athematical
nequalities
& fA\pplications
Volume 25, Number 1 (2022), 73-89 doi:10.7153/mia-2022-25-06

ON THE NUMBER OF REAL ZEROS OF REAL ENTIRE
FUNCTIONS WITH A NON-DECREASING SEQUENCE OF
THE SECOND QUOTIENTS OF TAYLOR COEFFICIENTS

THU HIEN NGUYEN™* AND ANNA VISHNYAKOVA

(Communicated by 1. Peri€)

Abstract. For an entire function f(z) =Yy, acZ¥, a, >0, we define the sequence of the second

aZ “
A—18+1 |
function with a non-decreasing sequence Q to belong to the Laguerre-Polya class of type I.
We also estimate the possible number of non-real zeros for a function with a non-decreasing
sequence Q.

quotients of Taylor coefficients Q := < . We find new necessary conditions for a

1. Introduction

The topic of zero distribution of entire functions has been the subject of study and
discussion of mathematicians for many years (see, for example, [19]). In the present
paper, we consider a class of entire functions with positive Taylor coefficients and in-
vestigate the condition for them to belong to the Laguerre-Polya class of type I. We give
the definitions of the Laguerre-Polya class and the Laguerre-Polya class of type 1.

DEerFINITION 1. Areal entire function f is said to be in the Laguerre-P 6lya class,
written f € . — &2, if it can be expressed in the form

f(z) = cz"e Z P I1 (1 - i) e (1)
k=1 Xk

where ¢, o, B, xx € R, xx # 0, a > 0, n is a nonnegative integer and Zf’zlxgz < oo,
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DEFINITION 2. A real entire function f is said to be in the Laguerre-P élya class
of type I, written f € ¥ — 221, if it can be expressed in the following form

f(z) :cz”eﬁzﬁ (14—%), @)

k=1
where ¢ € R, 3 > 0,x > 0, n is a nonnegative integer, and Y ; xk‘1 < oo,

As usual, the product on the right-hand sides in both definitions can be finite or empty
(in the latter case the product equals 1).

These classes are important for the theory of entire functions since the hyperbolic
polynomials (i.e. real polynomials with only real zeros), or hyperbolic polynomials
with nonnegative coefficients converge locally uniformly to these and only these func-
tions. The following prominent theorem states even a stronger fact.

THEOREM A. (E. Laguerre and G. Polya, see, for example, [5, p. 42-46]) and
[12, chapter VIII, §3]).

(i) Let (Pn)m_s, Pa(0) =1, be a sequence of real polynomials having only real ze-
ros which converges uniformly on the disc |z| < A,A > 0. Then this sequence
converges locally uniformly in C to an entire function from the .¥ — & class.

(if) Forany f € ¥ — 27 there exists a sequence of real polynomials with only real
zeros which converges locally uniformly to f.

(iii) Let (Pn)y_4, Pn(0) =1, be a sequence of real polynomials having only real neg-
ative zeros which converges uniformly on the disc |z| < A,A > 0. Then this se-
quence converges locally uniformly in C to an entire function from the class
L — DI

(iv) For any f € .Z— 21 there is a sequence of real polynomials with only real
nonpositive zeros which converges locally uniformly to f.

Numerous properties and features of the Laguerre-P6lya class and the Laguerre-
Polya class of type | can be found in the works [20, p. 100], [21] and [18, Kapitel 1I]
(also see the survey [19] on the zero distribution of entire functions, its sections and
tails). Note that for a real entire function (not identically zero) of the order less than 2
the property of having only real zeros is equivalent to belonging to the Laguerre-Polya
class. Also, for a real entire function with positive coefficients of the order less than 1
having only real negative zeros is equivalent to belonging to the Laguerre-P6lya class
of type I. In particular, the same property is valid for polynomials.

Let f(z) =X o axz* be an entire function with real nonzero coefficients. We
define the quotients pn and gn:

an_

Pn = pn(f) = L 17 n>1,
dn
P aﬁfl

= f = — = 5 n 2 2.
I = (1) Pn-1  a@n—2an
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From these definitions it follows straightforwardly that

ao

ap=———, n=1
P1p2---Pn
a;\n-1 1
an:a1<—> —— , nx=2.
a/ gy ta) 02 0n

It is rather a complicated problem to understand whether a given entire function
has only real zeros. However, in 1926, J. I. Hutchinson found quite a simple sufficient
condition for an entire function with positive coefficients to have only real zeros.

THEOREM B. (J. I. Hutchinson, [6]). Let f(z) = 2;°:0akzk, ax > 0 for all k.
Then qn(f) >4, for all n > 2, if and only if the following two conditions are fulfilled:

(i) The zeros of f are all real, simple and negative;

(ii) The zeros of any polynomial >}, aZ¥, m < n, formed by taking any number of
consecutive terms of f, are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [ 3, §4].

A special entire function ga(z) = X o a ™k a> 1, known as a partial theta
function (the classical Jacobi theta function is defined by the series 6(z) == X _.. a*"zz"),
was investigated by many mathematicians and has an important role. Note that qn(ga) =
a? for all n. The survey [23] by S. O. Warnaar contains the history of investigation of
the partial theta function and some of its main properties.

In particular, in the paper [7] it was explained that for every n > 2, there exists a
constant ¢, > 1 such that for each n € N, Sy(z,0a) := ¥}_ a’zle - 2 ifand

only if a% > c,. The notation of the constants ¢, having this property will be further
used.

THEOREM C. (O. Katkova, T. Lobova, A. Vishnyakova, [7]). There exists a
constant e (0. = 3.23363666) such that:

1 ga2) € L~ P = a2 >(q.;
2. 0a(z) € £~ P = thereexists 79 € (—ad, —a) such that ga(z9) <0
3. if there exists zg € (—a3, —a) such that ga(z9) <0, then a2 > g..;

4. for a given n > 2 we have Sp(z,04) € £ — & <« there exists z, € (—a°, —a)
such that Sp(zn,9a) <0;

5. if there exists z, € (—a®, —a) such that Sp(z,,da) < 0, then a? > cp;
6. 4=cy>cCq4>C5>--- and limp e Cop = Qoo;

7. 3=C3<C5<C7<---and limp_eCont1 = Qoo
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Calculations show that ¢4 = 1+ v/5 &~ 3.23607, cg ~ 3.23364 and c5 ~ 3.23362,
C7 ~ 3.23364.

The partial theta function is of interest to many areas such as statistical physics and
combinatorics [22], Ramanujan type q-series [24], asymptotic analysis and the theory
of (mock) modular forms, etc. There is a series of works by V. P. Kostov dedicated to
various properties of zeros of the partial theta function and its derivative (see [9, 10]
and the references therein). The paper [11] among the other results explains the role
of the constant g.. in the study of the set of entire functions with positive coefficients
having all Taylor truncations with only real zeros. In [8], the following questions are

investigated: whether the Taylor sections of the function ] (1+ 5%) ,a>1 and
k=1

Yreo ﬁ, a > 1, belong to the Laguerre-P6lya class of type I. In [2] and [1], some
important special functions with non-decreasing sequence of the second quotients of
Taylor coefficients are studied.

The first author studied a special function related to the partial theta function and
the Euler function

k

oo

z

l(g()(ak+l)(ak—l+l)...(a+l)a a>1’

fa(z) =

which is also known as the q-Kummer function 1¢1(q; —q;9,—2), where g =1/a (see
[4], formula (1.2.22)). Note that its second quotients of Taylor coefficients are

a"+1

Inlfe) = 157

which is an increasing sequence in n for a > 1, with the limit value given by a. In
[17], the conditions were found for this function to belong to the Laguerre-Polya class.

It turns out that for many important entire functions with positive coefficients
f(z) =X, axZ¢ (for example, the partial theta function from [ 7], functions from [2]
and [1], the g-Kummer function 1¢1(q; —0;q,—2z) and others) the following two con-
ditions are equivalent:

1. f belongs to the Laguerre-Polya class of type I, and
2. There exists Xo € [~g2,0] such that f(xo) <O0.

In our previous work we proved the following necessary condition for a function
to belong to the Laguerre-P6lya class.

THEOREM D. (T. H. Nguyen, A. Vishnyakova, [15]). Let f(z) = ZE’ZOakzk,
ax > 0 for all k, be an entire function. Suppose that q2(f) < gz(f). If the function f
belongs to the Laguerre-P6lya class, then there exists xq € [—%,O] suchthat f(xg) <0.

In [16] we have obtained a criterion for belonging to the Laguerre-P6lya class of
type | for real entire functions with the regularly non-decreasing sequence of second
quotients of Taylor coefficients in terms of the existence of a point x as in Theorem D.
It was previously shown in [14] that if f(z) = X, aZ, a > 0 forall k, is an entire
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functionsuch that q, < g3 <4 < ---, and the function f belongs to the Laguerre-P6lya
class, then limp_..gn = ¢ > g.., Where g.. is a constant from Theorem C.

In the present paper we prove that the following conditions on the second quotients
gk are necessary for the function to belong to the Laguerre-Polya | class:

THEOREM 1. Let f(z) =X, 0akz ax >0,k=0,1,2,..., be an entire function
such that g2(f) <gs(f) <ge(f) <---. If f e L — 21, thenforany k=1,2,3,...,
the following inequality holds: gan+1 > Coki1 (Cokr1 defined as in Theorem C).

COROLLARY 1. Let f(x) =X} Oakx ax>0,k=0,1,2,..., be an entire func-
tion such that q,(f) < qgs(f) <ga(f) <. If f e X — 2, then q2(f) >3

In [16] we obtained the following result.

THEOREM E. (T.H. Nguyen, A. Vishnyakova, [16]). Let f(z) =X} 0akz ay >
0, k=0,1,2,..., be an entire function such that 2 /2 ~ 2.51984 < g2(f) < gs(f) <
g4(f) < ---. Then all but a finite number of zeros of f are real and simple.

Our next theorem estimates the possible number of nonreal zeros for such func-
tions.

THEOREM 2. Let f(2) =3¢, aZ¢, ax >0, k=0,1,2,..., be an entire function
such that 2v/2 ~ 2.51984 < qa(f) < q3(f) < qa(f) <---. Ifthere exist jo=2,3,4,...
and mg € N, such that qj, > com,, then the number of nonreal zeros of f does not
exceed jo+2mg— 2 (cyk defined as in Theorem C).

2. Proof of Theorem 1 and Corollary 1

Without loss of generality, we can assume that ag = a; = 1, since we can consider
a function g(x) = a, ' f(apa; *x) instead of f(x), due to the fact that such rescaling of
f preserves its property of having real zeros as well as the second quotients: qn(g) =
gn(f) for all n € N. During the proof instead of pn(f) and gn(f) we use notation py
and gp. It is more convenient to consider a function

kk

X
900 =f(—x) =1-x+
zzqz ' k 2 0210k
instead of f.
Theorem D states that if @ belongs to the Laguerre-Polya class then there exists a
point xo € [0, 5 a;] = [0,02] such that ¢(xo) < 0. Let us introduce some more notation.

For an entire functlon ©, by Sh(x,¢) and Rny(x, ) we denote the nth partial sum and
the nth remainder of the series, i.e.

n (_1)kxk
Sn(X,p) = ;
" Zoqz Lok 2. q2_,q
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and ok
< (=1)*x

Rn(X, @) = .

" k:znqz Lok 2.2, q

First, we need the following Lemma.

LEMMA 1. Let o(X) =1—X+X5, qu(_*lz)m be an entire function. Sup-
k
pose that gk are non-decreasingin k: 1< gz <g3<qs <---. Ifthere exists xq € [0,q2]

such that @(xo) < 0, then xg € (1,02].

Proof. For x € [0,1] we have:

XX X x4
I1>2x>—> — > 3o > y
02 0303 030304
whence
o(x)>0 forall xe[0,1]. O (3)
LEMMA 2. Let o(X) =1—Xx+ 3¢, awq(ilz)km be an entire function. Sup-
pose that gk are non-decreasingin k: 1< gy <gs3<qq <---. Ifthereexists xo € (1,qz]

such that ¢(xo) <0, thenforany n € N, Spn1(X0) <O.

Proof. Suppose that x € (1,q2]. Then we obtain

X2 X3 XK
1<x>—> > > > (4)
4z qu3 d> "3 "0 10k

For an arbitrary n € N we have:

@(X) = Sont1(X, @) +Rans2(X, 9).

By (4) and the Leibniz criterion for alternating series, we conclude that R op2(X, @) >0
forall x € (1,092, or

(p(X) > 82n+l(x7(p) forall xe (17q2]7n eN. (5)

Consequently, if there exists a point xg € (1,032] such that ¢(xp) <0, thenforany ne N
we have Soni1(Xp) <0. O

Thus, we proved that if ¢ € . — &2, then there exists xo € (1,02] such that the
inequalities San11(X0) < 0 hold forany n € N.
k k
In [14] it was proved that if an entire function @(x) =1—x+ Y , E"_cik_l)ﬁ
k—14k

belongs to the Laguerre-Polya class, where 0 < g, < g3 < s < ---, then g2 > 3
(see[14, Lemma 2.1]). So we assume that g, > 3.
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LEMMA 3. Let o(X) =1—X+X¢ , ﬁ% be an entire function. Sup-
2 3 Mk-1
pose that 3< g2 < g3 < qs---. Thenthe inequality Sont1(X, @) = Sonr1(x /q2n+1x,gm)
holds for any n € N and any x € (1,q,] (here g, is the partial theta function and

Son+1(Y,Qa) isits (2n+ 1)-th partial sum at the point y).

Proof. We have

X2 X3 x! x°
S o) 1_X+<__ >+< _ >+ ®)
i1 (X 0) = ( ) 02 q§q3 ng%(M Q§q§q§1q5

N X2n X2n+1
2n—1_.2n—2 2 T 2nq2n—1 2 :
0;" 03 “---0%,_102n qzn% < 05n02n+1

Under our assumptions, gk are non-decreasing in k. We prove that for any fixed k =
1,2,...,n and x € (1,q2], the following inequality holds:

2k x2k+1

3 g0k 0305 O3 103Gk
X2 x2k+1

2 _
K12k—2 2 K k-1 2
O2k192k41 Aok 1G2k+1 Ook 1Ok 41 A2k 1 U2k+1

w2 2k+1 w2 X
T TK@K-1)  K(2k+1)  k(2k-1) 1- :

K o2
Ook+1 Ook+1 2k+1 2k+1

X
k-2
3

2k—1
2

42" g

For x € (1,02 and any fixed k = 1,2,...,n, we define the following function:

2
F (anq37 s aq2kaq2k+l) = 2k—1 2k—2
;" g3 "'qgk,NZk
X2k+l
3403t 0303 Uk
We can observe that
OF (02,03, - Gok, Ooks1) _ (2k—1)-x*
02 0352+ 4310
2k - X2k+l 1
— <0&x< (1——>~Q2Q3-~~qZkQ2k+1-
A5 a5t a3 GGk 2

Therefore, since (1— 5;) 0203~ GakGok+1 = 30203 - - 2kG2k+1 > 30203 > G2 (under
our assumptions gz > gz > 3), we conclude that the function F(q2,0s, ..., 02, Q2k+1)
is decreasing in gz for each fixed x € (1,q2]. Since gz < g3, for k =1 we get:

2 3 2 3 2 3
X X X X X2 X
F(@,03)=———=— 2>

2 Q93 O3 gz O3 G
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and the desired inequality is proved for k = 1. For k > 2 we have:

F(Q27QS»q4» 7QZk»q2k+l) (q37q37q47 »QZk»q2k+l)
X2k X2k+l

4k—3+2k—3 2 4k—1~2k—2 3 2 '
Q3 ' 05192k Q3 ' “ 05105 A2k+1

Further, we consider its derivative with respect to q3:

aF(QS»q37Q4»~-~»QZk7QZk+1) — (4k 3) X2k
03 g2 g ax
<4k1_)x2k“<0(i,x<4k . B Bl
qgkqik 2. - Ookst dk—1 13 4 - Yok—142kH2k+1-
Under our assumptions,
4k —3
K—1 Q3Q4 JO2kt1 2 5 QSQ4QS>QZ7

we obtain that F(g3,03,0d4,- - -,02k, 02k+1) S decreasing in g3 for each fixed x € (1,q2]
and, since qs < q4, We receive:

F(Q37QS»Q4 »QZk7QZk+1) (q47q47q47q57 7QZk»QZk+1)-

Thus, for the 1th step we have:

F(qI—LQI—la~~~aQI—17QI7QI+la~~~ 7QZk7QZk+1)

w2
(4k—1+1)(1-2)/2_2k—1+1 2k—| 2
q| 1 q Arya - O2k—102k
X2k+l
(4k—1+3)(1-2)/2 2k—14+2 2k—I+1 3 2 '
q 1 a; Gif1 - O2k—192kG2k+1

We consider its partial derivative with respectto q;_1 :

IF(A—1,q1-1,---,Q1-1,01, 01415 - - - 02> O2k+1)
911
34k —1+1)(1—2)-x*

- k—1+1)(1—
q|lj1(4 +1)( 2)/2q2k |+1q2J|il| qgk,ﬁhk

T4k —1+3)(1—2) - x*+1

q|1_+(4k 1+3)(1- 2)/2q|2k |+2q|2Jkrl|+1 qgk_lqgqukH

+ <0,

which is equivalent to the inequality:

4k —1+1

< k113 'QI:§Q|Q|+1 “ - O2k—102k 2k +1-
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The inequality above is valid, since

4k—1+1

K_1+3 QIZ§Q|Q|+1“'Q2k—1CI2kQ2k+1

9—1
Z [E] q, 1Q|Q|+1 “O2k—102k02k+1 > 2.

Hence, the function F(q;-1,91-1,---,01-1,01,q1+1, - - - , 02k, O2k+1) IS decreasingin qj_j.
Since, under our assumptions, ¢;_1 < q;, we obtain:

F(O-1,01-1,-- 11,91, 0141 - - - , U2k, U2k + 1)
= F(anQIa~~~,QI7QI+la~~~aQZk;QZk+1)-

Analogously, by the same computation, at the (2k + 1)-th step we get:

2 w2kl
F (G2, A2k -+ G2k, A2k+1) = S5 ~ DT -
Q2§< ) q2k+ ) ) “O2k+1

Its derivative with respect to ¢ is:

OF (Gak, 2k - - - Ok, O2kr1)  K(2k—1)-x%

Aok - qgkz K+1
(2k? 4-k — 1)-x2k+1 0 < 2k? —k &1
P T 2k 2k+1-
qét +kQ2k+1 2k2 +k—1
Since we assume that

2k2 —k 2 g
KT Kk—1 q2k QZk+1 >3 05 “O2k+1 > 02,

we conclude that the function F(qak, 02k ---,02,d2k+1) 1S decreasing in qox. While
2k < Ook+1, We get:
F(d2k, G2k - - - d2k, Gok+1) = F(A2ks1, G2ks1s - - - A2kt 1, G2k 1) -

Thus, we obtain the following chain of inequalities:

(QZ7QS7Q4» 7QZk»q2k+l) (Q37QS»Q4» 7QZk»q2k+l)
/ (Q47Q4»q4»q57 »q2k7Q2k+1) > / (QZk7Q2k»-~-7Q2k»q2k+1)
> F(G2k+1, O2k+1s - - » G2kt 15 O2k1)-

Consequently,

F(02,93,94, - - 02k, ok+1) = F(G2k+1,G2k+15- -+ » O2k+1, 2k +1)
X2k X2k+l

K2k-1)  k(2kiD)
q2k+1 O2k+1
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. . . 2k 2k+1 .
Finally, we note that under our assumptions, the expression —Z—; — —mrry IS decreas-
A . . Q241 Aok+1
ing in g1 for each fixed x € (1,q3], so we obtain
. y w2 2k+1 y 2 y2k+1
(q27 03,94, ---, 02k, q2k+l) = k(2k—l) k(2k+1) = K(2k— 1) k(2k+1) "
2k+1 Q2k+1 q2n+1 Q2n+1

Substituting the last inequality in (6) for every x € (1,02] and k =1,2,...,n, we get:

X2 x3 NG X5
oo () () o
O2n+1  O5pys WBrir Bnia

< x2n x2n+1 ) 2n+1 (_1)kxk

2n-1)  _n(ntl) K(k—1)
q2n+1 O2nt1

= Sont1(—v/U2n+1%, 9, /gmi1)

where g, is the partial theta function and So,11(Y,0a) is its (2n+ 1)-th partial sum at
the pointy. O

Jon+1

Since we have Sani1(X, @) > San+1(—+/G2nt1X, 9 /gz7) forany n € N, if there ex-
ists a point Xo € (1,02] such that Szn1(Xo, @) < 0, then Sans1(—/T2n+1%0,9, /amr1) <

0. Therefore for yo = /@zn+1%0, We have \/Toni1 < Yo < /Gzns102 < (/Gnt1)®. Us-

ing the statement (5) of Theorem C, we obtain that q2n.1 > Cont1, Which completes the
proof of Theorem 1.

Proof of Corollary 1. As we have proved in the previous theorem, if f € ¥ — &2,
then qs(f) > 3. In [15] it is proved that, under the assumptions of the Corollary, if
q2(f) < 4, then

—02(f)(202(f) —9) +2(g2(f) —3)v/q2(f)(d2(f) —3)
02(f)(4—a2(f))
(see [15, Theorem 1.4]). We have mentioned that if f € £ — &2, then q2(f) > 3. If

gz2(f) = 3, then the inequality above states q3(f) < 3. This contradiction proves the
Corollary 1. O

qs(f) <

3. Proof of Theorem 2

As in the proof of Theorem 1 we assume that ag = a; = 1, and we consider the

function @(x) = f(—x) =1—x+X, ak,—lq(,lz)qﬁ instead of f. We need the fol-

lowing lemma.

LEMMA 4. Let o(X) =1—Xx+ 3¢, % be an entire function. Sup-
3 k—1k

pose that 1 < g» < Q3 < Qg < ---. If there exist jo = 3,4,... and mg € N, such that
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Qjo = Com,. thenfor all j > jo+2mg— 3, there exists Xj € (0203 -+ dj, U203 - qjdj+1)
such that the following inequality holds:

(~1)So(xj) > 0.

The proof of this lemma is similar to the one of [13, Lemma 2.1].

Proof. Choose an arbitrary j > jo+2mg— 3 and fix this j. Forevery x € (203 - - qj,
0203---0jQj+1) wWe have

X2 X3 xJ
l<X<—<—2 << 1.2 2 ’
G2 9503 0 "0z “--0540j
and
¥ i+l
172 2 o alg1..03 o2
G2 03 05105 9203 " ---4j_.0j9j+1
xit+2
> — . > ...
ai ol gt ya3a? a0
We observe that
. i—2mo (—1)k+ixk i+1 (—1)k+ixk
(Do)=Y + Y —T
SR DY« PO e SRR s R AT
S TV koo + 5
+ —— =:Z1(X) +h(X) 4+ Za(x).
PP R PR

Summands in X1 (x) are increasing in modulus and the sign of the last (biggest)
summand is positive. So, for all x € (q203---0j,0203---qjqj+1), We have Zq(x) >
0. Summands in X,(x) are decreasing in modulus and the sign of the first (biggest)
summand is positive. Consequently, for all x € (q203---0j,0203---0jdj+1), We get
Y5(x) > 0. Thus, we obtain

j+1 (_1)k+jxk xi+l

_ K1 k2 2 Tt 24
k=j—2mg+1 92 “d3 .- - Ok_1Gk 0203 ---4jQj+1

X} xi—1
1002 2 4. ql=241-3 2 -
2 03 05195 G2 93 ---0joMj-1

Xj72m0+2

(=1)!o(x) > h(x) = (®)

+
q

+ — .
j—2mo+1 ,j—2mg 2 X
az a3 - Aj_omgr19i—2mo+2

Xj—2mo+1

T j-2mgj—2mo—1 2 .
a5 a3 - Aj_omedj—2mp+1
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(we rewrite the sum from the end to the beginning). After factoring out the term

i+l
T e We get
0203 "---0jdj+1

i Xj+l DY H -
(1) > = X <_1+M o
0203 ---0jQj+1 X
(9293---9j9j+1)° N (G293 9j0j41)°
quj+1 XSq?+lqj
(G20 0j)°™

2mo—12Mo—2,2Mo—3 2 )
O PR "0 _2mo+59i—2mo+4

A 2
B (G203~ -~ 0jdj+1)"™
2 2mp—1_2mp—2 3 2 .
Xmqul q; 07 _2mg 4595 —2mo+-49j—2mo-+3
Xj+l
=T g YY)
4243 ~---4jdj+1

Now we introduce some more notation. Set y ;= 2%=3i9i+t “and opserve that

X € (0203---0j,0203---0jdj+1) < Y € (1,0j41). Further we change the numeration of
the second quotients:

$2 :=0j+1, S3:=0j, S4 :=0j—1, ---,2mp—1 := Jj—2my+4, S2my := Uj—2my+3-

By our assumptions, g2 < 03 < g4 < ---, thus, we get Sp >3 >S4 > -+ > Som, > 1,
and y € (1,s). In new notation we have

( ) % (_l)kyk
(oS5 is5 75k

We want to prove that there exists a point y; € (1,9j41) = (1,s2) such that h(y;) > 0.
To do this we compare the expression in brackets with the corresponding partial sum of
the partial theta function. We have

v(y) = (-1+y) (11)
2 3 4 5
y y y y
* <_§ * @) i <_ Ss2s, | shsdsls )
2°3 2°3°4 2939495
+ o + B y2m072 + y2m071
2mo_3.2my 4 2mo_2.2mo 3
S "'S§m07352m0—2 S "'5§m07252mo—1
y2m0

T 2mo—1_2mg—2 3 2 :
S; 7 83 * Somo—252mg—152mg
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We provide estimations similar to those in the proof of Lemma 3. Firstly, under our
assumptions, one can see that

2 2 2
N yoe N yore Y gy
2mg—1_.2mp—2 2 = 2mg—1_.2mp—2 2 - mo(2mp—1)
S; 7 83 “*Somy—152mg Somg S2mg " S2mgS2mg Somg
We prove that for any fixed k =1,2,...,mg — 1, the following inequality holds:
2k 2k+1
y y
T 2k—1.2k—2 T ka1 2 (13)
52 53 et Szk SZ 53 et S2k82k+l
2k 2k+1
B y yr
2k—1.2k—2 2k 2k—1_ 2
SZmo SZmo T S2m0 SZmo SZmo e SZmo Ssz
2k 2k+1
oy v
T k(2k=1) T k(2k+1)"
SZmo 2mg

Firstly, we consider (13) for k = 1. Since s, > s3, we have

2 3 2 3

VAR A
T, T2, T e, T3

S2 S583 S2 52

We observe that
I (¥ Y\ Y 3y $5
— | -=+FZ|==-F>0y< =
Jsy < 2 s3) s& s =3
The inequality above is valid since y < ¢j.1 = Sz, and we suppose that if there exist
jo=2,3,4,... and mg € N, such that qj, > Com,, We fix an arbitrary j > jo+2mo—3
A 2 3
and get s > Som, = Uj—2my+3 = dj, = Cam, > 3. Therefore, the function (—z—z + 38’—3)
2
is increasing in s, whence
2 3
EPANS iy AV e A (14)
S2 8583 S2. S Somg Sy,

We apply analogous reasoning to prove (13) forevery k=1.2,... mg—1. Let us define
the following function:

2k 2k+1
y y=r

H(s2,S3; - -+, S2k, S2k+1) i= — 2k—1.2k—2
S 83 -

+
Kok—1 3
-5 Sk S5S3Th-S3 iShSaki1

for sp >s3 > -+ > Spkr1. Obviously,

H(527S37“~ 752k752k+1) > H(SZ7S37~ -5 S2k S2k

)
y2k y2k+1
2

= — + .
2k—1.2k— 2 2k 2k—1 3 3
Syt TS3n TeSy_qSak S3S3 e Sy 1Sy
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We have

IH (52,83, - -, S2k, S2k) y2 3y2+1

- 2 @2 K2k 1 3 o4
Sok—1Sk 52783 Tt Syi_1Sk

2k-12k—2
ISk sg1gZk2.

Thus,
2
IdH(s2,83, ..., Sk, 52) $253 - - - Spk—1S5
352k 3 '

Since y € (1,s7) <y < s, We obtain that the function H(sz,Ss,...,Sx,Sak) IS increas-
ing in sy, whence

>0ey<

H(s2,S3,. . .,S2k—1,S2k,S2k+1) = H(S2,83, ... ,S2k—1, 52k, S2k)

2k
> H(S2,S3, -+ ,S2k—1,52mg,S2mg) = — 37 2k,2y >
Sy 7S3n T - Spk_182mg
. y2krt .
s3s3< T Sk 159m,
Now we consider the derivative of the latter function:
IH (52,83, - - - »S2k—1,S2mg » S2mg ) 2y 3y2k+1

Hence,

25283+~ Sok152k 1S5,
3 :

8H (527535 e ,52k71;52m0a52m0)
JSok-1

>0ey<

The inequality above is valid since y < s, and spm, > 3, therefore, we obtain that the
function H(s2,S3,...,S2k—1,S2my,S2m, ) IS increasing in sp,_1, whence

H(s2,83,...,S2k—2,52k—1,52mg>S2mg ) = H (52,53, ., S2k—2,S2mg  S2my, S2my )
2k k+1
y y=r

K1 2k2 3 o3 K2k 1 4 6
Sp7 TSz TSy oSmy 5283 Tt Spk_2Som,

Applying similar arguments we get the following chain of inequalities.
H(s2,83, - - ,S2k;S2k+1) = H(S2,S3; - - ,S2k—1,S2mg,S2mg ) =

H(52a53a~~~,52k72;52m0;52m0a52m0) Z .z H(52m0’52m0;---’52m0;52m0)-

Thus, we have proved (13).
We substitute the inequality (12) and (13) into (11) to get the following

(DA
v(y) = — 2 =T —S2mo (—+/S2mg 7g\/SZTO)a (15)

k=0 SZmS
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where g is a partial theta function and Sy(x,0a) := rj‘zoxja*j2 is its partial sum.
By our assumption (\/%)2 = Somy = Uj—2me+3 and j = jo +2mg — 3, SO Som, =
Qj—2mo+3 = Qjo = Camq, and we conclude that Somy (X, s,y ) € £ — & (see Theorem
C). Whence, by part (4) of Theorem C, there exists Xo € (—(/S2mg)*, —+/S2m,) Such
that Somg (X0, Gsyy,) < 0. We put —, /SomgYo = Xo, i.e. Yo = —\/ngo € (1,52m,) C

(1,s2), and we have

SZmo(—\/SZmoyOag\/szTo) <0.

Substituting the last inequality in (15) we obtain:
W(Yo) = —Samy(—+/52mo¥0.9, /5ns) = 0. (16)

Using (16) and substituting (15) into (9), we get:

_ xit+1
(D) >h(x) = 5575—5—v) 20,
qug "'QjQJ+1

which is the desired inequality. It remains to recall that x;j := 328
Yo € (1,82) = (1,dj+1), we have Xj € (4203 --dj, 0203 ---djdj+1). O

Now we apply the following lemma.

, and, since

LEMMA 5. ([16, Lemma 2.1]). Let f(z) = 2;°:0akzk7 ax>0,k=0,12,...,
be an entire function such that 2v/2 < gz2(f) < g3(f) < g4(f) < ---. For an arbitrary
integer k > 2 we define

pr(f) = a2(F)as(f) - au(f) v/ dk+1(F).

Then, for all sufficiently large k, the function f has exactly k zeros on the disk {z :
|z] < pk(f)} counting multiplicities.

Let us choose an arbitrary k > 2, being large enough to get the statement of the
previous lemma, and k > jo+2mp — 2. Then the number of zeros of ¢ (counting
multiplicities) in the disk {z : |z] < q203---Ok/Tk+1} IS equal to k. By Lemma 4 we
have

SINQ (Xjo+2m—3) = —SANP(Xjg-+2mg—2); SINP(Xjq+2mg—2)
= —SgNQ(Xjg12me—1); -3 SINP(Xk_2) = —SINP(Xk_1),
and

0 <Xjoromy—3 < Xjpramg—2 < -+ < Xk—1 <0203+ Ok < 0203 - Ok/Ck+1-

Hence, the function ¢ has k — jo — 2mg + 3 sign changes in the interval (0,9203---

Ok+/Tk+1), Whence the number of real zeros of ¢ inthe disk {z : |z| <g203---Oky/Tk+1}
is at least k — jo — 2mg + 2. Therefore, the number of nonreal zeros of ¢ in this disk is

less than or equal to jo +2my — 2. Since k is an arbitrary large enough integer, we get

that ¢ has not more than jo 4+ 2mg — 2 nonreal zeros.
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