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PRE–GRÜSS AND GRÜSS–OSTROWSKI

LIKE INEQUALITIES IN BANACH SPACES

MAREK NIEZGODA ∗ AND KAROL GRYSZKA

(Communicated by S. Varošanec)

Abstract. For a given Banach space and its dual space we investigate a Chebyshev type func-
tional. We derive a pre-Grüss inequality for the functional. We discuss various variants of
assumptions leading to this inequality. To do so, we employ some superquadratic as well as con-
vex control functions in order to weaken the classical Dragomir’s condition. Next, we establish
a corresponding Grüss-Ostrowski like inequalities for the space Lp

[a,b] .

1. Introduction

The classical Grüss’ inequality [16] asserts that if f ,g : [a,b] → R are two inte-
grable functions on [a,b] such that

α0 � f (t) � β0 and γ0 � g(t) � δ0 for all t ∈ [a,b]

with α0,β0,γ0,δ0 ∈ R , then∣∣∣∣∣∣
1

b−a

b∫
a

f (t)g(t)dt − 1
b−a

b∫
a

f (t)dt · 1
b−a

b∫
a

g(t)dt

∣∣∣∣∣∣�
1
4
(β0 −α0)(δ0 − γ0).

As usual, the symbol Lp
[a,b] for 1 � p < ∞ denotes the space of p-power integrable

functions on interval [a,b] equipped with the norm ‖ f‖ p =
(

b∫
a
| f (t)|p dt

)1/p

, and

L∞
[a,b] denotes the space of all essentially bounded functions on [a,b] with the norm

‖ f‖∞ = ess supx∈[a,b] | f (x)| .
It is known by Ostrowski’s inequality [25, p. 468] that if f : [a,b] → R is a differ-

entiable function with bounded derivative, then∣∣∣∣∣∣ f (x)−
1

b−a

b∫
a

f (t)dt

∣∣∣∣∣∣�
[

1
4

+
(x− a+b

2 )2

(b−a)2

]
(b−a)‖ f ′‖∞ for x ∈ [a,b] .
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A Grüss-Ostrowski type inequality due to Dragomir and Wang [ 14] says that if
f : [a,b] → R is a differentiable function with bounded derivative and

α0 � f ′(t) � β0 for t ∈ [a,b] ,

where α0,β0 ∈ R , then for x ∈ [a,b] ,∣∣∣∣∣∣ f (x)−
1

b−a

b∫
a

f (t)dt − f (b)− f (a)
b−a

(
x− a+b

2

)∣∣∣∣∣∣�
1
4
(b−a)(β0−α0).

Over the years Grüss and Ostrowski type inequalities and their applications have
been studied by many mathematicians (see e.g., [13, 14, 15, 19, 20, 22, 23, 24, 30, 32,
33, 34, 35]). Dragomir [8] proved a generalization of Grüss inequality in inner prod-
uct spaces. Niezgoda [28] developed this idea by introducing some class of bounding
support functions in place of bounding constants α 0,β0,γ0,δ0 .

In the present paper we deal with pre-Grüss and Grüss-Ostrowski like inequalities
in Banach spaces. In Section 2, we derive a pre-Grüss type inequality and discuss nu-
merous variants of assumptions ensuring the validity of this inequality. For this end, we
use superquadratic and/or convex control functions and the notion of G-majorization
on a Banach space. As applications, in Section 3 we employ the obtained results to
establish some corresponding inequalities on the L p

[a,b] -space of p-power integrable
functions.

2. Pre-Grüss type inequalities on a Banach space

Throughout (X ,‖ · ‖) is a real Banach space and X ∗ stands for the dual space of
X , i.e., the space of all real bounded linear functionals on X . For an x ∗ ∈ X∗ and
x ∈ X , we write 〈x,x∗〉 instead of the value x∗(x) of x∗ at x . The norm on X ∗ is given
by ‖x∗‖∗ = sup‖x‖=1 |〈x,x∗〉| for x∗ ∈ X∗ and x ∈ X .

By B(X) we denote the set of all bounded linear operators on the Banach space
X . For L ∈ B(X) , the operator norm of L is defined by

‖L‖ = sup
‖y‖=1

‖Ly‖.

Thus one has
‖Lx‖ � ‖L‖‖x‖ for any x ∈ X . (1)

Throughout e ∈ X and e∗ ∈ X∗ are two elements such that 〈e,e∗〉 = 1.
The Chebyshev functional Te,e∗ : X ×X∗ → R is defined by

Te,e∗(x,x∗) = 〈x,x∗〉− 〈x,e∗〉〈e,x∗〉 for any x ∈ X and x∗ ∈ X∗ . (2)

By standard algebra we obtain

Te,e∗(x,x∗) = 〈x−〈x,e∗〉e,x∗ − 〈e,x∗〉e∗〉 for any x ∈ X and x∗ ∈ X∗ . (3)
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We introduce linear operators Q : X → X and S : X ∗ → X∗ by

Qx = x−〈x,e∗〉e for x ∈ X , and Sx∗ = x∗ − 〈e,x∗〉e∗ for x∗ ∈ X∗ . (4)

It is not hard to check that kerQ = spane and kerS = spane ∗ .
By using (4) one can verify that the operators Q and S are idempotent, i.e.,

Q2 = Q and S2 = S.

Our interest lies in establishing Grüss-Ostrowski type inequalities. To do so, we
shall use the following result presenting pre-Grüss like inequality ( 6).

LEMMA 1. Let x ∈ X and x∗ ∈ X∗ . Under the above notation, if

‖x− x0‖ � r for some x0 ∈ spane and r > 0 , (5)

then
|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � r‖S(x∗ − x∗0)‖∗ (6)

for any x∗0 ∈ spane∗ .

Proof. In light of (3) and (4), we see that

〈x,x∗〉− 〈x,e∗〉〈e,x∗〉 = 〈x−〈x,e∗〉e,x∗ − 〈e,x∗〉e∗〉

= 〈Qx,Sx∗〉 = 〈Q(x− x0),S(x∗ − x∗0)〉,
since x0 ∈ spane = kerQ and x∗0 ∈ spane∗ = kerS (cf. [28, p. 120]).

Likewise, we have

〈x,x∗〉− 〈x,e∗〉〈e,x∗〉 = 〈x− μe,x∗ − 〈e,x∗〉e∗〉 = 〈x− μe,S(x∗− x∗0)〉

for any μ ∈ R , because 〈e,x∗ − 〈e,x∗〉e∗〉 = 0 (cf. [26, p. 233]).
By putting μ = μ0 , where x0 = μ0e∈ spane , and using Hölder type inequality (1)

and (5), we get
|〈x,x∗〉− 〈x,e〉〈e,x∗〉| = |〈x− x0,S(x∗ − x∗0)〉|
� ‖x− x0‖‖S(x∗− x∗0)‖∗ � r‖S(x∗ − x∗0)‖∗,

which proves (6). �

REMARK 1. Concerning (6), we do not estimate the norm ‖S(x∗ − x∗0)‖ , because
it will be calculated explicitly in future applications of (6).

A function ϕ : X → R is said to be Gateaux differentiable if for each x,h ∈ X
there exists the directional derivative

∇hϕ(x) = lim
t→0

ϕ(x+ th)−ϕ(x)
t

,
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and for each x ∈ X the functional h 	→ ∇hϕ(x) from X to R is linear and continuous.
This functional is denoted by ∇ϕ(x) and is called the gradient of ϕ at x . So, it holds
that ∇ϕ(x) ∈ X∗ and

∇hϕ(x) = 〈h,∇ϕ(x)〉 for x,h ∈ X .

A Gateaux differentiable function ϕ : X →R is called superquadratic on a nonempty
set U ⊂ X , if

ϕ(z+h) � ϕ(z)+ 〈h,∇ϕ(z)〉+ ϕ(h) for all z,z+h ∈U (7)

(cf. [1, 2, 3]).
We now employ superquadratic functions to establish statements satisfying condi-

tion (5) (see (9)).
The following result is in line of [9, Lemma 2.1] and [28, Lemma 4.1].

LEMMA 2. Let ψ : [0,∞)→R be a strictly increasing function such that the func-
tion ϕ = ψ(‖ · ‖) : X → R is Gateaux differentiable. Assume that ϕ is superquadratic
on a nonempty set U ⊂ X .

If β ,x,x0 ∈ X are such that x− x0 ∈U , β − x0 ∈U and

〈β − x,∇ϕ (x− x0)〉+ ϕ(β − x) � 0, (8)

then
‖x− x0‖ � ‖β − x0‖ , (9)

that is, x belongs to the ‖ · ‖ -ball of radius r = ‖β − x0‖ centered at the point x0 .

In particular, if x0 = α+β
2 for some α ∈ X and

〈
β − x,∇ϕ

(
x− α + β

2

)〉
+ ϕ(β − x) � 0, (10)

then ∥∥∥∥x− 1
2
(α + β )

∥∥∥∥�
∥∥∥∥1

2
(β −α)

∥∥∥∥ . (11)

Proof. By setting z = x− x0 and h = β − x , we get z+h = β − x0 . Next, by (7)
we obtain

ϕ (β − x0) � ϕ (x− x0)+ 〈β − x,∇ϕ (x− x0)〉+ ϕ(β − x).

Therefore (8) ensures that
ϕ (β − x0) � ϕ (x− x0) .

That is,
ψ (‖β − x0‖) � ψ (‖x− x0‖) . (12)
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Since ψ is strictly increasing on [0,∞) , ψ is invertible on [0,∞) and ψ −1 is strictly
increasing on ψ([0,∞)) . For this reason (12) implies that

‖β − x0‖ � ‖x− x0‖ ,

as desired.
To see the implication (10) ⇒ (11), use (8) ⇒ (9) with the substitution x0 =

1
2(α + β ) and β − x0 = 1

2 (β −α) . �

We now discuss a simplification of condition (8).

LEMMA 3. Under the assumptions of Lemma 2, let 0 < c ∈ R be such that the
function ϕ = ψ(‖ · ‖) has the property

ϕ(h) = c〈h,∇ϕ(h)〉 for h ∈ X . (13)

Then condition (8) takes the form

〈β − x,∇ϕ (x− x0)+ c∇ϕ(β − x)〉 � 0. (14)

Consequently, if conditions (13) and (14) are satisfied, then inequality (9) holds.

Proof. Under the validity of condition (13), we have

ϕ(β − x) = c〈β − x,∇ϕ(β − x)〉.

From this condition (8) can be restated as

〈β − x,∇ϕ (x− x0)〉+ c〈β − x,∇ϕ(β − x)〉 � 0,

which gives
〈β − x,∇ϕ (x− x0)+ c∇ϕ(β − x)〉 � 0,

completing the proof of (14).
To see the last assertion of Lemma 3, use Lemma 2. �

We now interpret the crucial conditions (8), (13) and (14).

EXAMPLE 1. Let X be a real linear space endowed with an inner product 〈·, ·〉
and norm ‖ · ‖ = 〈·, ·〉1/2 . Obviously, X ∗ = X , ‖ · ‖∗ = ‖ · ‖ and functionals in X ∗ are
induced by vectors in X via the inner product 〈·, ·〉 . Let β ,x,x 0 ∈ X .

Consider the function ψ(t) = t 2 for t ∈ [0,∞) . Then ϕ(z) = ‖z‖2 = 〈z,z〉 and
∇ϕ(z) = 2z for z ∈ X . So, ∇ϕ (x− x0) = 2(x− x0) and ∇ϕ(β − x) = 2(β − x) . In
addition, ϕ is superquadratic on X in the sense of (7).

In consequence, condition (8) takes the form

〈β − x,2(x− x0)〉+‖β − x‖2 � 0.
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Evidently,

ϕ(h) = ‖h‖2 =
1
2
〈h,2h〉=

1
2
〈h,∇ϕ(h)〉 for h ∈ X ,

which guarantees that (13) is satisfied with c = 1
2 .

Therefore condition (8) can be replaced by (14). Here (14) can be rewritten as

〈β − x,2(x− x0)+ (β − x)〉 � 0,

which reduces to
〈β − x,x+ β −2x0〉 � 0.

Let α ∈ X . With the substitution x0 = 1
2(α + β ) , the last inequality becomes

〈β − x,x−α〉� 0. (15)

This is the classical condition due to Dragomir [7, 8, 9, 10, 11] intended to prove Grüss
type inequalities in the context of inner product spaces.

As noted in [28, Lemma 4.1], statement (15) amounts to the condition

α �C x �dualC β (16)

for some cone preorder �C on X generated by a convex cone C ⊂ X , where dualC =
{z ∈ X : 〈z,v〉 � 0 for all v ∈C}. In the special case when C is self-dual, i.e., C =
dualC , then (16) simplies to

α �C x �C β . (17)

For example, if X = R
n and x = (x1, . . . ,xn) , α = (α1, . . . ,αn) , β = (β1, . . . ,βn) , and

C = R
n
+ , then (17) means

αi � xi � βi for i = 1. . . . ,n .

The next result is an extension of [28, Theorem 4.2] from inner product spaces to
Banach spaces.

THEOREM 1. Let ψ : [0,∞) → R be a strictly increasing function such that ϕ =
ψ(‖ · ‖) : X → R is a Gateaux differentiable function. Assume ϕ is superquadratic on
a nonempty set U ⊂ X . Let β ,x,x0 ∈ X and x∗ ∈ X∗ . Assume that

(i) x0 ∈ spane,

(ii) x− x0 ∈U and β − x0 ∈U ,

(iii)
〈β − x,∇ϕ (x− x0)〉+ ϕ(β − x) � 0. (18)

Then
|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � ‖β − x0‖‖S(x∗− x∗0)‖∗ (19)

for any x∗0 ∈ spane∗ .
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Proof. By (ii) and Lemma 2 we deduce that

‖x− x0‖ � ‖β − x0‖ . (20)

By (i) and (20) we see that condition (5) is satisfied with r = ‖β − x0‖ .
It is now enough to utilize inequality (6) from Lemma 1. �

COROLLARY 1. Under the assumptions of Theorem 1, let x0 = α+β
2 for some

α ∈ X .
If 〈

β − x,∇ϕ
(

x− α + β
2

)〉
+ ϕ(β − x) � 0, (21)

then

|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � 1
2
‖β −α‖‖S(x∗− x∗0)‖∗ (22)

for any x∗0 ∈ spane∗ .

Proof. With x0 = α+β
2 we have ‖β − x0‖ =

∥∥∥β−α
2

∥∥∥ . By making use inequality

(19) in Theorem 1 we obtain (22), as wanted. �

THEOREM 2. Let ψ : [0,∞) → R be a strictly increasing function such that ϕ =
ψ(‖ · ‖) : X → R is a Gateaux differentiable convex function. Let β ,x,x0 ∈ X and
x∗ ∈ X∗ . Assume that

(i) x0 ∈ spane,

(ii)
〈β − x,∇ϕ (x− x0)〉 � 0. (23)

Then
|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � ‖β − x0‖‖S(x∗− x∗0)‖∗ (24)

for any x∗0 ∈ spane∗ .

Proof. By virtue of the gradient inequality for ϕ we can write

ϕ(z+h) � ϕ(z)+ 〈h,∇ϕ(z)〉 for all z,h ∈ X .

By using the substitutions z = x− x0 and h = β − x we derive

ϕ(β − x0) � ϕ(x− x0)+ 〈β − x,∇ϕ(x− x0)〉.

With the help of (23) we infer that

ϕ(β − x0) � ϕ(x− x0).
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In other words,
ψ(‖β − x0‖) � ψ(‖x− x0‖). (25)

Since the function ψ is strictly increasing on [0,∞) , it is invertible and the inverse ψ −1

is strictly increasing on ψ([0,∞)) . Therefore we deduce from (25) that

‖x− x0‖ � ‖β − x0‖ . (26)

So, condition (5) with r = ‖β − x0‖ is fulfilled by (26) and (i) .
By employing inequality (6) from Lemma 1, we obtain the desired assertion (24).

�

COROLLARY 2. Let ψ : [0,∞) → R be a strictly increasing function such that
ϕ = ψ(‖ · ‖) : X → R is a Gateaux differentiable convex function. Let α,β ,x ∈ X and
x∗ ∈ X∗ . Assume that

(i) α+β
2 ∈ spane,

(ii) 〈
β − x,∇ϕ

(
x− α + β

2

)〉
� 0. (27)

Then

|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � 1
2
‖β −α‖‖S(x∗− x∗0)‖∗ (28)

for any x∗0 ∈ spane∗ .

Proof. By putting x0 = α+β
2 , one has ‖β − x0‖ =

∥∥∥β−α
2

∥∥∥ . Now, it is enough

apply inequality (24) from Theorem 2 to see (28). �
In Corollary 2, in the situation when X is an inner product space and ψ(t) = t 2

for t ∈ [0,∞) , condition (27) means that〈
β − x,x− α + β

2

〉
� 0,

which corresponds to Dragomir’s condition (15) (see Example 1).
Throughout, unless stated otherwise, it is assumed that G ⊂ B(X) is a semigroup

of continuous linear operators from X into X .
Given x,y ∈ X we say that y is G-majorized by x , written as y≺G x , if y belongs

to the convex hull of the set Gx , i.e.,

y =
m

∑
i=1

tigix

for some positive integer m , operators gi ∈ G and real numbers ti ∈ [0,1] for i =

1, . . . ,m such that
m
∑

i=1
ti = 1.
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It is readily seen that the relation ≺G is a preorder on X , i.e., ≺G is reflexive and
transitive on X . Furthermore, for any x ∈ X it holds that {y ∈ X : y ≺G x} = convGx ,
where convGx is the convex hull of the set Gx = {gx : g ∈ G} .

A function Φ : X → R is called G-increasing, if for all x,y ∈ X ,

y ≺G x implies Φ(y) � Φ(x).

A function Φ : X → R is called G-invariant, if

Φ(gx) = Φ(x) for all x ∈ X and g ∈ G .

A function Φ : X → R is called G-subinvariant, if

Φ(gx) � Φ(x) for all x ∈ X and g ∈ G .

A G-increasing function on X must be necessarily G-subinvariant on X , because
gx ≺G x for all x ∈ X and g ∈ G .

It follows that if a function Φ : X →R is convex and G-subinvariant on X , then Φ
is G-increasing on X . In fact, taking any x,y ∈ X such that y≺G x , we get y =

m
∑

i=1
tigix

for some gi ∈ G and ti ∈ [0,1] , i = 1, . . . ,m , with
m
∑

i=1
ti = 1. Hence

Φ(y) = Φ

(
m

∑
i=1

tigix

)
�

m

∑
i=1

tiΦ(gix) �
m

∑
i=1

tiΦ(x) = Φ(x),

as claimed.
So, if a function Φ : X → R is convex and G-invariant on X , then Φ is G-

increasing on X . In consequence, if a norm on X is G-subinvariant then it is G-
increasing. In particular, if a norm on X is G-invariant then it is G-increasing.

We introduce the subspace

MG(X) = {x ∈ X : gx = x for all g ∈ G}.
This subspace consists of all minimal points for the preorder ≺G on X .

LEMMA 4. Let x0 ∈ spane with e ∈ MG(X) and ‖ · ‖ be G-subinvariant. Let
x,β ∈ X .

Then
x ≺G β implies ‖x− x0‖ � ‖β − x0‖.

Proof. Let x ≺G β . Then x =
m
∑

i=1
tigiβ for some gi ∈ G and ti ∈ [0,1] , i =

1, . . . ,m , with
m
∑

i=1
ti = 1. Since e ∈ MG(X) , we have gie = e for i = 1, . . . ,m . Hence

gix0 = x0 for i = 1, . . . ,m , because x0 = c0e for some c0 ∈R . Therefore x0 =
m
∑

i=1
tigix0 .
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So, we obtain x−x0 =
m
∑

i=1
tigi(β −x0) , whence, x−x0 ≺G β −x0 . Moreover, ‖ ·‖

is G-subinvariant and convex. Consequently, ‖ · ‖ is G-increasing. For this reason we
get ‖x− x0‖ � ‖β − x0‖ , as required. �

THEOREM 3. Let G ⊂ B(X) be a semigroup and ‖ · ‖ be G-subinvariant on X .
Let β ,x,x0 ∈ X and x∗ ∈ X∗ . Assume that

(i) x0 ∈ spane with e ∈ MG(X) ,

(ii) x ≺G β .

Then
|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � ‖β − x0‖‖S(x∗− x∗0)‖∗ (29)

for any x∗0 ∈ spane∗ .

Proof. In light of Lemma 4, by (i)–(ii) , we obtain ‖x− x0‖ � ‖β − x0‖ . By
taking r = ‖β − x0‖ and applying inequality (6) from Lemma 1 we deduce that (29)
holds valid. �

COROLLARY 3. Let G ⊂ B(X) be a semigroup and ‖ · ‖ be G-subinvariant on
X . Let α,β ,x ∈ X and x∗ ∈ X∗ . Assume that

(i) α+β
2 ∈ spane with e ∈ MG(X) ,

(ii) x ≺G β .

Then

|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � 1
2
‖β −α‖‖S(x∗− x∗0)‖∗ (30)

for any x∗0 ∈ spane∗ .

Proof. We set x0 = α+β
2 . Then ‖β − x0‖ =

∥∥∥β−α
2

∥∥∥ . By making use inequality

(29) from Theorem 3 we obtain (30), as wanted. �

3. Applications for Lp functions

In this section we are concerned with interpretations and applications of the results
obtained in Section 2. We show some integral pre-Grüss and Grüss-Ostrowski type
inequalities for Lp -functions with restrictions.

We consider the spaces X = Lp
[a,b] and X ∗ = Lq

[a,b] with 1
p + 1

q = 1, 1 < p,q < ∞ .

For x = f ∈ Lp
[a,b] and x∗ = g ∈ Lq

[a,b] , we have

‖x‖ = ‖ f‖p =

⎛
⎝ b∫

a

| f (t)|p dt

⎞
⎠

1/p

and ‖x∗‖∗ = ‖g‖q =

⎛
⎝ b∫

a

|g(t)|q dt

⎞
⎠

1/q

, (31)
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〈x,x∗〉 = 〈 f ,g〉 =
b∫

a

f (t)g(t)dt. (32)

By setting 1(t) = 1 for t ∈ [a,b] , we put

e =
1

(b−a)1/2
1 and e∗ =

1

(b−a)1/2
1.

It is easily seen that e ∈ Lp
[a,b] , e∗ ∈ Lq

[a,b] and 〈e,e∗〉 = 1.
Here Chebyshev functional (2) is given by

Te,e∗ ( f ,g) = T ( f ,g) =
b∫

a

f (t)g(t)dt − 1
b−a

b∫
a

f (t)dt ·
b∫

a

g(t)dt. (33)

It is not hard to verify that

Q f = f −〈 f ,e∗〉e = f − 1
b−a

b∫
a

f (t)dt ·1, (34)

Sg = g−〈e,g〉e∗ = g− 1
b−a

b∫
a

g(t)dt ·1. (35)

The next result can be compared to [6, Theorem 2], [12, p. 2], [21, Lemma 1].

COROLLARY 4. Let f ∈ Lp
[a,b] and g ∈ Lq

[a,b] with 1
p + 1

q = 1 , 1 < p < ∞ .
If ⎛

⎝ b∫
a

| f (t)− c0|p dt

⎞
⎠

1/p

� r (36)

for some c0 ∈ R and r > 0 , then

∣∣∣∣∣∣
b∫

a

f (t)g(t)dt − 1
b−a

b∫
a

f (t)dt ·
b∫

a

g(t)dt

∣∣∣∣∣∣� r

⎛
⎝ b∫

a

∣∣∣∣∣∣g(t)− 1
b−a

b∫
a

g(s)ds

∣∣∣∣∣∣
q

dt

⎞
⎠

1/q

.

(37)

Proof. With the notation x = f and x∗ = g and x0 = c01 , by (33), (34) and (35)
we obtain

〈x,x∗〉− 〈x,e∗〉〈e,x∗〉 =
b∫

a

f (t)g(t)dt − 1
b−a

b∫
a

f (t)dt ·
b∫

a

g(t)dt, (38)
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‖x− x0‖ = ‖ f − c01‖p =

⎛
⎝ b∫

a

| f (t)− c0|p dt

⎞
⎠

1/p

, (39)

‖Qx‖ = ‖ f −〈 f ,e∗〉e‖p =

⎛
⎝ b∫

a

∣∣∣∣∣∣ f (t)−
1

b−a

b∫
a

f (s)ds

∣∣∣∣∣∣
p

dt

⎞
⎠

1/p

, (40)

‖Sx∗‖∗ = ‖g−〈e,g〉e∗‖q =

⎛
⎝ b∫

a

∣∣∣∣∣∣g(t)− 1
b−a

b∫
a

g(s)ds

∣∣∣∣∣∣
q

dt

⎞
⎠

1/q

. (41)

By making use of (36) we see that the condition

‖x− x0‖ � r

is satisfied. In conclusion, by Lemma 1 applied for x∗0 = 0, we establish the inequality

|〈x,x∗〉− 〈x,e∗〉〈e,x∗〉| � r‖Sx∗‖∗,

which proves (37) via (38)–(41). �

COROLLARY 5. Let f ,β ∈ Lp
[a,b] and g ∈ Lq

[a,b] with 1
p + 1

q = 1 , 2 � p < ∞ .
Assume that for some c0 ∈ R ,

(i) x0 = c01 is a constant function,

(ii) f � c01 and β � c01 ,

(iii) p( f (t)− c0)
p−1 (β (t)− f (t))+ |β (t)− f (t)|p � 0 a.e. on [a,b] , or, more gener-

ally,
b∫

a

[
p( f (t)− c0)

p−1 (β (t)− f (t))+ |β (t)− f (t)|p
]

dt � 0. (42)

Then we have the inequality∣∣∣∣∣∣
b∫

a

f (t)g(t)dt − 1
b−a

b∫
a

f (t)dt ·
b∫

a

g(t)dt

∣∣∣∣∣∣

� ‖β − c01‖p ·
⎛
⎝ b∫

a

∣∣∣∣∣∣g(t)− 1
b−a

b∫
a

g(s)ds

∣∣∣∣∣∣
q

dt

⎞
⎠

1/q

. (43)
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Proof. We consider the functions ψ(u) = u p for u ∈ [0,∞) , and

ϕ(z) = ‖z‖p =
b∫

a

|z(t)|p dt for z ∈ Lp
[a,b]

(see (31)).
Then for z,h ∈ Lp

[a,b] ,

∇hϕ(z) =
b∫

a

p|z(t)|p−2z(t)h(t)dt = 〈h, p|z|p−2z〉 (44)

(see [18, pp. 350–351]), where |z| p−2z ∈ Lq
[a,b] , because z ∈ Lp

[a,b] and (p− 1)q = p .
Therefore,

∇ϕ(z) = p|z|p−2z. (45)

We shall show that the function ϕ is superquadratic for z � 0 and z+h � 0 in the
sense of (7).

For p � 2 the function ψ is superquadratic on [0,∞) in the sense of [ 1, 2, 3], that
is,

(u+ s)p � up + pup−1s+ |s|p for u,u+ s ∈ [0,∞) .

By substituting u = z(t) and s = h(t) for t ∈ [a,b] , we obtain

(z(t)+h(t))p � (z(t))p + p(z(t))p−1h(t)+ |h(t)|p for t ∈ [a,b] ,

because z � 0 and z+h � 0. Hence,

b∫
a

(z(t)+h(t))p dt �
b∫

a

[
(z(t))p + p(z(t))p−1h(t)+ |h(t)|p] dt,

and further,

b∫
a

|z(t)+h(t)|p dt �
b∫

a

[|z(t)|p + p|z(t)|p−2z(t)h(t)+ |h(t)|p] dt,

which means

‖z+h‖p � ‖z‖p + 〈h,∇‖z‖p〉+‖h‖p for z,h ∈ Lp
[a,b] such that z,z+h � 0.

In conclusion, (7) is met for the set U = {v ∈ Lp
[a,b] : v � 0} .

On the other hand, by using the substitutions

x = f , x0 = c01, x∗ = g, x∗0 = 0,

z = x− x0 = f − c01,
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h = β − x = β − f ,

we see that conditions (42), (44) and (45) via (32) imply that

〈β − x,∇ϕ(x− x0)〉+ ϕ(β − x) � 0.

Thus all assumptions of Theorem 1 are verified to hold. So, we are allowed to
apply inequality (19) in Theorem 1, which easily leads to (43). �

In the case of p = 2 in Corollary 5, condition (iii) can be equivalently restated as

b∫
a

[β (t)− f (t)] [ f (t)−2c0 + β (t)] dt � 0.

Specifically, for c0 = α+β
2 with α,β ∈ L2

[a,b] the last inequality holds whenever

[β (t)− f (t)] [ f (t)−α(t)] � 0 a.e. on [a,b] ,

which is of Dragomir’s type (see Example 1). The latter is met, e.g., if α(t) � f (t) �
β (t) a.e. on [a,b] .

For s, t ∈ [a,b] , we denote

Ps(t) =

{
t −a if t ∈ [a,s],
t −b if t ∈ (s,b].

THEOREM 4. Let f : [a,b] → R be an absolutely continuous function differen-
tiable on [a,b] . Suppose f ′,β ∈ Lp

[a,b] , where 2 � p < ∞ .
Assume that for some c0 ∈ R ,

(i) x0 = c01 is a constant function,

(ii) f ′ � c01 and β � c01 ,

(iii) p( f ′(t)− c0)
p−1 (β (t)− f ′(t))+ |β (t)− f ′(t)|p � 0 a.e. on [a,b] , or, more gen-

erally,

b∫
a

[
p
(

f ′(t)− c0
)p−1 (β (t)− f ′(t)

)
+ |β (t)− f ′(t)|p

]
dt � 0.

Then for any s ∈ [a,b] we have the inequality∣∣∣∣∣∣ f (s)−
1

b−a

b∫
a

f (t)dt − f (b)− f (a)
b−a

·
(

s− a+b
2

)∣∣∣∣∣∣� ‖β − c01‖p ·
(b−a)1/q

2(q+ 1)1/q
,

(46)
where 1

p + 1
q = 1 .
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Proof. The first part of this proof is based on the method shown in the proof of
[14, Theorem 2.1].

By taking into account Corollary 5 applied to the functions f ′ and Ps (in place f
and g , respectively), we estimate |T ( f ′,Ps)| as follows∣∣∣∣∣∣

b∫
a

f ′(t)Ps(t)dt − 1
b−a

b∫
a

f ′(t)dt ·
b∫

a

Ps(t)dt

∣∣∣∣∣∣

� ‖β − c01‖p ·
∥∥∥∥∥∥Ps − 1

b−a

b∫
a

Ps(t)dt

∥∥∥∥∥∥
q

. (47)

Montgomery identity (see [31]) states that

f (s) =
1

b−a

b∫
a

f (t)dt +
1

b−a

b∫
a

f ′(t)Ps(t)dt. (48)

It is known that

1
b−a

b∫
a

f ′(t)dt =
f (b)− f (a)

b−a
. (49)

It is not hard to check that

1
b−a

b∫
a

Ps(t)dt = s− a+b
2

. (50)

It is calculated in [29] that∥∥∥∥∥∥Ps − 1
b−a

b∫
a

Ps(t)dt

∥∥∥∥∥∥
q

=
∥∥∥∥Ps −

(
s− a+b

2

)∥∥∥∥
q
=

(b−a)1+1/q

2(q+ 1)1/q
for 1 < q < ∞ .

(51)
In summary, by combining (47), (48), (49), (50) and (51), we find that∣∣∣∣∣∣(b−a) f (s)−

b∫
a

f (t)dt − f (b)− f (a)
b−a

· (b−a)
(

s− a+b
2

)∣∣∣∣∣∣
� ‖β − c01‖p ·

(b−a)1+1/q

2(q+ 1)1/q
. (52)

Now, we deduce from (52) that (46) holds valid. �

Finally, we present an interpretation of Theorem 2.
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COROLLARY 6. Let f ,β ∈ Lp
[a,b] and g ∈ Lq

[a,b] with 1
p + 1

q = 1 , 2 � p < ∞ .
Assume that for some c0 ∈ R ,

(i) x0 = c01 is a constant function,

(ii)
b∫

a

[
p | f (t)− c0|p−2 ( f (t)− c0)(β (t)− f (t))

]
dt � 0. (53)

Then ∣∣∣∣∣∣
b∫

a

f (t)g(t)dt − 1
b−a

b∫
a

f (t)dt ·
b∫

a

g(t)dt

∣∣∣∣∣∣
� ‖β − c01‖p ·

⎛
⎝ b∫

a

∣∣∣∣∣∣g(t)− 1
b−a

b∫
a

g(s)ds

∣∣∣∣∣∣
q

dt

⎞
⎠

1/q

. (54)

Proof. It follows from Theorem 2 via a similar method as that in the proof of
Corollary 5. �
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