls())
oeS |i=1
We know that us = 0, and for k=1,...,4 we have uy = a.iX with a? = c then
tr(z(H)?)
5 2
= [T +utsg)
oeS |i=1
4 2 4 2
=120 (Z > (I a+umg) + X ([T +utsg) )
k=lo€eS;, o(k)=5|j#k5 0€Ss, 6(5)=5 |i=1
4 2 4 2
=120y Y I[T@+ciie) + ¥ JJA+cil=eW)] |.
k=lo€eS;, o(k)=5|j#k5 0€Ss, 6(5)=5|j=1

LEMMA 3. By the fundamental theorem of symmetric polynomialsand e; =& =
e; = & = 0 then every monomial symmetric polynomial in 5 variables of degree non-
divisible by 4 takes (uy, Uy, U3, Ug,Us) asaroot.
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The lemma 4.1 reduces the sums

A 2
2 [T@+ci=o0)
k=1c€S;,0(k)=5|j#k5
4
=Y Y 1+ +A+A)c Y, 2Re(il 7Ol
k=1ceS;,0(k)=5 i#k5
A+ AR Y (7ol o)y (jiz-olz) 1 jolz) i)
i1<i27£k,5
13 H (il=o0) 4 jol=)

j#k5

6(1+c?) +2 S 02(1+c2)2Re< 3 iili2+"<i2)“<il>>

k=1ceS;,0(k)=5 i1 <iz£k5

4 . -
=96(1+¢%)°+ Y c*(1+C¢*)Re ( Y ez Y} i"<'2>—"<'1>)
k=t (9=5

i1 £ip#k,5 0€S;, o (k)=
combine with

Yy iclol) =¥ i@ N if = _24=-8

0€S,0(k)=5 a=1 B+«

We attain

. 2

> 3 | [La+eiie)

k=10€S5,0(K)=5 | j#k5

k=1 i1k 5
=96(1+c?)®+64c3(1+¢?).

=96(1+¢?)3—-8c%(1+c?) i Re ( > él—‘2>

The lemma 4.1 also reduces the sum

4 2 4 2
D [Ta+cilet)| = 2 [T +c.ii=ot
0€Ss, 0(5)=5|i=1 i=1
2
z 14+c4 +C3z| J+CZ|J o) 4 2 Z jlitiz—o(in)-o(j2)
oesy = j1<i2
4 2 2

=24(1+c*2+(+c?) Y ZN a(i)
cesy |i=

z jlitia—o(j1)-o(j2)

1<i2

¢ >

oesy
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We compute each part separately by the lemma 4.1

2
4 o
Z ZiJfG(D —24.4—8 Z il1702 =96+ 32 =128
ce$y |i=1 i1#i2
2
Z Z jlitiz—o(j)—o(j2)
ocSy 1<z

_y ((‘2‘) Ly ettt -oli sty

oS {i1.iz,iz,is}={1,2,3,4}
+2 Y iiliz+c<Jz)c<n>)
i1#i2
=144 +2 z jlstia—ii—i2 _ 16 2 ili-l2 —208_2 2 i2i1+2i2 — 994
(i12,13,ia) 1712 in#l2

Thus, we obtain tr(m(H)?) = 120(24(1 + c*)2 + 128(c® + ¢?) +224c* + 96(1 + ¢?)® +
64c?(1+c?)).
Hence, the spectrum of (H) is

per(H) = 120 + 24c* of multiplicity 1

120c, 40¢?,40c3, 24c* of multiplicity 4

64c3,112¢? of multiplicity 5

0 of multiplicity 93.

We observe that ¢ = 2 is a solution of the inequality 120+ 24c* —64c® < 0. Therefore,
the matrix H = w* 4+uu* where v=(1,...,1)T, u=2(i,—1,-i,1,0) is a counterex-
ample to the permanent-on-top conjecture (POT).

3 1-2i -1 1+2i1

1+2i 3 1-2i -1 1

H=| -1 142 3 1-2i1
1-2i -1 142 3 1

1 1 1 1 1

The spectrum of this counterexample is also given by above calculations:

per(H) = 504 of multiplicity 1

240, 160, 320, 384 of multiplicity 4

512 and 448 of multiplicity 5

0 of multiplicity 93
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Once, | have the counterexample, a shorter way to prove the matrix H is a counterex-
ample for Pate’s conjecture in the case n=15 and k= 2 is available by Tensor product.
For the purposes of this paper let us describe the tensor product of vector spaces in
terms of bases:

DEFINITION 7. Let V and W be vector spaces over C with bases {v;} and {w;},
respectively. Then V ®W is the vector space spanned by {v; @w;} subject to the rules:

(aov+o'V)ow=o(vaw)+a (V ew)

Ve (aw+ o'W) = a(vaw) + o (Ve w)

forall v, €V and w,w' € W and all scalars o, o/ .
If (,) isan inner product on V then we can define an inner product (,) on V@V
in the manner:

<Vi1 @ Vi, Vig ®Vi4> = <Vi1vVi3><Viz7Vi4>
for any vi,,Vi,, Vi, Vi, vectors.

On CJ[x,y], we consider the inner product, and the resulting Euclidean norm |- |,
such that monomials are orthogonal and [x"y¥|?> = nlk!.

PROPOSITION 4.1. The permanent of the Gram matrix of any 1-forms f; € Cx@®
. 2
Cy is [ITfj|"

Proof. We prove the generalization of the statement which states that if 1, f,,..., f,,
01,92,.--,0n be 2n 1-formsand A be an nx n matrix with (i, j)-th entry (f;,g;), then

(i)

Let fi = oix+ Biy,gi = ofx+ By forany i € {1,2,...,n}.
We compute each side of the equality:

The left side is
n
per(A) = z H fi, 9o i) Z H(Oﬂix'i‘ﬁi)é Oﬂé(i)x‘"ﬁ([;(i)w
ceS i= cesi=1
n
= > [(ei- a5 +Bi- [3/ )
oeSi=1

2 2 2 Oty - O B,y - Bin 0 ali ao‘lkﬁ/ o (iki1) " ﬂ/
ceS k=0 1<ip<...<ig<n
1<ig1<...<Ipn



A SIMPLE COUNTEREXAMPLE FOR THE PERMANENT-ON-TOP CONJECTURE

(xil . quﬁik+l ...ﬂin

k=0 1<ip<...<ig<n
1< <...<ip<n

X Y o ..

1_<i1<...<ik_<n
1< <...<ip<n

and the right side is

(f1efre)
_ <kioxky"—k

. (xi/kﬂi/k+1 e ﬁlln

Oliy - iy By - Bins

1<ii<...<ig<n

1<ig1<...<In<n

n
z Xkyn—k
k=0

z (Xill . Oti/kﬁi/kH . ﬁ|/n>

1<ii<...<ig<n

1<ig1<...<In<n

n

=Y K(n—Kk)!

k=0

x )

1<ii<...<ig<n

z ail"'aikﬁik+1"'ﬂin

1§i1<...<iK<n
1<ig1<...<ip<n

og...of B B | O

1<ig1<...<Ip<n

15

Let f; =x+Vyilv2 (j =1,2,3,4) and fs = x. Their Gram matrix is the given
matrix H with perH = | f; f, faf4 f5|? = |x® — 4xy*|> = 5! + 16 - 4! = 504 (according to
the proposition4.1). When {p,q,r,s,;t} ={1,2,3,4,5}, define Fpq= fpfq® f; fsfy and
an inner product on C[x,y] ® C[x,y] as the definition 4.1. It is obvious that >(H) of
H is the Gram matrix of the ten tensors Fpq with {p,q,r,s;t} ={1,2,3,4,5}, p<q,

and r < s<t. We observe that

(L+D)Fa+ (=1+1)F2+ (-1 — )R+ (1 —i)Fss — 2iFs51 + 2Fs2 + 2iFs3 — 2Fs4
= 16V2X° @y — 32vV2xy @ xy? + 16v/2y? @ *%y,

whose norm squared is

29.21314+2.214.29.21.21 =512 24,

while the norm squared of the coefficient vector is

LI 4| —1+i24 | —1—i]24+[1 =2+ | =202+ 2%+ |2i|* + | — 2|* = 24.
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Therefore, a linear operator mapping eight orthonormal vectors to F1o, Fo3, Fz4, Fa1,

Fs1,
whic
least

[1]
[2]
[3]

[4]
[5]

[6]
[71
(8]
[9]
[10]

[11]

Fs2, Fs3, Fs4 has norm at least /512, so the Gram matrix of these eight tensors,
h is an 8-square diagonal submatrix of %(H), has norm (=largest eigenvalue) at
512, whence so does 6, (H) itself. In fact, the norm of &, (H) is 512.
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