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BOUNDEDNESS OF RIEMANN–LIOUVILLE

OPERATOR FROM WEIGHTED SOBOLEV SPACE TO

WEIGHTED LEBESGUE SPACE FOR 1 < q < p < ∞

AIGERIM KALYBAY ∗ AND RYSKUL OINAROV

(Communicated by S. Varošanec)

Abstract. In the paper, a criterion for the boundedness of the Riemann-Liouville fractional in-
tegration operator from a weighted Sobolev space to a weighted Lebesgue space is obtained for
1 < q < p < ∞ .

1. Introduction

Let I = (0,∞) , 1 < p,q < ∞ , 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Suppose that υ , ρ are

positive functions and ω is a nonnegative function on I such that υ p , ρ p , ωq , ρ−p′

and ω−q′ are locally summable on I .
Let ÅC(I) be the set of all locally absolutely continuous functions with compact

supports on I . Suppose that L p,υ ≡ Lp(υ , I) is the space of all functions measurable
on I with the finite norm ‖ f‖ p,υ ≡ ‖υ f‖p , where ‖ · ‖p is the standard norm of the
Lebesgue space Lp(I) .

Denote by W 1
p (ρ ,υ) ≡ W 1

p (ρ ,υ , I) the space of all functions locally absolutely
continuous on I with the finite norm

‖ f‖W1
p

= ‖ρ f ′‖p +‖υ f‖p.

In addition, denote by W̊ 1
p (ρ ,υ) ≡ W̊ 1

p (ρ ,υ , I) the closure of the set ÅC(I)∩W 1
p (ρ ,υ)

with respect to the norm of the space W 1
p (ρ ,υ).

Consider the Riemann-Liouville fractional integration operator I α , α > 0:

Iα f (x) =
x∫

0

(x− s)α−1 f (s)ds, x ∈ I.
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The problem of boundedness of the Riemann-Liouville operator from W̊ 1
p (ρ ,υ) to

Lq(ω , I) means the validity of the following inequality

‖ωIα f‖q � C(‖ρ f ′‖p +‖υ f‖p), f ∈ W̊ 1
p (ρ ,υ). (1)

In the paper [8], inequality (1) is investigated for 1 < p � q < ∞ . Here we study the
case 1 < q < p < ∞ .

For an arbitrary positive operator T inequality (1) can be rewritten in the form

‖ωT f‖q � C(‖ρ f ′‖p +‖υ f‖p), f ∈ W̊ 1
p (ρ ,υ). (2)

When T is the unit operator, necessary and sufficient conditions for the validity of ( 2)
for all values of the parameters 1 � q, p � ∞ are given in [11] and [16]. The case
0 < q < 1, p > 1, is investigated in [19]. In the paper [12], inequality (2) is studied for
T when it is the integral operator

K f (x) =
x∫

0

K(x,s) f (s)ds, x ∈ I, (3)

with the kernel K(x,s) � 0, satisfying the condition: for some number h � 1 the in-
equality

1
h
(K(x,t)+K(t,s)) � K(x,s) � h(K(x, t)+K(t,s)) (4)

holds for all x, t,s : 0 < s � t � x < ∞ . The papers [13] and [7] study inequality (2) for
operator (3), whose kernel belongs to classes O−

n and O+
n , n � 0, introduced in [14].

These classes O−
n and O+

n , n � 0, are wider than the class of kernels satisfying (4);
namely, such kernels belong to the class O−

1 ∩O+
1 .

In the case ρ(·) ≡ 0, inequality (2) turns into the weighted Hardy inequality

‖ωT f‖q � C‖υ f‖p, (5)

and its validity means the boundedness of the operator T from L p,υ to Lq,ω . The devel-
opment of inequality (2) presented above repeats the same stages of the development of
weighted Hardy inequality (5). Thus, inequality (5) was completely characterized for

the Hardy operator H f (x) =
x∫

0
f (s)ds , for the Riemann-Liouville operator Iα , α � 1,

and for operators, whose kernels satisfy condition (4) (see the monograph [9] for more
details). Then in the paper [14], inequality (5) was studied for operators with ker-
nels from classes O−

n and O+
n , n � 0, in the case 1 < p � q < ∞ . There are also

several results investigating inequality (5) for the Riemann-Liouville operator in the
singular case 0 < α < 1. For example, in the works [10] and [17], for 0 < q < ∞ and
1 < p < ∞ criteria for the boundedness of the Riemann-Liouville operator I α from Lp

to Lq,ω are independently found in the case α > 1
p and υ(·) ≡ 1. In the paper [18], for

1 < p � q < ∞ inequality (5) for the Riemann-Liouville operator Iα was characterized
under the assumption that one of the weight functions is increasing or decreasing. The
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most general results for the Riemann-Liouville operator in the singular case 0 < α < 1
are given in [1].

One more important direction in the development of weighted Hardy inequality
(5) is its investigation for operators with variable limits of integration, which has been
intensively studied in many works (see, e.g., [3], [4], [5], [6], [19] and [20]) in recent
years. This direction is of independent interest, but, as it turned out, it has a connection
with inequality (2).

The main goal of this paper is to characterize inequality (1) for 1 < q < p <
∞ and α > 1

p . To achieve this goal, we apply a technique based on equivalence of
inequality (2) and a certain weighted inequality. Then we combine this technique with
the conditions for the boundedness of operators with variable limits of integration on
Lebesgue spaces.

Let us finally note that the boundedness of the operator T from a weighted Sobolev
space W̊ 1

p (ρ ,υ) to a weighted Lebesgue space Lq(ω , I) can be used to establish the

boundedness of this operator T from a weighted Sobolev space W̊ 1
p (ρ ,υ) to a weighted

Sobolev space W 1
q,q1

(ν,ω) with the norm

‖ f‖W1
q,q1

= ‖ν f ′‖q1 +‖ω f‖q,

where 1 < q1 < ∞ and ν is a positive function on I such that ν q1 is locally summable
on I . This means that characterizations of the inequality

‖T f‖W 1
q,q1

(ν,ω) � ‖ f‖
W̊1

p (ρ ,υ)
,

follow from characterizations of inequality (2). Consequently, using inequality (1) we
can find conditions for the boundedness of the Riemann-Liouville operator I α between
Sobolev spaces. In the paper [13] (see Section 5), this application is described in detail.

2. Preliminaries

In the sequel, the relation A � B means A � CB with a constant C depending
only on the parameters p and q . Moreover, if A � B � A we write A ≈ B .

As in [11], we introduce the following function

δ (x,y) = sup

⎧⎨⎩d > 0 :

x∫
x−d

ρ−p′(t)dt �
x+y∫
x

ρ−p′(t)dt,(x−d,x]⊂ I

⎫⎬⎭ ,

with the domain D(δ ) = {(x,y) : x ∈ I,y > 0, [x,x + y) ∈ I} . If we fix x ∈ I , then at
least for a sufficiently small y > 0 we have

x∫
x−δ (x,y)

ρ−p′(t)dt =
x+y∫
x

ρ−p′(t)dt. (6)
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Let x ∈ I and Dx be a set of y > 0 such that x+ y ∈ I and (6) holds. For all x ∈ I we
define

d+(x) = sup{d : ‖ρ−1‖p′,(x−δ (x,d),x+d)‖υ‖p,(x−δ (x,d),x+d) � 1, d ∈ Dx},
and d−(x) = δ (x,d+(x)) . Assume that μ−(x) = x−d−(x) and μ+(x) = x+d+(x) .

Let for some c ∈ I we have

‖ρ−1‖p′,(0,c) +‖υ‖p,(0,c) = ∞, ‖ρ−1‖p′,(c,∞) +‖υ‖p,(c,∞) = ∞. (7)

For simplicity, we assume that (7) holds. The validity of (7) is equivalent to the condi-
tion W̊ 1

p (ρ ,υ) = W 1
p (ρ ,υ) (see [11]). How to overcome the difficulties that arise when

the condition (7) does not hold is also given in [11].
On the basis of Lemmas 1.1-1.3 of [11] the functions μ−(x) = x− d−(x) and

μ+(x) = x+d+(x) are strictly increasing functions continuous on I . Moreover,

lim
x→0+

μ±(x) = 0, lim
x→∞

μ±(x) = ∞.

This gives that 0 < μ±(x) < ∞ for any x ∈ I . We need the following statement from
[12] and [13].

LEMMA A. Let condition (7) hold. Then the functions μ−(x) and μ+(x) are
locally absolutely continuous on I .

Denote by ϕ+ and ϕ− the inverses of the functions μ− and μ+ , respectively.
Then the functions ϕ + and ϕ− are continuous and strictly increasing on I . Moreover,
ϕ+(x) > ϕ−(x) for any x ∈ I and lim

x→0+
ϕ±(x) = 0, lim

x→∞
ϕ±(x) = ∞ .

Let us formulate the crucial equivalence statement for inequality ( 2) with arbitrary
positive operator T proved in [7].

LEMMA B. Let 1 < p,q < ∞ . Inequality (2) for all functions f ∈ W̊ 1
p (ρ ,υ) is

equivalent to the inequality⎛⎜⎝ ∞∫
0

⎛⎜⎝ω(x)T

⎛⎜⎝ μ+(·)∫
μ−(·)

f (t)dt

⎞⎟⎠(x)

⎞⎟⎠
q

dx

⎞⎟⎠
1
q

� C1

⎛⎝ ∞∫
0

ρ p(t) f p(t)dt

⎞⎠
1
p

(8)

for all nonnegative functions f ∈ Lp(ρ , I) . Moreover, C ≈C1 , where C > 0 and C1 > 0
are the best constants in (2) and (8), respectively.

Let α(x) and β (x) be locally absolutely continuous and strictly increasing func-
tions on I such that α(x) < β (x) for any x ∈ I and lim

x→0+
α(x) = lim

x→0+
β (x) = 0,

lim
x→∞

α(x) = lim
x→∞

β (x) = ∞.

Consider the integral operator

K f (x) =

β (x)∫
α(x)

K(x,s) f (s)ds, x ∈ I. (9)
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Let Ω = {(x,s) : 0 < x < ∞, α(x) � s � β (x)}. Let the function K(·, ·) � 0 be defined
and measurable on Ω . Moreover, K(·, ·) does not decrease in the first argument. Let us
define the class O+

1 (Ω) of kernels of operator (9). The function K(·, ·) belongs to the
class O+

1 (Ω) if and only if for K(·, ·) there exist functions K1,0(x,s) and V (s) defined
and measurable on Ω and the relation

K(x,s) ≈ K1,0(x,t)V (s)+K(t,s) (10)

holds for 0 < t � x < ∞ and α(x) � s � β (t) , where the constants of equivalency
in (10) do not depend on x , t and s . Note that the classes O −

n and O+
n , n � 0,

are modifications of the classes O−
n and O+

n , n � 0, for variable limits of integration
introduced in [15].

The following statement is proved in [2]. For its formulation, we need to construct
a sequence {tk}k∈Z such that t0 ∈ I is a fixed point and tk+1 = α−1(β (tk)) , k ∈ Z .

THEOREM A. Let 1 < q < p < ∞ , 1
r = 1

q − 1
p and the kernel K(x,s) of the oper-

ator K belongs to class O+
1 (Ω) . Then the operator K is bounded from L p,ρ to Lq,ω

if and only if

B+ =

(
∑
k

[
(B+

k,1)
r +(B+

k,2)
r +(B+

k,3)
r +(B+

k,4)
r
]) 1

r

< ∞,

where

B+
k,1 =

⎛⎜⎜⎝
α(tk+1)∫
α(tk)

⎛⎜⎝ α−1(t)∫
tk

Kq
1,0(x,tk)ω

q(x)dx

⎞⎟⎠
r
q

×
⎛⎝ α(tk+1)∫

t

V p′(s)ρ−p′(s)ds

⎞⎠
r
q′

V p′(t)ρ−p′(t)dt

⎞⎟⎠
1
r

,

B+
k,2 =

⎛⎜⎜⎝
tk+1∫
tk

⎛⎝ t∫
tk

ωq(x)dx

⎞⎠
r
p
⎛⎜⎝ α(tk+1)∫

α(t)

Kp′(tk,s)ρ−p′(s)ds

⎞⎟⎠
r
p′

ωq(t)dt

⎞⎟⎟⎠
1
r

,

B+
k,3 =

⎛⎜⎜⎝
β (tk+1)∫
β (tk)

⎛⎜⎝ tk+1∫
β−1(t)

Kq
1,0(x,β

−1(t))ωq(x)dx

⎞⎟⎠
r
q

×

⎛⎜⎝ t∫
β (tk)

V p′(s)ρ−p′(s)ds

⎞⎟⎠
r
q′

V p′(t)ρ−p′(t)dt

⎞⎟⎟⎠
1
r

,
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and

B+
k,4 =

⎛⎜⎜⎝
tk+1∫
tk

⎛⎝ tk+1∫
t

ωq(x)dx

⎞⎠
r
p
⎛⎜⎝ β (t)∫

β (tk)

Kp′(t,s)ρ−p′(s)ds

⎞⎟⎠
r
p′

ωq(t)dt

⎞⎟⎟⎠
1
r

.

Moreover, for the norm ‖K ‖ of the operator K from Lp,ρ to Lq,ω the relation
‖K ‖ ≈ B+ holds.

3. Criterion for validity of (1)

Here and further we assume that condition (7) holds.
Using the functions μ−(x) and μ+(x) , similarly to above we construct the se-

quence {tk}k∈Z such that t0 ∈ I is a fixed point and tk+1 = ϕ+(μ+(tk)) , k ∈ Z .
Let

B1 =

⎛⎜⎜⎝
∞∫

0

⎛⎝ ∞∫
t

ωq(s)sq(α−1)ds

⎞⎠
r
p
⎛⎜⎝ μ−(t)∫

0

U(x)dx

⎞⎟⎠
r
p′

ωq(t)tq(α−1)dt

⎞⎟⎟⎠
1
r

,

Bk,1 =

⎛⎜⎜⎝
μ−(tk+1)∫
μ−(tk)

⎛⎜⎝ ϕ+(t)∫
tk

(x− tk)qα ωq(x)dx

⎞⎟⎠
r
q
⎛⎜⎝ μ−(tk+1)∫

t

ρ−p′(s)ds

⎞⎟⎠
r
q′

ρ−p′(t)dt

⎞⎟⎟⎠
1
r

,

Bk,2 =

⎛⎜⎜⎝
tk+1∫
tk

⎛⎝ t∫
tk

ωq(x)dx

⎞⎠
r
p
⎛⎜⎝ μ−(tk+1)∫

μ−(t)

(tk −ϕ−(s))p′α ρ−p′(s)ds

⎞⎟⎠
r
p′

ωq(t)dt

⎞⎟⎟⎠
1
r

,

Bk,3 =

⎛⎜⎜⎝
μ+(tk+1)∫
μ+(tk)

⎛⎜⎝ tk+1∫
ϕ−(t)

(x−ϕ−(t))qα ωq(x)dx

⎞⎟⎠
r
q

×

⎛⎜⎝ t∫
μ+(tk)

ρ−p′(s)ds

⎞⎟⎠
r
q′

ρ−p′(t)dt

⎞⎟⎟⎠
1
r

,

Bk,4 =

⎛⎜⎜⎝
tk+1∫
tk

⎛⎝ tk+1∫
t

ωq(x)dx

⎞⎠
r
p
⎛⎜⎝ μ+(t)∫

μ+(tk)

(t −ϕ−(s))p′α ρ−p′(s)ds

⎞⎟⎠
r
p′

ωq(t)dt

⎞⎟⎟⎠
1
r

.
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Assume

B2 =

(
∑
k

(
Br

k,1 +Br
k,2 +Br

k,3 +Br
k,4

)) 1
r

,

U(t) =
d
dt

μ−(t)∫
0

|ϕ+(x)−ϕ−(x)|p′ρ−p′(x)dx.

THEOREM 1. Let 1 < q < p < ∞ and α > 1
p . Let the function U(t) be non-

increasing for t > 0 . Then the Riemann-Liouville operator Iα is bounded from W̊ 1
p (ρ ,υ)

to Lq(ω , I) if and only if B = max{B1,B2} < ∞ . Moreover, for the norm ‖Iα‖W→q of

the operator Iα from W̊ 1
p (ρ ,υ) to Lq(ω , I) the relation ‖Iα‖W→q ≈ B holds.

Proof. In order not to repeat the steps in the proof of this theorem, similar to those
in the proofs of Theorems 3.1, 3.2, and 3.3 in the work [ 8], we omit them. Therefore,
for more details, we refer to [8].

By Lemma B inequality (1) holds if and only if the operator

Ĩα f (s) ≡ Iα

⎛⎜⎝ μ+(·)∫
μ−(·)

f (x)dx

⎞⎟⎠ (s)

is bounded from Lp(ρ , I) to Lq(ω , I) . Moreover, ‖Iα‖W→q ≈ ‖Ĩα‖p→q , where

‖Ĩα‖p→q is the norm of the operator Ĩα from Lp(ρ , I) to Lq(ω , I) . Arguing similarly
as in [8], we get that the operator Ĩα is bounded from Lp(ρ , I) to Lq(ω , I) if and only
if the operators

Ĩ1,α f (s) ≡
μ−(s)∫
0

f (x)

ϕ+(x)∫
ϕ−(x)

(s− t)α−1dtdx

and

Ĩ2,α f (s) ≡
μ+(s)∫

μ−(s)

(s−ϕ−(x))α f (x)dx

are bounded from L p(ρ , I) to Lq(ω , I) with, in addition, ‖Ĩα‖p→q ≈ ‖Ĩ1,α‖p→q +
‖Ĩ2,α‖p→q , where ‖Ĩ1,α‖p→q and ‖Ĩ2,α‖p→q are the norms of the operators Ĩ1,α

and Ĩ2,α from Lp(ρ , I) to Lq(ω , I) .

If the operator Ĩ1,α is bounded from Lp(ρ , I) to Lq(ω , I) , then arguing as in [8],
from the known characterization of inequality (5) for the Hardy operator with variable
upper bound (see [20, Theorem 4.1]), for f � 0 we obtain the estimate

‖Ĩ1,α‖p→q � B1. (11)
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Now, we suppose that B1 < ∞ . Then we have

‖ωĨ1,α f‖q �

⎛⎜⎝ ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
μ−(s)∫

μ−( s
2 )

(s−ϕ−(x))α−1u(x) f (x)dx

∣∣∣∣∣∣∣
q

ds

⎞⎟⎠
1
q

+

⎛⎜⎝ ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
μ−( s

2 )∫
0

(s−ϕ−(x))α−1u(x) f (x)dx

∣∣∣∣∣∣∣
q

ds

⎞⎟⎠
1
q

= F1 +F2. (12)

In F1 we change the variables x = μ−(t) in the inner integral and get

F1 =

⎛⎜⎝ ∞∫
0

ωq(s)

∣∣∣∣∣∣∣
s∫

s
2

(s− t)α−1U
1
p′ (t)ρ̃(t) f̃ (t)dt

∣∣∣∣∣∣∣
q

ds

⎞⎟⎠
1
q

, (13)

where ρ̃(t) = ρ(μ−(t))
( dμ−(t)

dt

) 1
p and f̃ (t) = f (μ−(t)) . Using (13) and the non-

increase of the function U , we have

Fq
1 = ∑

k

2k+1∫
2k

ωq(s)

∣∣∣∣∣∣∣
s∫

s
2

(s− t)α−1U
1
p′ (t)ρ̃(t) f̃ (t)dt

∣∣∣∣∣∣∣
q

ds

� ∑
k

(
U(2k−1)2k−1) q

p′
2k+1∫
2k

ωq(s)sq(α−1)ds

⎛⎝ 2k+1∫
2k−1

|ρ̃(t) f̃ (t)|pdt

⎞⎠
q
p

.

In the last expression using the discrete Hölder’s inequality for q
r and q

p and taking into
account that

U(2k−1)2k−1 �
2k−1∫
0

U(x)dx =

μ−(2k−1)∫
0

up′(x)ρ−p′(x)dx,

⎛⎝ 2k+1∫
2k

ωq(s)sq(α−1)ds

⎞⎠
r
q

�
2k+1∫
2k

⎛⎝ ∞∫
t

ωq(s)sq(α−1)ds

⎞⎠
r
p

ωq(t)tq(α−1)dt,
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we obtain

Fq
1 �

⎛⎜⎜⎝∑
k

2k+1∫
2k

⎛⎝ ∞∫
t

ωq(s)sq(α−1)ds

⎞⎠
r
p
⎛⎜⎝ μ−(t)∫

0

up′(x)ρ−p′(x)dx

⎞⎟⎠
r
p′

ωq(t)tq(α−1)dt

⎞⎟⎟⎠
q
r

×
⎛⎝∑

k

2k+1∫
2k−1

|ρ̃(t) f̃ (t)|pdt

⎞⎠
q
p

� Bq
1‖ρ f‖q

p. (14)

Arguing again as in [8], from the known characterization of inequality ( 5) for the Hardy
operator with variable upper bound, we obtain F2 �B1‖ρ f‖p . The latter, together with
(12) and (14), yields that the operator Ĩ1,α is bounded from Lp(ρ , I) to Lq(ω , I) and

the estimate ‖Ĩ1,α‖p→q �B1 holds. This estimate and (11) give that the operator Ĩ1,α

is bounded from Lp(ρ , I) to Lq(ω , I) if and only if B1 < ∞ . Moreover, ‖Ĩ1,α‖p→q ≈
B1 .

Since the kernel K(t,x) = (t −ϕ−(x))α of the operator Ĩ2,α belongs to the class
O+

1 (Ω) (see the proof of Theorem 3.2 in [8]), by Theorem A the operator Ĩ2,α is

bounded from Lp(ρ , I) to Lq(ω , I) if and only if B2 < ∞ . Moreover, ‖Ĩ2,α‖p→q ≈ B2 .
The proof of Theorem 1 is complete. �
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