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Abstract. For an entire function f (z) =∑∞
k=0 akzk, ak > 0, we define the sequence of the second

quotients of Taylor coefficients Q :=
(

a2
k

ak−1ak+1

)∞

k=1
. We find new necessary conditions for a

function with a non-decreasing sequence Q to belong to the Laguerre-Pólya class of type I.
We also estimate the possible number of non-real zeros for a function with a non-decreasing
sequence Q.

1. Introduction

The topic of zero distribution of entire functions has been the subject of study and
discussion of mathematicians for many years (see, for example, [ 19]). In the present
paper, we consider a class of entire functions with positive Taylor coefficients and in-
vestigate the condition for them to belong to the Laguerre-Pólya class of type I. We give
the definitions of the Laguerre-Pólya class and the Laguerre-Pólya class of type I.

DEFINITION 1. A real entire function f is said to be in the Laguerre-Pólya class,
written f ∈ L −P , if it can be expressed in the form

f (z) = czne−αz2+β z
∞

∏
k=1

(
1− z

xk

)
ezx−1

k , (1)

where c,α,β , xk ∈ R , xk �= 0, α � 0, n is a nonnegative integer and ∑∞
k=1 x−2

k < ∞ .

Mathematics subject classification (2020): 30C15, 30D15, 30D35, 26C10.
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DEFINITION 2. A real entire function f is said to be in the Laguerre-Pólya class
of type I, written f ∈ L −PI , if it can be expressed in the following form

f (z) = czneβ z
∞

∏
k=1

(
1+

z
xk

)
, (2)

where c ∈ R,β � 0,xk > 0, n is a nonnegative integer, and ∑∞
k=1 x−1

k < ∞ .

As usual, the product on the right-hand sides in both definitions can be finite or empty
(in the latter case the product equals 1).

These classes are important for the theory of entire functions since the hyperbolic
polynomials (i.e. real polynomials with only real zeros), or hyperbolic polynomials
with nonnegative coefficients converge locally uniformly to these and only these func-
tions. The following prominent theorem states even a stronger fact.

THEOREM A. (E. Laguerre and G. Pólya, see, for example, [ 5, p. 42–46]) and
[12, chapter VIII, §3]).

(i) Let (Pn)∞
n=1, Pn(0) = 1, be a sequence of real polynomials having only real ze-

ros which converges uniformly on the disc |z| � A,A > 0. Then this sequence
converges locally uniformly in C to an entire function from the L −P class.

(ii) For any f ∈ L −P there exists a sequence of real polynomials with only real
zeros which converges locally uniformly to f .

(iii) Let (Pn)∞
n=1, Pn(0) = 1, be a sequence of real polynomials having only real neg-

ative zeros which converges uniformly on the disc |z| � A,A > 0. Then this se-
quence converges locally uniformly in C to an entire function from the class
L −PI.

(iv) For any f ∈ L −PI there is a sequence of real polynomials with only real
nonpositive zeros which converges locally uniformly to f .

Numerous properties and features of the Laguerre-Pólya class and the Laguerre-
Pólya class of type I can be found in the works [20, p. 100], [21] and [18, Kapitel II]
(also see the survey [19] on the zero distribution of entire functions, its sections and
tails). Note that for a real entire function (not identically zero) of the order less than 2
the property of having only real zeros is equivalent to belonging to the Laguerre-Pólya
class. Also, for a real entire function with positive coefficients of the order less than 1
having only real negative zeros is equivalent to belonging to the Laguerre-Pólya class
of type I. In particular, the same property is valid for polynomials.

Let f (z) = ∑∞
k=0 akzk be an entire function with real nonzero coefficients. We

define the quotients pn and qn :

pn = pn( f ) :=
an−1

an
, n � 1,

qn = qn( f ) :=
pn

pn−1
=

a2
n−1

an−2an
, n � 2.
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From these definitions it follows straightforwardly that

an =
a0

p1 p2 · · · pn
, n � 1,

an = a1

(a1

a0

)n−1 1

qn−1
2 qn−2

3 · · ·q2
n−1qn

, n � 2.

It is rather a complicated problem to understand whether a given entire function
has only real zeros. However, in 1926, J. I. Hutchinson found quite a simple sufficient
condition for an entire function with positive coefficients to have only real zeros.

THEOREM B. (J. I. Hutchinson, [6]). Let f (z) = ∑∞
k=0 akzk , ak > 0 for all k .

Then qn( f ) � 4 , for all n � 2, if and only if the following two conditions are fulfilled:

(i) The zeros of f are all real, simple and negative;

(ii) The zeros of any polynomial ∑n
k=m akzk , m < n, formed by taking any number of

consecutive terms of f , are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [3, §4].

A special entire function ga(z) = ∑∞
k=0 a−k2

zk , a > 1, known as a partial theta

function (the classical Jacobi theta function is defined by the series θ (z) := ∑∞
k=−∞ a−k2

zk ),
was investigated by many mathematicians and has an important role. Note that q n(ga)=
a2 for all n. The survey [23] by S. O. Warnaar contains the history of investigation of
the partial theta function and some of its main properties.

In particular, in the paper [7] it was explained that for every n � 2, there exists a
constant cn > 1 such that for each n ∈ N, Sn(z,ga) := ∑n

j=0 a− j2z j ∈ L −P if and
only if a2 � cn. The notation of the constants cn having this property will be further
used.

THEOREM C. (O. Katkova, T. Lobova, A. Vishnyakova, [7]). There exists a
constant q∞ (q∞ ≈ 3.23363666) such that:

1. ga(z) ∈ L −P ⇔ a2 � q∞;

2. ga(z) ∈ L −P ⇔ there exists z0 ∈ (−a3,−a) such that ga(z0) � 0

3. if there exists z0 ∈ (−a3,−a) such that ga(z0) < 0, then a2 > q∞;

4. for a given n � 2 we have Sn(z,ga) ∈ L −P ⇔ there exists zn ∈ (−a3,−a)
such that Sn(zn,ga) � 0;

5. if there exists zn ∈ (−a3,−a) such that Sn(zn,ga) < 0, then a2 > cn;

6. 4 = c2 > c4 > c6 > · · · and limn→∞ c2n = q∞;

7. 3 = c3 < c5 < c7 < · · · and limn→∞ c2n+1 = q∞.
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Calculations show that c4 = 1+
√

5 ≈ 3.23607, c6 ≈ 3.23364 and c5 ≈ 3.23362,
c7 ≈ 3.23364.

The partial theta function is of interest to many areas such as statistical physics and
combinatorics [22], Ramanujan type q-series [24], asymptotic analysis and the theory
of (mock) modular forms, etc. There is a series of works by V. P. Kostov dedicated to
various properties of zeros of the partial theta function and its derivative (see [ 9, 10]
and the references therein). The paper [11] among the other results explains the role
of the constant q∞ in the study of the set of entire functions with positive coefficients
having all Taylor truncations with only real zeros. In [8], the following questions are

investigated: whether the Taylor sections of the function
∞
∏

k=1

(
1+ z

ak

)
, a > 1, and

∑∞
k=0

zk

k!ak2 , a � 1, belong to the Laguerre-Pólya class of type I. In [ 2] and [1], some
important special functions with non-decreasing sequence of the second quotients of
Taylor coefficients are studied.

The first author studied a special function related to the partial theta function and
the Euler function

fa(z) =
∞

∑
k=0

zk

(ak + 1)(ak−1 + 1) · · ·(a+ 1)
, a > 1,

which is also known as the q-Kummer function 1φ1(q;−q;q,−z) , where q = 1/a (see
[4], formula (1.2.22)). Note that its second quotients of Taylor coefficients are

qn( fa) =
an + 1

an−1 + 1
,

which is an increasing sequence in n for a > 1, with the limit value given by a . In
[17], the conditions were found for this function to belong to the Laguerre-Pólya class.

It turns out that for many important entire functions with positive coefficients
f (z) = ∑∞

k=0 akzk (for example, the partial theta function from [7], functions from [2]
and [1], the q-Kummer function 1φ1(q;−q;q,−z) and others) the following two con-
ditions are equivalent:

1. f belongs to the Laguerre-Pólya class of type I, and

2. There exists x0 ∈ [− a1
a2

,0] such that f (x0) � 0.

In our previous work we proved the following necessary condition for a function
to belong to the Laguerre-Pólya class.

THEOREM D. (T. H. Nguyen, A. Vishnyakova, [15]). Let f (z) = ∑∞
k=0 akzk ,

ak > 0 for all k, be an entire function. Suppose that q2( f ) � q3( f ). If the function f
belongs to the Laguerre-Pólya class, then there exists x0 ∈ [− a1

a2
,0] such that f (x0)� 0.

In [16] we have obtained a criterion for belonging to the Laguerre-Pólya class of
type I for real entire functions with the regularly non-decreasing sequence of second
quotients of Taylor coefficients in terms of the existence of a point x 0 as in Theorem D.
It was previously shown in [14] that if f (z) = ∑∞

k=0 akzk , ak > 0 for all k, is an entire
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function such that q2 � q3 � q4 � · · · , and the function f belongs to the Laguerre-Pólya
class, then limn→∞ qn = c � q∞, where q∞ is a constant from Theorem C.

In the present paper we prove that the following conditions on the second quotients
qk are necessary for the function to belong to the Laguerre-Pólya I class:

THEOREM 1. Let f (z) = ∑∞
k=0 akzk, ak > 0 , k = 0,1,2, . . . , be an entire function

such that q2( f ) � q3( f ) � q4( f ) � · · · . If f ∈ L −PI , then for any k = 1,2,3, . . . ,
the following inequality holds: q2n+1 > c2k+1 (c2k+1 defined as in Theorem C).

COROLLARY 1. Let f (x) = ∑∞
k=0 akxk, ak > 0 , k = 0,1,2, . . . , be an entire func-

tion such that q2( f ) � q3( f ) � q4( f ) � · · · . If f ∈ L −P , then q2( f ) > 3.

In [16] we obtained the following result.

THEOREM E. (T. H. Nguyen, A. Vishnyakova, [16]). Let f (z) = ∑∞
k=0 akzk, ak >

0 , k = 0,1,2, . . . , be an entire function such that 2 3
√

2 ≈ 2.51984 � q2( f ) � q3( f ) �
q4( f ) � · · · . Then all but a finite number of zeros of f are real and simple.

Our next theorem estimates the possible number of nonreal zeros for such func-
tions.

THEOREM 2. Let f (z) = ∑∞
k=0 akzk, ak > 0 , k = 0,1,2, . . . , be an entire function

such that 2 3
√

2 ≈ 2.51984 � q2( f ) � q3( f ) � q4( f ) � · · · . If there exist j0 = 2,3,4, . . .
and m0 ∈ N, such that q j0 � c2m0 , then the number of nonreal zeros of f does not
exceed j0 + 2m0 −2 (c2k defined as in Theorem C).

2. Proof of Theorem 1 and Corollary 1

Without loss of generality, we can assume that a0 = a1 = 1, since we can consider
a function g(x) = a−1

0 f (a0a−1
1 x) instead of f (x), due to the fact that such rescaling of

f preserves its property of having real zeros as well as the second quotients: q n(g) =
qn( f ) for all n ∈ N. During the proof instead of pn( f ) and qn( f ) we use notation pn

and qn. It is more convenient to consider a function

ϕ(x) = f (−x) = 1− x+
∞

∑
k=2

(−1)kxk

qk−1
2 qk−2

3 · · ·q2
k−1qk

instead of f .
Theorem D states that if ϕ belongs to the Laguerre-Pólya class then there exists a

point x0 ∈ [0, a1
a2

] = [0,q2] such that ϕ(x0) � 0. Let us introduce some more notation.
For an entire function ϕ , by Sn(x,ϕ) and Rn(x,ϕ) we denote the n th partial sum and
the n th remainder of the series, i.e.

Sn(x,ϕ) =
n

∑
k=0

(−1)kxk

qk−1
2 qk−2

3 · · ·q2
k−1qk

,
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and

Rn(x,ϕ) =
∞

∑
k=n

(−1)kxk

qk−1
2 qk−2

3 · · ·q2
k−1qk

.

First, we need the following Lemma.

LEMMA 1. Let ϕ(x) = 1− x + ∑∞
k=2

(−1)kxk

qk−1
2 qk−2

3 ···q2
k−1qk

be an entire function. Sup-

pose that qk are non-decreasing in k : 1 < q2 � q3 � q4 � · · · . If there exists x0 ∈ [0,q2]
such that ϕ(x0) � 0, then x0 ∈ (1,q2].

Proof. For x ∈ [0,1] we have:

1 � x >
x2

q2
>

x3

q2
2q3

>
x4

q3
2q2

3q4
> · · · ,

whence
ϕ(x) > 0 for all x ∈ [0,1]. � (3)

LEMMA 2. Let ϕ(x) = 1− x + ∑∞
k=2

(−1)kxk

qk−1
2 qk−2

3 ···q2
k−1qk

be an entire function. Sup-

pose that qk are non-decreasing in k : 1 < q2 � q3 � q4 � · · · . If there exists x0 ∈ (1,q2]
such that ϕ(x0) � 0, then for any n ∈ N, S2n+1(x0) < 0.

Proof. Suppose that x ∈ (1,q2]. Then we obtain

1 < x � x2

q2
>

x3

q2
2q3

> · · · > xk

qk−1
2 qk−2

3 · · ·q2
k−1qk

> · · · (4)

For an arbitrary n ∈ N we have:

ϕ(x) = S2n+1(x,ϕ)+ R2n+2(x,ϕ).

By (4) and the Leibniz criterion for alternating series, we conclude that R 2n+2(x,ϕ) > 0
for all x ∈ (1,q2], or

ϕ(x) > S2n+1(x,ϕ) for all x ∈ (1,q2],n ∈ N. (5)

Consequently, if there exists a point x0 ∈ (1,q2] such that ϕ(x0) � 0, then for any n∈N

we have S2n+1(x0) < 0. �

Thus, we proved that if ϕ ∈ L −P, then there exists x0 ∈ (1,q2] such that the
inequalities S2n+1(x0) < 0 hold for any n ∈ N.

In [14] it was proved that if an entire function ϕ(x) = 1−x+ ∑∞
k=2

(−1)kxk

qk−1
2 qk−2

3 ···q2
k−1qk

belongs to the Laguerre-Pólya class, where 0 < q2 � q3 � q4 � · · · , then q2 � 3
(see[14, Lemma 2.1]). So we assume that q2 � 3.
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LEMMA 3. Let ϕ(x) = 1− x + ∑∞
k=2

(−1)kxk

qk−1
2 qk−2

3 ···q2
k−1qk

be an entire function. Sup-

pose that 3 � q2 � q3 � q4 · · · . Then the inequality S2n+1(x,ϕ)� S2n+1(
√

q2n+1x,g√q2n+1)
holds for any n ∈ N and any x ∈ (1,q2] (here ga is the partial theta function and
S2n+1(y,ga) is its (2n+ 1)-th partial sum at the point y).

Proof. We have

S2n+1(x,ϕ) = (1− x)+
(

x2

q2
− x3

q2
2q3

)
+
(

x4

q3
2q2

3q4
− x5

q4
2q3

3q2
4q5

)
+ · · · (6)

+

(
x2n

q2n−1
2 q2n−2

3 · · ·q2
2n−1q2n

− x2n+1

q2n
2 q2n−1

3 · · ·q2
2nq2n+1

)
.

Under our assumptions, qk are non-decreasing in k. We prove that for any fixed k =
1,2, . . . ,n and x ∈ (1,q2], the following inequality holds:

x2k

q2k−1
2 q2k−2

3 · · ·q2
2k−1q2k

− x2k+1

q2k
2 q2k−1

3 · · ·q3
2k−1q2

2kq2k+1

� x2k

q2k−1
2k+1q2k−2

2k+1 · · ·q2
2k+1q2k+1

− x2k+1

q2k
2k+1q2k−1

2k+1 · · ·q2
2k+1q2k+1

=
x2k

qk(2k−1)
2k+1

− x2k+1

qk(2k+1)
2k+1

=
x2k

qk(2k−1)
2k+1

·
(

1− x

q2k
2k+1

)
.

For x ∈ (1,q2] and any fixed k = 1,2, . . . ,n, we define the following function:

F(q2,q3, . . . ,q2k,q2k+1) :=
x2k

q2k−1
2 q2k−2

3 · · ·q2
2k−1q2k

− x2k+1

q2k
2 q2k−1

3 · · ·q3
2k−1q2

2kq2k+1
.

We can observe that

∂F(q2,q3, . . . ,q2k,q2k+1)
∂q2

= − (2k−1) · x2k

q2k
2 q2k−2

3 · · ·q2
2k−1q2k

+
2k · x2k+1

q2k+1
2 q2k−1

3 · · ·q3
2k−1q2

2kq2k+1
< 0 ⇔ x <

(
1− 1

2k

)
·q2q3 . . .q2kq2k+1.

Therefore, since
(
1− 1

2k

)
q2q3 · · ·q2kq2k+1 � 1

2 q2q3 · · ·q2kq2k+1 � 1
2 q2q3 > q2 (under

our assumptions q3 � q2 � 3), we conclude that the function F(q2,q3, . . . ,q2k,q2k+1)
is decreasing in q2 for each fixed x ∈ (1,q2] . Since q2 � q3, for k = 1 we get:

F(q2,q3) =
x2

q2
− x3

q2
2q3

� x2

q3
− x3

q2
3q3

=
x2

q3
− x3

q3
3

,



80 T. H. NGUYEN AND A. VISHNYAKOVA

and the desired inequality is proved for k = 1. For k � 2 we have:

F(q2,q3,q4, . . . ,q2k,q2k+1) � F(q3,q3,q4, . . . ,q2k,q2k+1)

=
x2k

q4k−3
3 q2k−3

4 · · ·q2
2k−1q2k

− x2k+1

q4k−1
3 q2k−2

4 · · ·q3
2k−1q2

2kq2k+1
.

Further, we consider its derivative with respect to q3 :

∂F(q3,q3,q4, . . . ,q2k,q2k+1)
∂q3

= − (4k−3) · x2k

q4k−2
3 q2k−3

4 · · ·q2
2k−1q2k

+
(4k−1) · x2k+1

q4k
3 q2k−2

4 · · ·q2k+1
< 0 ⇔ x <

4k−3
4k−1

q2
3q4 . . .q3

2k−1q2
2kq2k+1.

Under our assumptions,

4k−3
4k−1

·q2
3q4 . . .q2k+1 � 5

7
·q2

3q4q5 > q2,

we obtain that F(q3,q3,q4, . . . ,q2k,q2k+1) is decreasing in q3 for each fixed x ∈ (1,q2]
and, since q3 � q4, we receive:

F(q3,q3,q4 . . . ,q2k,q2k+1) � F(q4,q4,q4,q5, . . . ,q2k,q2k+1).

Thus, for the l th step we have:

F(ql−1,ql−1, . . . ,ql−1,ql,ql+1, . . . ,q2k,q2k+1)

=
x2k

q(4k−l+1)(l−2)/2
l−1 q2k−l+1

l q2k−l
l+1 · · ·q2

2k−1q2k

− x2k+1

q(4k−l+3)(l−2)/2
l−1 q2k−l+2

l q2k−l+1
l+1 · · ·q3

2k−1q2
2kq2k+1

.

We consider its partial derivative with respect to ql−1 :

∂F(ql−1,ql−1, . . . ,ql−1,ql,ql+1, . . . ,q2k,q2k+1)
∂ql−1

= −
1
2 (4k− l + 1)(l−2) · x2k

q1+(4k−l+1)(l−2)/2
l−1 q2k−l+1

l q2k−l
l+1 · · ·q2

2k−1q2k

+
1
2 (4k− l + 3)(l−2) · x2k+1

q1+(4k−l+3)(l−2)/2
l−1 q2k−l+2

l q2k−l+1
l+1 · · ·q3

2k−1q2
2kq2k+1

< 0,

which is equivalent to the inequality:

x <
4k− l + 1
4k− l + 3

·ql−2
l−1qlql+1 · · ·q2k−1q2kq2k+1.
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The inequality above is valid, since

4k− l + 1
4k− l + 3

·ql−2
l−1qlql+1 · · ·q2k−1q2kq2k+1

� 9− l
11− l

·ql−2
l−1qlql+1 · · ·q2k−1q2kq2k+1 > q2.

Hence, the function F(ql−1,ql−1, . . . ,ql−1,ql,ql+1, . . . ,q2k,q2k+1) is decreasing in ql−1.
Since, under our assumptions, ql−1 � ql, we obtain:

F(ql−1,ql−1, . . . ,ql−1,ql,ql+1, . . . ,q2k,q2k+1)
� F(ql,ql, . . . ,ql,ql+1, . . . ,q2k,q2k+1).

Analogously, by the same computation, at the (2k + 1)-th step we get:

F(q2k,q2k . . . ,q2k,q2k+1) =
x2k

qk(2k−1)
2k

− x2k+1

q(k+1)(2k−1)
2k ·q2k+1

.

Its derivative with respect to q2k is:

∂F(q2k,q2k . . . ,q2k,q2k+1)
∂q2k

= −k(2k−1) · x2k

q2k2−k+1
2k

+
(2k2 + k−1) · x2k+1

q2k2+k
2k q2k+1

< 0 ⇔ x <
2k2 − k

2k2 + k−1
·q2k−1

2k q2k+1.

Since we assume that

2k2 − k
2k2 + k−1

·q2k−1
2k q2k+1 � 2

3
·q2k−1

2k q2k+1 > q2,

we conclude that the function F(q2k,q2k . . . ,q2k,q2k+1) is decreasing in q2k . While
q2k � q2k+1, we get:

F(q2k,q2k . . . ,q2k,q2k+1) � F(q2k+1,q2k+1, . . . ,q2k+1,q2k+1).

Thus, we obtain the following chain of inequalities:

F(q2,q3,q4, . . . ,q2k,q2k+1) � F(q3,q3,q4, . . . ,q2k,q2k+1)
� F(q4,q4,q4,q5, . . . ,q2k,q2k+1) � · · · � F(q2k,q2k, . . . ,q2k,q2k+1)
� F(q2k+1,q2k+1, . . . ,q2k+1,q2k+1).

Consequently,

F(q2,q3,q4, . . . ,q2k,q2k+1) � F(q2k+1,q2k+1, . . . ,q2k+1,q2k+1)

=
x2k

qk(2k−1)
2k+1

− x2k+1

qk(2k+1)
2k+1

.
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Finally, we note that under our assumptions, the expression x2k

q
k(2k−1)
2k+1

− x2k+1

q
k(2k+1)
2k+1

is decreas-

ing in q2k+1 for each fixed x ∈ (1,q2], so we obtain

F(q2,q3,q4, . . . ,q2k,q2k+1) � x2k

qk(2k−1)
2k+1

− x2k+1

qk(2k+1)
2k+1

� x2k

qk(2k−1)
2n+1

− x2k+1

qk(2k+1)
2n+1

.

Substituting the last inequality in (6) for every x ∈ (1,q2] and k = 1,2, . . . ,n, we get:

S2n+1(x,ϕ) � (1− x)+

(
x2

q2n+1
− x3

q3
2n+1

)
+

(
x4

q6
2n+1

− x5

q10
2n+1

)
+ (7)

· · ·+
(

x2n

qn(2n−1)
2n+1

− x2n+1

qn(2n+1)
2n+1

)
=

2n+1

∑
k=0

(−1)kxk

√
q2n+1

k(k−1)

= S2n+1(−√
q2n+1x,g√q2n+1),

where ga is the partial theta function and S2n+1(y,ga) is its (2n+ 1)-th partial sum at
the point y . �

Since we have S2n+1(x,ϕ) � S2n+1(−√
q2n+1x,g√q2n+1) for any n∈N, if there ex-

ists a point x0 ∈ (1,q2] such that S2n+1(x0,ϕ) � 0, then S2n+1(−√
q2n+1x0,g√q2n+1) <

0. Therefore for y0 =
√

q2n+1x0, we have
√

q2n+1 � y0 �√
q2n+1q2 � (

√
q2n+1)3. Us-

ing the statement (5) of Theorem C, we obtain that q2n+1 > c2n+1, which completes the
proof of Theorem 1.

Proof of Corollary 1. As we have proved in the previous theorem, if f ∈L −P ,
then q3( f ) > 3. In [15] it is proved that, under the assumptions of the Corollary, if
q2( f ) < 4, then

q3( f ) � −q2( f )(2q2( f )−9)+ 2(q2( f )−3)
√

q2( f )(q2( f )−3)
q2( f )(4−q2( f ))

(see [15, Theorem 1.4]). We have mentioned that if f ∈ L −P , then q 2( f ) � 3. If
q2( f ) = 3, then the inequality above states q3( f ) � 3. This contradiction proves the
Corollary 1. �

3. Proof of Theorem 2

As in the proof of Theorem 1 we assume that a0 = a1 = 1, and we consider the

function ϕ(x) = f (−x) = 1− x + ∑∞
k=2

(−1)kxk

qk−1
2 qk−2

3 ···q2
k−1qk

instead of f . We need the fol-

lowing lemma.

LEMMA 4. Let ϕ(x) = 1− x + ∑∞
k=2

(−1)kxk

qk−1
2 qk−2

3 ···q2
k−1qk

be an entire function. Sup-

pose that 1 < q2 � q3 � q4 � · · · . If there exist j0 = 3,4, . . . and m0 ∈ N, such that
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q j0 � c2m0 , then for all j � j0 +2m0 −3, there exists x j ∈ (q2q3 · · ·q j,q2q3 · · ·q jq j+1)
such that the following inequality holds:

(−1) jϕ(x j) � 0.

The proof of this lemma is similar to the one of [13, Lemma 2.1].

Proof. Choose an arbitrary j � j0+2m0−3 and fix this j. For every x∈ (q2q3 · · ·q j,
q2q3 · · ·q jq j+1) we have

1 < x <
x2

q2
<

x3

q2
2q3

< · · · < x j

q j−1
2 q j−2

3 · · ·q2
j−1q j

,

and

x j

q j−1
2 q j−2

3 · · ·q2
j−1q j

>
x j+1

q j
2q j−1

3 · · ·q3
j−1q2

j q j+1

>
x j+2

q j+1
2 q j

3 · · ·q4
j−1q3

jq
2
j+1q j+2

> · · · .

We observe that

(−1) jϕ(x) =
j−2m0

∑
k=0

(−1)k+ jxk

qk−1
2 qk−2

3 · · ·q2
k−1qk

+
j+1

∑
k= j−2m0+1

(−1)k+ jxk

qk−1
2 qk−2

3 · · ·q2
k−1qk

+
∞

∑
k= j+2

(−1)k+ jxk

qk−1
2 qk−2

3 · · ·q2
k−1qk

=: Σ1(x)+ h(x)+ Σ2(x).

Summands in Σ1(x) are increasing in modulus and the sign of the last (biggest)
summand is positive. So, for all x ∈ (q2q3 · · ·q j,q2q3 · · ·q jq j+1), we have Σ1(x) >
0. Summands in Σ2(x) are decreasing in modulus and the sign of the first (biggest)
summand is positive. Consequently, for all x ∈ (q2q3 · · ·q j,q2q3 · · ·q jq j+1), we get
Σ2(x) > 0. Thus, we obtain

(−1) jϕ(x) > h(x) =
j+1

∑
k= j−2m0+1

(−1)k+ jxk

qk−1
2 qk−2

3 . . .q2
k−1qk

= − x j+1

q j
2q j−1

3 . . .q2
j q j+1

(8)

+
x j

q j−1
2 q j−2

3 . . .q2
j−1q j

− x j−1

q j−2
2 q j−3

3 . . .q2
j−2q j−1

+ . . .

+
x j−2m0+2

q j−2m0+1
2 q j−2m0

3 . . .q2
j−2m0+1q j−2m0+2

− x j−2m0+1

q j−2m0
2 q j−2m0−1

3 . . .q2
j−2m0

q j−2m0+1
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(we rewrite the sum from the end to the beginning). After factoring out the term
x j+1

q j
2q j−1

3 ...q2
j q j+1

, we get

(−1) jϕ(x) > h(x) =
x j+1

q j
2q j−1

3 · · ·q2
j q j+1

·
(
−1+

q2q3 · · ·q jq j+1

x
(9)

− (q2q3 · · ·q jq j+1)2

x2q j+1
+

(q2q3 · · ·q jq j+1)3

x3q2
j+1q j

− . . .

+
(q2q3 · · ·q jq j+1)2m0−1

x2m0−1q2m0−2
j+1 q2m0−3

j · · ·q2
j−2m0+5q j−2m0+4

− (q2q3 · · ·q jq j+1)2m0

x2m0 q2m0−1
j+1 q2m0−2

j · · ·q3
j−2m0+5q2

j−2m0+4q j−2m0+3

)

=:
x j+1

q j
2q j−1

3 · · ·q2
jq j+1

·ψ(x).

Now we introduce some more notation. Set y := q2q3...q jq j+1
x , and observe that

x ∈ (q2q3 · · ·q j,q2q3 · · ·q jq j+1) ⇔ y ∈ (1,q j+1). Further we change the numeration of
the second quotients:

s2 := q j+1, s3 := q j, s4 := q j−1, . . . ,s2m0−1 := q j−2m0+4, s2m0 := q j−2m0+3.

By our assumptions, q2 � q3 � q4 � · · · , thus, we get s2 � s3 � s4 � · · · � s2m0 > 1,
and y ∈ (1,s2). In new notation we have

ψ(y) = −1+ y−
2m0

∑
k=2

(−1)kyk

sk−1
2 sk−2

3 · · · s2
k−1sk

. (10)

We want to prove that there exists a point y j ∈ (1,q j+1) = (1,s2) such that h(y j) � 0.
To do this we compare the expression in brackets with the corresponding partial sum of
the partial theta function. We have

ψ(y) = (−1+ y) (11)

+
(
−y2

s2
+

y3

s2
2s3

)
+
(
− y4

s3
2s2

3s4
+

y5

s4
2s3

3s2
4s5

)

+ · · ·+
(
− y2m0−2

s2m0−3
2 s2m0−4

3 · · · s2
2m0−3s2m0−2

+
y2m0−1

s2m0−2
2 s2m0−3

3 · · ·s2
2m0−2s2m0−1

)

− y2m0

s2m0−1
2 s2m0−2

3 · · · s3
2m0−2s2

2m0−1s2m0

.
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We provide estimations similar to those in the proof of Lemma 3. Firstly, under our
assumptions, one can see that

− y2m0

s2m0−1
2 s2m0−2

3 · · · s2
2m0−1s2m0

� − y2m0

s2m0−1
2m0

s2m0−2
2m0

· · ·s2
2m0

s2m0

= − y2m0

sm0(2m0−1)
2m0

. (12)

We prove that for any fixed k = 1,2, . . . ,m0 −1, the following inequality holds:

− y2k

s2k−1
2 s2k−2

3 · · · s2k
+

y2k+1

s2k
2 s2k−1

3 · · · s2
2ks2k+1

(13)

� − y2k

s2k−1
2m0

s2k−2
2m0

· · · s2m0

+
y2k+1

s2k
2m0

s2k−1
2m0

· · ·s2
2m0

s2m0

= − y2k

sk(2k−1)
2m0

+
y2k+1

sk(2k+1)
2m0

.

Firstly, we consider (13) for k = 1. Since s2 � s3 , we have

−y2

s2
+

y3

s2
2s3

� −y2

s2
+

y3

s3
2

.

We observe that

∂
∂ s2

(
−y2

s2
+

y3

s3
2

)
=

y2

s2
2

− 3y3

s4
2

> 0 ⇔ y <
s2

2

3
.

The inequality above is valid since y < q j+1 = s2, and we suppose that if there exist
j0 = 2,3,4, . . . and m0 ∈ N, such that q j0 � c2m0 , we fix an arbitrary j � j0 +2m0 −3

and get s2 � s2m0 = q j−2m0+3 � q j0 � c2m0 > 3. Therefore, the function
(
− y2

s2
+ y3

s3
2

)
is increasing in s2, whence

− y2

s2
+

y3

s2
2s3

� −y2

s2
+

y3

s3
2

� − y2

s2m0

+
y3

s3
2m0

. (14)

We apply analogous reasoning to prove (13) for every k = 1,2, . . . ,m0−1. Let us define
the following function:

H(s2,s3, . . . ,s2k,s2k+1) := − y2k

s2k−1
2 s2k−2

3 · · ·s2
2k−1s2k

+
y2k+1

s2k
2 s2k−1

3 · · ·s3
2k−1s2

2ks2k+1

for s2 � s3 � · · · � s2k+1. Obviously,

H(s2,s3, . . . ,s2k,s2k+1) � H(s2,s3, . . . ,s2k,s2k)

= − y2k

s2k−1
2 s2k−2

3 · · ·s2
2k−1s2k

+
y2k+1

s2k
2 s2k−1

3 · · · s3
2k−1s3

2k

.
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We have

∂H(s2,s3, . . . ,s2k,s2k)
∂ s2k

=
y2k

s2k−1
2 s2k−2

3 · · ·s2
2k−1s2

2k

− 3y2k+1

s2k
2 s2k−1

3 · · · s3
2k−1s4

2k

.

Thus,
∂H(s2,s3, . . . ,s2k,s2k)

∂ s2k
> 0 ⇔ y <

s2s3 · · ·s2k−1s2
2k

3
.

Since y ∈ (1,s2) ⇔ y < s2, we obtain that the function H(s2,s3, . . . ,s2k,s2k) is increas-
ing in s2k, whence

H(s2,s3, . . . ,s2k−1,s2k,s2k+1) � H(s2,s3, . . . ,s2k−1,s2k,s2k)

� H(s2,s3, . . . ,s2k−1,s2m0 ,s2m0) = − y2k

s2k−1
2 s2k−2

3 · · · s2
2k−1s2m0

+
y2k+1

s2k
2 s2k−1

3 · · ·s3
2k−1s3

2m0

.

Now we consider the derivative of the latter function:

∂H(s2,s3, . . . ,s2k−1,s2m0 ,s2m0)
∂ s2k−1

2y2k

s2k−1
2 s2k−2

3 · · · s3
2k−1s2m0

− 3y2k+1

s2k
2 s2k−1

3 · · · s4
2k−1s3

2m0

.

Hence,

∂H(s2,s3, . . . ,s2k−1,s2m0 ,s2m0)
∂ s2k−1

> 0 ⇔ y <
2s2s3 · · · s2k−1s2k−1s2

2m0

3
.

The inequality above is valid since y < s2 and s2m0 > 3, therefore, we obtain that the
function H(s2,s3, . . . ,s2k−1,s2m0 ,s2m0) is increasing in s2k−1, whence

H(s2,s3, . . . ,s2k−2,s2k−1,s2m0 ,s2m0) � H(s2,s3, . . . ,s2k−2,s2m0 ,s2m0 ,s2m0)

= − y2k

s2k−1
2 s2k−2

3 · · ·s3
2k−2s3

2m0

+
y2k+1

s2k
2 s2k−1

3 · · · s4
2k−2s6

2m0

.

Applying similar arguments we get the following chain of inequalities.

H(s2,s3, . . . ,s2k,s2k+1) � H(s2,s3, . . . ,s2k−1,s2m0 ,s2m0) �

H(s2,s3, . . . ,s2k−2,s2m0 ,s2m0 ,s2m0) � . . . � H(s2m0 ,s2m0 , . . . ,s2m0 ,s2m0).

Thus, we have proved (13).
We substitute the inequality (12) and (13) into (11) to get the following

ψ(y) � −
2m0

∑
k=0

(−1)kyk

s
k(k−1)

2
2m0

= −S2m0(−
√

s2m0 y,g√s2m0
), (15)
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where ga is a partial theta function and Sn(x,ga) := ∑n
j=0 x ja− j2 is its partial sum.

By our assumption (√s2m0)
2 = s2m0 = q j−2m0+3 and j � j0 + 2m0 − 3, so s2m0 =

q j−2m0+3 � q j0 � c2m0 , and we conclude that S2m0(x,gs2m0
) ∈ L −P (see Theorem

C). Whence, by part (4) of Theorem C, there exists x0 ∈ (−(√s2m0)
3,−√

s2m0) such
that S2m0(x0,gs2m0

) � 0. We put −√
s2m0 y0 := x0, i.e. y0 := − x0√

s2m0
∈ (1,s2m0) ⊂

(1,s2), and we have
S2m0(−

√
s2m0 y0,g√s2m0

) � 0.

Substituting the last inequality in (15) we obtain:

ψ(y0) � −S2m0(−
√

s2m0 y0,g√s2m0
) � 0. (16)

Using (16) and substituting (15) into (9), we get:

(−1) jψ(x) > h(x) =
x j+1

q j
2q j−1

3 · · ·q2
jq j+1

·ψ(y0) � 0,

which is the desired inequality. It remains to recall that x j := q2q3...q jq j+1
y0

, and, since
y0 ∈ (1,s2) = (1,q j+1), we have x j ∈ (q2q3 . . .q j,q2q3 . . .q jq j+1). �

Now we apply the following lemma.

LEMMA 5. ([16, Lemma 2.1]). Let f (z) = ∑∞
k=0 akzk, ak > 0 , k = 0,1,2, . . . ,

be an entire function such that 2 3
√

2 � q2( f ) � q3( f ) � q4( f ) � · · · . For an arbitrary
integer k � 2 we define

ρk( f ) := q2( f )q3( f ) · · ·qk( f )
√

qk+1( f ).

Then, for all sufficiently large k , the function f has exactly k zeros on the disk {z :
|z| < ρk( f )} counting multiplicities.

Let us choose an arbitrary k � 2, being large enough to get the statement of the
previous lemma, and k � j0 + 2m0 − 2. Then the number of zeros of ϕ (counting
multiplicities) in the disk {z : |z| < q2q3 · · ·qk

√
qk+1} is equal to k. By Lemma 4 we

have
sgnϕ(x j0+2m0−3) = −sgnϕ(x j0+2m0−2); sgnϕ(x j0+2m0−2)

= −sgnϕ(x j0+2m0−1); . . . ; sgnϕ(xk−2) = −sgnϕ(xk−1),

and

0 < x j0+2m0−3 < x j0+2m0−2 < · · · < xk−1 < q2q3 · · ·qk < q2q3 · · ·qk
√

qk+1.

Hence, the function ϕ has k− j0 − 2m0 + 3 sign changes in the interval (0,q2q3 · · ·
qk
√

qk+1), whence the number of real zeros of ϕ in the disk {z : |z|< q2q3 · · ·qk
√

qk+1}
is at least k− j0 −2m0 +2. Therefore, the number of nonreal zeros of ϕ in this disk is
less than or equal to j0 + 2m0 −2. Since k is an arbitrary large enough integer, we get
that ϕ has not more than j0 + 2m0 −2 nonreal zeros.
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[21] G. PÓLYA AND J. SCHUR, Uber zwei Arten von Faktorenfolgen in der Theorie der algebraischen
Gleichungen, J. Reine Angew. Math., 144 (1914), 89–113.

[22] A. D. SOKAL, The leading root of the partial theta function, Advances in Mathematics, 229, 5 (2012),
2063–2621.



ENTIRE FUNCTIONS OF THE LAGUERRE-PÓLYA I CLASS 89
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