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SOME WEAK TYPE ESTIMATES FOR
MAXIMAL SINGULAR INTEGRALS

SHUICHI SATO

(Communicated by I. Peric)

Abstract. We consider some maximal singular integral operators having variable kernels on R"
with doubling measures and prove LP and weak type estimates for them under certain conditions.
Also, certain weighted weak type estimates are shown for maximal singular integrals with A;
weights of Muckenhoupt for the Lebesgue measure.

1. Introduction

Let T :L?(R",du) — L?(R",du) be a linear operator, where u is a regular Borel
measure on R" (see [10, p. 205]) such that there exists a positive constant C satisfying

w(B(x,r)) <Cu(B(x,r/2)) forall xeR" and r >0

(the doubling condition) and such that @ (R") =0 and p(E) < e when E is a compact
set, where B(x,r) denotes a ball with radius r centered at x:

B(x,r)={yeR": |ly—x|<r}.

It is known that C5°(R") (the set of infinitely differentiable functions on R" with com-
pact support) is dense in LP(R",du) for 1 < p < o (see Section 5.5). Let L (R") be
the set of bounded measurable functions f on R" for which there exists a compact set
E suchthat f(x) =0 fora.e. x e R"\ E with respectto u (u-a.e. x); the smallest such
compact set is defined to be supp(f). If f € Ly (R"), then T(f) € L2(R",du) and
we have values T (f)(x) meaningful for p-a.e. x. We assume that there exists a kernel
K(x,y) which is locally integrable in R" x R"\ A with respect to the product measure
du®@du, where A= {(x,x) : x € R"}, such that if f € L§'(R"),

TF(x) :/ K(x,y)f(y)du(y) for u-ae. x e R"\ supp(f).
RN
For the kernel K we assume that the limit
lim KOGy) Fy)du(y)
£-0J|x—y|>e
exists and equals T f(x) for u-a.e. x when f € C5(R"). Also, we consider the follow-
ing conditions.
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(K1)
/ K(xy)ldu( <y
a<|x—y|<2a
forall ye R" and o > 0.
(K2)
/ Kxy)lduy) <Co
o< |x—y|<2a
forall xe R" and o > 0.
(K3)
/ K (%) K (x.y0) du () < Cs
IX=Yyo|=2ly—Yol
forall yp, ye R".
(K4)
/ K(xy) ~K(0.y)|du(y) < Cy
[y—Xo|>2[x—Xo]
forall xg, x € R",

The following result is known.

THEOREM A. Suppose that the kernel K satisfies the condition (K.3). Then the
operator T extends to a bounded linear operator from LP(R" du) to LP(R",du) for
every p € (1,2] and from LY(R",du) to L2=(R",du) (T is of weak type (1,1)), which
means that

w({xeR":[TF(X)| >A}) <CA 7Y f|1 :c/l—l/Rn 1f(x)|du(x), VA >0.

For Theorem A see Theorem (2.4) on Coifman-Weiss [6, pp. 74-75] and also
Theorem 1.2 on [18, p. 30]. In Theorem (2.4) of [6], the kernel K of T is assumed to
bein L2(R" x R",du ®du), but the proof given there can be applied to prove Theorem
A. When p is the Lebesgue measure, we can find in [5, Chap. V] results related to
operators T with standard kernels. See also [15, Chap. 4].

Let T.f(X) = Sup,~q|Te f(X)], where

Tf= [ K&xyiy)duw).
x—y[>c
Then in this note we shall prove the following theorem.

THEOREM 1.1. Suppose that the kernel K satisfies the conditions (K.2), (K.3)
and (K.4). Then T, extends to a bounded operator on LP(R",du) forevery p € (1,2)
and extends to an operator of weak type (1,1).
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Let
T(ﬁ)f(x) =p.v. /1‘@ Kﬁ (X,y)f(y)d.uﬁ (y)a

where
Kg(x.y) =k(x=y)(xIP = lyP), k) =x7"Q), X' =x/|x, (L1)

and dug(y) = ly| =P dy with 0 < B < n (dy denotes the Lebesgue measure). We as-
sume that Q is continuous on S"! and [1Q(6)do(6) = 0, where do denotes
the Lebesgue surface measure on S"~1. We further assume that Q satisfies the Dini

condition: . ’
t
[ o0F <~
0 t

o(t) =sup{|Q(8) - Q)| |6 - ¢ <t, 6,§esS" ).

We note that « is non-decreasing and o(t) < 2||Q||. for t > 0. As an application of
Theorem 1.1, we can show the following.

where

THEOREM 1.2. Let n > 2. We consider the maximal operator T*(ﬁ)f . Then T*(ﬂ)
is bounded on LP(R",dug) for p € (1,2] and of weak type (1,1).

The L%(R",dug) boundedness of T.P) in Theorem 1.2 follows from Theorem 4.1
below in Section 4. When Q satisfies a Lipschitz condition on S"1, see [6, p. 76]
about a result for T (8) analogous to Theorem 1.2.

Also, we consider weighted weak type estimates for the maximal singular inte-
grals. From now on, through this section, we assume that the measure du is the
Lebesgue measure dx. Let K(x,y) be locally integrable in R" x R"\ A. When 0 <
o <P <oo, let

Ao,B)={z:a<|x—z| < B};
Ale,B) = {(y.2) e R" x R": < |y —2] < B}.

Let 1<r<e,0<t<1andR>0.We define

1/r
o) = sup R [ RU(K(y) ~K(x2)[" dX
(y.z)eA(Rt/4,Rt/2) AZR2R)
We say that the kernel K satisfies the D, -condition if
Br=Y ar(27¥) <e,  where ax(t)=suparr(t) =supaw, 1z(t).
k=0 R>0 R>0

By the usual modifications we can also define the D..-condition. The D, condition is
equivalent to the (D) condition defined in [18] (see Section 5.1 below). We see that
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the Ds condition follows from the D, condition if s < r. It is easily shown that the D
condition implies (K.3).

In [16] weighted weak type estimates were proved for certain singular integrals T
under Dini conditions. At present, for certain singular integrals, weighted weak type
(1,1) estimates can be shown without Dini conditions (see [9]), while if we focus our
attention on maximal singular integrals T.., we see that even at present stage of research
certain Dini conditions are still needed to prove weighted weak type (1,1) estimates
analogous for T . We shall prove the following results on weighted weak type estimates
for T..

THEOREM 1.3. Let 1 < r < . Suppose that T is bounded on LP for some p €
[r,). Suppose that the kernel K of T satisfies (K.2), (K.4) and the D, condition and

that a weight w satisfies w” € Ay, where 1/r+1/r' = 1. Then T, is bounded from L},
to L&;"", which means that there exists a constant C > 0 such that

supAw ({x € R": T f(x) > A}) <C|/f[|g,
A>0

where W(E) = [ew(x)dx and || f[|.1 = Jgn | (X)|w(x)dx.
PROPOSITION 1.4. Let w € A;. Suppose that T is bounded from L} to Ly~ and

that the kernel K of T satisfies (K.2) and (K.4) conditions. Then, T, uniquely extends
to a positive sublinear operator on L, NL> such that

sup AW ({x € R": T.f(x) > 1}) < Col| ||y,
A>Cy [ f[len

for some constants C1,C, > 0.

See [11] for the weight class A; of Muckenhoupt. As an application of Proposition
1.4 and a result of [9], we have the following result for maximal singular integrals with
homogeneous convolution kernels.

COROLLARY 1.5. Let n > 2 and define

Q(
ly

Tf(x):p.v./f(x—y) |)::> dy,

where Q is homogeneous of degree 0 and Q € L"(S"~?) for some r > 1 and

Q(8)do(8) = 0.

gn-1

Suppose that Q satisfies the L*-Dini condition on S"~! and suppose that w' e A;.
Then, there exist positive constants C; and C, such that for f ¢ L\}v N L= we have

sup  Aw({x € R": T.f(x) > A}) < Col| fl 3.
ASCy [ f e
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For the L"-Dini condition for Q, see [16]. In [16] the L&,—L&;"" boundedness of T
is shown under the assumptions that Q € L" and that Q satisfies the L"-Dini condition,
when w"” € A;. In [9], the same boundedness is proved under the condition that Q € L"
without the L"-Dini condition (see [8, p. 267] for the case when Q € L*); the proof
given in [9] is based on results in [23] and [26]. An analogous result is expected for
T.. We note that in Corollary 1.5 the L"-Dini condition is relaxed to the L*-Dini
condition in comparison with the result of [16] for T but the range of A for which the
supremum is taken in the conclusion of the corollary is restricted to A > C1|| f ... See
[4, 13, 20, 21, 22, 25] for singular integrals with rough kernels; in [21, 22, 25] results
on homogeneous groups can be found.

We see an application of Theorem 1.3 to singular integrals with convolution ker-
nels. Let

TF(x) :p.v./f(x—y)K(y)dy7 T.f(X) = sup

e>0

/M% Fx—y)K(y) dy|, (12)

for f € C5(R"), where K satisfies the following.

sup / 1K (x)|dx < oo (1.3)
t>0 JA(Oit,2t)
sup/ K (X—y) — K(x)] dx < os; (1.4)
yeRN JA(0;2]y] )
sup / K(x)dx| < oo (L5)
O<s<t<eo |JA(0;st)
the limit Iin?) f(x —y)K(y)dy exists for a.e.x when f € C5’(R"). (1.6)
e=0Jyye

It is known that T and T, extend to bounded operators on LP(R"), 1 < p < e, and to
operators of weak type (1,1) on R" (see [1] and [17] for T ; for T. see [17] and also
[18, pp. 25-26], [2, p. 72]). We note that the D, condition, which is stated above for
variable kernels, can be formulated in the case of convolution kernels as follows.

Br=Y wr(27¥) <,  where a(t)=supmrg(t)
k=0 R>0

and
1/r
o) = sup RT / R™ (K (X — ) — K (x))|” dx

WEA(O;Rt/4,Rt /2) AORZR)

Theorem 1.3 immediately implies the following weighted weak type estimates for the
maximal singular integrals T,.
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COROLLARY 1.6. Let r> 1. Let w be a weight such that w" € A; . Suppose that
the kernel K satisfies (1.3), (1.5), (1.6) and the D condition. Then we have

supAw ({x € R": T, f(x) > 1}) <C|/f[|g,
A>0

where T, isasin (1.2).

We note that the D, condition in Corollary 1.6 implies (1.4). When K is a homo-
geneous kernel of the form K = |x| 7"Q(x’), see [3] for a relation between (1.4) (the
Hormander condition [14]) and the L* Dini condition for Q.

We shall prove Theorem 1.1 in Section 2. The proofs of Theorem 1.3, Proposi-
tion 1.4 and Corollary 1.5 will be given in Section 3. In proving Theorems 1.1, 1.3
and Proposition 1.4, we shall apply methods of Riviére [17] and also methods of [5,
Chap. V] for standard kernels. In proving Corollary 1.5, we shall also use a result of
[9]. To prove Theorem 1.3 we shall apply the D, condition to estimate T.(b) along
with Holder’s inequality, where b is the bad part arising from the Calder6n-Zygmund
decomposition f =g+b.

The proof of Theorem 1.2 will be provided in Section 4. To establish the theorem
we need to prove the condition (K.3), which is in Lemma 4.2. We shall state the proof
of the lemma in detail. Finally, in Section 5, we shall give proofs for some results which
have been stated without proofs before.

2. Proof of Theorem 1.1

We need the following lemmas (Lemmas 2.1, 2.3 and 2.4).
LEMMA 2.1. Let f e L7 (R") and 0 < 6 < 1. Then

ITa F 0] < NG (F) () + NZL(F)(X) +CsMy 5(TF)(X) +CsMu f(x)  p-ae.,

where M, f denotes the Hardy-Littlewood maximal function with respect to the mea-
sure u:

Mu (0 = supy(B) [ [(y)]du(y)
xeB
with the supremum being taken over all balls B containing x, and
My 5(f) = (Mu(|F|%)"/°;

also

N&L(F)() = sup
zeB(x,00/3)

/‘X_Y‘M(K(va)— K(z,y) f(y)du(y)|,
K@) y)ldu(y).

sup /
2eB(x,0./3) / 20t/3<|z-y| <20t
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Proof. First we assume that f € C3'(R"). Let B(x,r) ={y e R": [y —x| <r} be

the closure of a ball B(x,r). Let ¢xo € CT(R"), 0 < @0 <1, ¢y o =1 0n B(X, )
and supp(¢x.«) C B(x,3c¢/2). For z € R", we have

Te f()] <

[ Ko T)du @)

_/|ny|>s Kzy)(F(y) = F () pa(y)) du(y)
+Te f ()| + [Te(fox.a) (2)]-

We note that

/|ny|>g K@ y)(f(y) = f(Y)paly))duly)

= ﬁz_ybgK(z,y)f(y)du(y)— /‘z ' K@) F (V) (@x.a(y) = X0 (Y) A (Y)-
=y >0 Bl

2.2)

If z—x| < /3 and [x—y| > a, then |z—y| > 20/3. So, if |z—X| < a/3 and
€< 20/3,we have

oy K@Iduw) = [ K@yiy)duw). 23)

x—y| >0 Xyl

Also, we observe that if |z—x| < o./3,

[, KED@cald) ~ e ) 1) du(y)‘

<[ ayee KE@WIWIdum) < [ KEyIITy)ldul). @4

a<|x—y|<30/2 20/3<|z—y|<2a

Combining (2.1), (2.2), (2.3) and (2.4) and letting € — 0, we have, if |z—X| < /3,

Tef ()] <

[, (KO K@) 1) du) 25)

+/ K[ FW)Idu(y) + [T @)+ T (Foa)(2)].
200/3<|z—y|<20

To prove (2.5) for f € L3 (R"), we take a sequence {fi}y_; in C5(R") such that
fy — f in L2(du) and u-a.e. and such that {f,} is uniformly bounded: |f,| <M and
supp(fx) C E for a compact set E independent of k (for a sequence which satisfies the
L?(du) convergence, see Section 5.5 and then it is easily seen that we can choose { fy}
which also complies with the other requirements). Next, we apply the inequality (2.5)
to each fi. Then by a limiting arguments in letting k — o, we get (2.5) for f.
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Therefore, for f € L3 (R") we see that

Taf (9 < N (00 + N () + _inf  (TF@)I+[T(Foxa) @) 28)

We estimate the last term as follows. Let 0 < § < 1. Then

zeBEQ];/S) (ITF@I+IT(Fexa) @) @7
1/
S (ZEBi!(T(';/:s (Tf(z)|5+|T(f(PX7a)(Z)|8>)
1/
( N 2)8du(2) +][ “Px.oc)()éd/i()>

<G (f( Lo Tre >|5du<z>)1/8

1/5
9
res(f, L THo@Pwue)

where fz gdu = u(E)~t [z gdu. To estimate the last integral, we apply the following
well-known result (see Section 5.3 for the proof).

LEMMA 2.2. Let (E,v) be a measure space with v(E) <. Let 0< 0 < 1. For
a non-negative measurable function F on E, suppose that

VIXEE:F(X) > A} < A forall 2 > 0.

Then

/F 5 dv(x —5A5 (E)+2.

Since T is of weak type (1,1) by Theorem A, using Lemma 2.2 we see that

5 8 s
]é<x.a/3> T Pea)@)" du(2) < Cs <]€<X,3a/2>lf(2)ldu(z)> < Cs(My f(x))°.

(2.8)
By (2.6), (2.7) and (2.8), we have the conclusion of Lemma 2.1. [

LEMMA 2.3. Let {Qm}_, be afamily of non-overlapping dyadic cubes. Let By,

be the smallest ball such that Qm C Br . Let {hp} be a sequence of functions in Lg (R")
such that

(1) supp(hm) C Qm;
(2) [hm(x)du(x) =0;
(3) [hmllz <Cp(Bm).
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Let By, = B(Xm,8rm), where By = B(Xm,rm). Let E = UB;y,. Suppose that the kernel
K of T satisfies the (K.2) and (K.3) conditions. Let h = Y hy. Then there exists a
constant Cy > 0 such that

(X €ES: T.(N)(X) > Co}) <C 3 1 (Bn),

m=1

where E¢ =R"\ E.
Proof. We consider the integral

Tahm)0 = [ Kxyhn(y)du(y) forx¢E.

x=yl>o

Fix x € E® and o > 0. We divide the set No(x, o) of positive integers m for
which Ty (hm)(X) # 0 into three pieces N1 (x, ), Na(x, o), N3(x, cr) as follows.

Ni(x,a) = {m e No(x,00) : 0t < I},
No(x,0) = {m € No(X, ) : rm < o, X ¢ B(Xm,22x)},
N3(x,0) = {m € No(X, o) : rm < 0t /4,x € B(Xm, 22x) }.
We observe that the case /4 < rpy < o and x € B(xm, 20x) is excluded, since if o/4 <
Im < o, then B(Xm,20t) C B(Xm,8rm), and so X ¢ B(Xm,20).
Let me Ni(x, ). If y € B(Xm,Im), we have |x—y| > o, since

X —Y| = [X—Xm| — [Xm — Y| = 8Mm — rm = 7rm > «.

Therefore
/IxinK(x,y)hm(y)du(y) B /K(x,y)hm(y)d“(y)
N /(K(X’y) —KXXm)hm(y)du(y).  (2.9)

Let m € Na(x, o). Then we have |x —y| > a for y € B(Xm,Im), since
IX—=Y| = [X—Xm| — [Xm —Y| = 20t — Iy > 20— 00 = Q.

Thus we also have (2.9) in this case.
Let m € N3(x, cx). Then for y € B(Xm,rm) we have [x —y| < (4/9)c, since

IX—Y| < [X—Xm| — [Xm —Y| < 2a+Fm < 20+ a /4 =9 /4.

Therefore

/|x7y\>aK(X’V)hm(y>du<y) = / KX, y)hm(y)du(y). (2.10)

o<|x—y|<9a/4
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For x € E® and o > 0, we decompose

Ta(h)(x) = > Ta(hm)(¥)+ > Talhm)(x). (2.11)

meN (x,00) UNp (x,0) meN3(x,0)
We first estimate ¥nen, (x,q) Te(hm)(X). We observe that
Qm CA(X0/2,900/4) for me N3(x,a). (2.12)

We have already seen that Qm C B(x,90./4). Since Ty (hm)(X) # 0, there is yg € Qnm
such that |[x —yo| > a. Therefore, if y € Qn, then

X—y|=X=Yo| = Yo—Y|>0—2rm>a—o/2=qa/2.

This completes the proof of (2.12).

Let
M) = @) [ o) du()
Then
My ()| < 1£(Qm) [l < C1(Qm) 21 (Bm) < C.
We write

/ K(X,y)hm(y)dpe(y)
a<|x—y|<9a/4

= [ KO) (s 0)n(y) — Mea(hm)) du) +Mea(hm) [ Koy du)
Qm

Qm
= [ (KOy) = KOm) (s 0)m(9) ~ Ma(hm) da(y)
Qm

+Myalin) [ KOy du(y)
Qm

Then we see that

/ K ()59
o<|x—y|<9a/4

< [ 1K) Kk ()] +C) () +€ [ IK(xy) m ().
Qm Qm
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Applying (2.12), we see that

/ K (6 hly) 9 )| @19
a<|x—y|<9a/4

/\K (4) =Kt Xm)| (R 9) +C) dua(y)

meNz(x,0)

meN3 X, oc

e[ Keyldu®)
A(x;a/2,90./4)

< T [ K6y Kol ()] +C) duy) +8
meNg(x,a)Qm

where the last inequality follows from (K.2).
Let x € EC. Then, using (2.10) and (2.13), we have

wp S Taltwm] < 3. [ K00) ~Kxm)| (n(s)]+C) dy) +8
0>UmeN;(x,o
- (2.14)

By (2.14) we see that

u({erC sup Y, |Ta(hm)(x)|>l+B}> (2.15)

>0meN;(x,0)

<u ({er°: i/ IK(X,y) — K(X,Xm)| (|hm(y)| +C) du(y)>1}>

S0 L K069 =K 000 ()] +€) 81

<cm§1/Qm (Jhn(y)| +C) dua(y)

<CY (Ihnl+1(@Qm) <C Y w(Bn).

m=1 m=1

where the third inequality follows from (K.3).
Next we estimate Ymen, (xo)un, (a) Te(hm)(X). Let x € EC. If m € Ny(x, o) U
Na(x, ), we have (2.9). It follows that

S Taltw] < 3 [ K Kool du ()
0>0meN; (x,0)UN, (x,01)
Therefore, arguing as in the proof of (2.15), we have

oo

u({erc sp Y |Ta(hm><x>|>1}> <CY u(Bn). (2.16)
)

>0meN; (x,o m=1
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Combining (2.15) and (2.16) and recalling (2.11), we arrive at the estimate

p({x€E®:T.(h)(x) >24+B}) <C Y, u(Bm).
m=1
This completes the proof of Lemma 2.3. [

LEMMA 2.4. Let 1 < p<eo, feLy(R"). Let v be a weight function. Then
f =g+b,where g and b have the following properties.

D) lgx)I<1  p-ae;

2) l9llevdg) < ClIfllLomuydp)s

(3) b=35_1bm;

(4) there exists a family {Qm}7=_; of non-overlapping dyadic cubes such that

supp(bm) C Qm;

(5) Jbm(x)du(x) =0;
(6) |lbmll1 <Cu(Qm);
(7) Xm-1Jo, v(x)du ()<C||f|||_p Vdu)*

This lemma is stated in a more general form as weighted estimates than needed in
the proof of Theorem 1.1; the weighted version will be applied in proving Theorem 1.3.

Proof of Lemma 2.4. Decompose f = f1 + f,, where

10 = {f(x) if | f(x)] >1/2,

0 otherwise.

We apply the ordinary Calderén-Zygmund decomposition at height 1/2 with measure
u to f; to get the following.

() fr=k+b:
(i) [k(x)|<1/2 p-ae,
(i) [kl 2vapy < Cllfallie g vy dp);

(iv) b=3r_;, where by satisfies the properties (4),(5),(6) of Lemma 2.4 with a
family {Qm}p_; of non-overlapping dyadic cubes;

V) -1 Jo, VOO du(x) < Cllfalliam, vyap)-
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Proof is similar to the case where p is the Lebesgue measure (see [11, pp. 141-144]
and [6, Chap. 111, §2]; see also Section 5.6).

Let f =g+b, where g=k+ f, and b, k are as above. Then by (ii) we have
lg| < |k|+|f2] < 1, whichis part (1). Also by (ii) and (iii) we see that

(1/2)PHIKllLawauy < Cllfallis g, )

”leEP(Mu(v)du <C||f|||_p v)du)*

Koy <
<

Since, clearly, || f2|Lowap) < [l fllLrvan) < ||fHLP(M,1(v)du)vwe see that

19llpvap) < [IKllpvap) + I f2llevap) < ClFllp vy, vy dp) -

which proves part (2). Applying (v), we have

2/ < Cllfalliamy, vy du

SCZp_lelep <C2P 1P,

(Mu(v)du) ™= v)du)

which proves part (7). O

Now we can complete the proof of Theorem 1.1. For f € L§(R"), by Lemma 2.1
we have

IT A ()] < NP () X)+ NP (F)(0) +CaMys(TH(X) +CsMu F(x),  (2.17)

where Nﬂ)(f)(x) = SUPy-0 N},i?af(x) for i=1,2. From (K.4) it follows that

INS (F) oo < Ca | oo (2.18)
Also, (K.2) implies that
INZ (F) | < Co o (2.19)

To estimate M, s(T f) we need the following result (see Section 5.4 for the proof).

LEMMA 2.5. Suppose that a weight w satisfies that

w(x)du(x) <CA~t / () [w(x) dpt (x)
{XeR™My (f)(x)>A}
forall A > 0. Then we see that M, is of Riesz weak type (see [12, p. 111] ):

w(x)du(x) <CAt / [f(x)w(x)du(x), VA >D0.
{XeR™My (f)(x)>A} {XeR™My (f)(x)>A}
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This lemma is stated more generally with a weight w than needed in the proof of
Theorem 1.1; the weighted version will be used in Section 3.
Using Lemma 2.2 with the estimates in Theorem A

w({|Tf]>A}) <CA Y]], VA >0

and Lemma 2.5 with w = 1, we have
M, 5(TF)> A gcz—ﬁ/ T£19 dpa(x
1 ({Ms(TH) > 1)) AL T

<Coa o ({Mus(TH) > 1) 012,
which implies that
t({Mys(TF)>2}) <CA7Yflls, VA >0. (2.20)

We note that Lemma 2.5 can be applied with w = 1, since M, is of weak type (1,1).

Let f eLy and f =g+b, b= b, and cubes {Qn} be as in Lemma 2.4 with
p=1andv=1. Let By, be the ball with the same center and diameter as Qn,. Then
by (2.17), (2.18), (2.19) and (2.20) we see that

1 ({T(9) > C1+Co+2}) < u ({CsMy 5(T9) > 1}) +u ({CsMu(g) > 1}) (2.22)
<Cllglls <C|[f]l2.
Let By =B(Xm,m) and E = U>_;B(Xm,8rm). Then by applying Lemma 2.3, we have
1 ({Tu(b) > Co}) < u(E)+pu({x €E: Tu(b)(x) > Co})
<C'Y 1B <C|fls, (2.22)

m=1

where the last inequality follows from part (7) of Lemma 2.4 with v = 1. Combining
(2.21) and (2.22), we see that

1 ({T.(f) > Co+Ca+Co+2}) <C| f[]1. (2.23)

Next, let us apply Lemma 2.4 with p =2, v=1 and decompose f =g+b. Then
arguing as in (2.21), by Chebyshev’s inequality, the L2 boundedness of T, the LP
boundedness of M, 1 < p < oo, and part (2) of Lemma 2.4 with v =1, we have

u({T.(g9) >C1+C2+2})
< ({CsMys(Tg) >1}) +u ({CsMu(g) > 1}) <Cligl5 <C| f[l5. (2.24)

Let E beasin (2.22). Then by Lemma 2.3 and part (7) of Lemma 2.4 with v=1 and
p = 2, we see that

1 ({T.(b) > Co}) < u(E)+u({x € E°: Tu(b)(x) > Co})
<CY u(Bn) <C|f|3 (2.25)
m=1
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Using (2.24) and (2.25), we have
p({To(f) >Co+C1+Co+2}) <C| f| 2. (2.26)

From (2.23) and (2.26) we can deduce that T, extends to a sublinear operator of weak
type (1,1) and of weak type (2,2). Interpolating these two estimates, we see that T.
is boundedon L", 1 < r < 2. This completes the proof of Theorem 1.1.

REMARK 2.6. Let 2 <5 < eo. If we further assume in Theorem 1.1 that T is
bounded on L3(R",du), then we can prove the L' boundedness of T, for 1 <r <s,
since then we can apply Lemma 2.4 with p = s in the proof given above for Theo-
rem 1.1, where Lemma 2.4 has been applied with p = 2, to get the weak type (s,s)
boundedness of T..

3. Proofsof Theorem 1.3, Proposition 1.4 and Corollary 1.5

In this section we assume that the measure u is the Lebesgue measure. For t > 0,
let My(f) = (M(|f[*))t, where M denotes the Hardy-Littlewood maximal operator
with respect to the Lebesgue measure.

LEMMA 3.1. Let 1 <r < . Suppose that K satisfies the D, condition. Let
u>0.Then

sup / IK(X,y) —K(x,Y0)[lg(x)[dx <C inf My(g)(z).
yeB(yg,u) / [X=Yo|>2u 2€B(yo,u)

Proof. Lety € B(yo,u), Yy # Yo. Then, using Holder’s inequality, we have

[ Ky =~ Kxyo)llgtodx
[x—yo[>2u

=

[K(x,y) —K(x,yo)[[g(x)| dx

1/r 1/r

kzl/Awo;zkuzkHw

/

<X [ K&y Kyl dx [ letoldx
k=1 A(yo;2ku,2k+1u) (yo;ZkU,2k+1U)

o 1/r
<C 22 utly - ( 2u *"/ X r/dx) :
S or (20 y-yl) (@0 [ 600

To estimate (22‘ku‘1\y—y0|), we apply the following result (see Section 5.2 for
the proof).

LEMMA 3.2. Let 0 <t <s<2t<1.Then

or(s) < C(ax(t) + or(2t)).
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Let 27™ 1 <utly—yo| <2™, m >0, m e Z (the set of integers). Then by
Lemma 3.2,

or (22707 y — yol) < C(0r(2™* ™) + (27K ™),

which implies

oo oo

Y or (22 %ty —yol) <C ¥ ax(27).
k=1 k=0

Thus we have

S o (2% yLy — <2k fn/ "4 )
Ton (2 ty el (@00 [ 180017 8x

<C inf Mgz S 2Ky Ly — <C inf Mug(2).
et rg()<k21wr( ly yol) eint r9(2)

1/r

This completes the proof of Lemma 3.1. [

LEMMA 3.3. Letfamilies {Qm}r_; of non-overlapping dyadic cubesand {Bm}7_,;
of balls be as in Lemma 2.3. Let {hy} be a sequence of functions in L (R") related
to Qm and By, as in Lemma 2.3 with the Lebesgue measure in place of the measure u;
S0 hy satisfies that

(1) supp(hm) C Qm;
(2) fhm(x)dXZO;
(3) lIhmll1 < C[Bm|.

Also, let Bj, = B(Xm,8rm), Bm = B(Xm,m) and E = UB},, as in Lemma 2.3. Suppose
that the kernel K of T satisfies the (K.2) and the D, condition for some r > 1. Let v
be a weight function and h = Y hy,. Then there exists a constant Cy > 0 such that

V({x € E®: T,(h)(x) >Co}) <C i Zierpaf My (V) (2)|Bm]-
m=1 m

Proof. We take care of the integral

Tam)®0 = [ K(xy)hn(y)dy forx¢E,
x=y[>o

Fixing x € E® and o > 0, we consider sets of positive integers N1(x, o), Na(x, o) and

N3 (x, &) as in the proof of Lemma 2.3 with the Lebesgue measure in place of w. Then

we have

Ta(h)(x) = > Ta(hm)X)+ > Talhn)(x). (CR)

meN7 (x,00) UNp (x,01) meN3(x,0)
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As in the proof of Lemma 2.3, using (K.2), we have
sip Y [Talhm)(x 2 / K (X,Xn)| (Jhn(y)| +C) dy+B. (3.2)
>0 meNs(x,0)

By (3.2) we see that

v({erC:sup Y |Ta(hm)(x)|>1+B}> (3.3)

>0 meN; (x,0r)

<v<{erC: i/Q |K(x,y)—K(x,xm)|(|hm(y)|+C)dy>1})
m=1“%m

S i/m/xm8rmC‘K(X’y)_K(X’Xm)‘v(x)dxﬂhm(YH+C) dy

<CY inf Me()(@) [ (Ihm(y)|+C) dy

m— 1zeB Xm,Fm

<CY it Mu(v)(2)[Bal

m—12€B(Xm,m)

where the third inequality follows from Lemma 3.1.
We now consider men; x,c)un, (x,a) Tee(Mm) (X), X € EC. If me Ny (x, ) UN2(x, &),
as in the proof of Lemma 2.3, we have

wp S Taltw]< X[ K~ Kool o
0>0meNy (x,0)UN3 (X, 00)
Thus, arguing as in the proof of (3.3), we see that

({XEEC sup Y | To(him) (X |>l}><C2 inf Mr/ V) (2)|Bm-
(x.a)

>0meNy (x,00)UN3 (X, m—12€B(Xm,rm)
(34)

By (3.1), (3.3) and (3.4), we have

v({x € E®: T.(h)(x) > 2+B}) <CZ B:nf )Mr,(v)(z)\Bm|.
m= 1ZE Xm,rm

This proves Lemma 3.3. [

The proof of Theorem 1.3 is as follows. Let f € L. By Lemma 2.1 we have
ITF )] < NW(F) () +NP(F)(x) +CsMs (T F)(x) +CsMF(x),  (3.5)

where N f is N,S”(f) with the measure u replaced by the Lebesgue measure, i=1,2.
From (K.4) it follows that
INO ()l < Ca|flc (3.6)
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Also, (K.2) implies that
IN® ()| < Co| o (3.7)

Let w € A; be as in Theorem 1.3. Using Lemma 2.5 and Lemma 2.2 with the
estimates
w({|Tf|>A}) <CA7Yf|low, VA >0,

which can be found in [18, I1l, Theorem 1.2], where || f[|1w = [/ f|[s , we have

w({Ms(TF)>A}) < C’H/Mgmw IT £(x)|Pw(x) dx
< CA 70| f[1§ W ({Ms(TF) > A1) 2,
which implies that
w({Ms(Tf)>2}) <CA 7Y f|1w, VA >O. (3.8)

Let fely and f =g+b, b=Ybn, and {Qn} be as in Lemma 2.4 with u
replaced by the Lebesgue measure and with p =1 and v =w. Then by (3.5), (3.6),
(3.7) and (3.8) we see that

w({T.(9) > C1+Co+2}) <w({CsMs(Tg) > 1}) +w({CsM(g) > 1})  (3.9)
<CllgllLw < Cl[fll1w-

Let By be a ball with the same center and diameter as Qn. Let By, = B(Xm,rm) and
E = Uy _1B(Xm,8rm). Then by applying Lemma 3.3 with b in place of h, we have

W({T(b) >Co}) < W(E)+W({x € E®: T.(b)(x) >Co})

<C Y inf My(W)(2)|Bm| <C| fllru, (3.10)
m_lzeBm

where the last inequality follows from part (7) of Lemma 2.4 with p =1 and the fact
that M, (w) < Cw a.e. Combining (3.9) and (3.10), we see that

W({T.(f) >Co+C1+Co+2}) <C| f||1w- (3.11)

From (3.11) and the sublinearity of T, , we can deduce that T, extends to a sublin-
ear operator of weak type (1,1) with respect to weight w. This completes the proof of
Theorem 1.3.

Proofs of Proposition 1.4 and Corollary 1.5 will be given in what follows. Let T
and w be as in Proposition 1.4. Let f € L7 (R"). We recall (3.5). Since the L\}V-L\}\;“
boundedness of T is assumed, we have (3.8). By the conditions (K.4) and (K.2) we
have (3.6) and (3.7), respectively. Therefore we see that for A > 0

W({T(f) > (CL+Co)| fleo +24})
< W({CgMa(T f) > A}) -‘rW({CgM(f) > ﬂ,})
<CA Y fllw.
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This implies that if A > 2(Cy +Cy)|| f||--,
w({T.(f) > A}) <4CA 7Y f|l1w.

This completes the proof of Proposition 1.4 for f € L5 (R"). The sublinear operator
T. can be uniquely extended to L, NL*=. The proof is by standard methods. We omit
the details.

Let Q and w be as in Corollary 1.5. Let K(x,y) = [x —y|"Q((x—y)’). Then
the condition (K.2) obviously holds and the L Dini condition of Q implies (K.4).
Further, the L\}V-L&;"" boundedness follows from [9, Corollary 1]. Thus we can apply
Proposition 1.4 to get the conclusion of Corollary 1.5.

4. Proof of Theorem 1.2

Let w € A, (see [11] for the Muckenhoupt weight class Ay ). Put
Q(x')

X

K(x,y) = k(x=y)(w(x) —w(y)),  k(x) =h(|x])

where h is a bounded function on [0,) and Q is a bounded function on S"~* such
that [s-1Q(68)do(0) = 0. Define du(y) = w(y)~tdy and

Tf(x) = ‘!iLTE)Tgf(x) = lim K, y)f(y)du(y), T.f(X) =sup|Te f(X)].

£—0 ‘Xfy‘>8 >0

We have the following result.

THEOREM 4.1. Let n> 2. Then the maximal operator T, is bounded on L?(R",du).

Proof. Let
Sef(0= [ kix-y)f(yay.
[x=yl>e

Then we see that
Te f(X) = —Se F(X) +W(X)Se (W1 )(x).

Let S. f(X) =sup,~q |Se f(x)|. Then it is known that S.. is bounded on L2(R",vdx) for
v e A, (see [7, Corollary 4.2]). Thus, since w,w~! € A,, we have

/|T* |2du<2/\8* (X)2w(x 1dx+2/\8 (w L) Pw(x) dx
<C/|f () [2w( ldx—c/|f (02 du(x).

This completes the proof. [

Itis known that x| € A; for 0< B <nand A; CA;.
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LEMMA 4.2. Let Kg(x,y) be as in (1.1). Then Kg satisfies the condition (K.3)
with the measure dug :

When Q satisfies a Lipschitz condition, a result similar to this is stated on [6, p.
76] without a proof.

Proof of Lemma 4.2. We first observe that
/ Kp () — Ky (x.Y0) | dp ()
[x=Yo|=2ly—Yol
< (x—y) — k(x—yo) de
Ix—Yo|=2ly—Yol

+
[x—=Yyol=>2|y—Yol

The first integral on the right hand side is estimated as in [ 24, Chap. 11, §4]. The second
integral on the right hand side is majorized by the sum of the following two integrals.

K(x —y)Iy[P —k(x—yo)lyolP| x| Pdx. (4.1)

I = [k(x—y) —k(x—yo)| ly[P[x| 7P dx,
[x—Yyol=>2]y—Yol

- (x—yo)l [1yol® = Iy1P | x| # ax.
[x=Yol>2ly=Yol

We estimate | and J separately. To estimate |, we note that
[k(z—u) —k(z)| < Co(c|ul/[z])|z] " +Cl|€|~(|u|/|z])|z| " < Ca(clul/[z])[z] " (4.2)

if |z| > 2|u|, where @(t) = w(t) +t (see [24, Chap. II, §4]). We split the region
of integration in | into three parts and decompose | into three pieces accordingly:
I =11+ 1+ 13, where

h= /X—yo|>2\y—yo| [k(x—y) —k(x—=yo)|Iy|? x| dx,

X|>2]yol

12 :/\X*YO|>2\yfyo| [k(x—y) —k(x=Yo)|ly[P x| P dx,
IxI<lyol/2

ls = ﬁxfyo»z\yfm [k(x —y) —k(x—yo)| ly[P || dx.
Yol /2<|x|<2yol
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Let |yo| > |y|/2. Then by (4.2) we have

b <ClyP [ @(ely—yol/ oD b —yol s/ P o
<ol [, @cly—yol /I "Pox
<cyPiol P [, alacly—yol/X)ix "dx

Yo

=cyPl? [ B(L/[x)) b " dx
>clYol/ly=Yol

Bi B cly— yol/lyo\
—ClylByol /0 d/t<C/a) )dt/t

for some constants ¢,C > 0. Similarly, I, is estimated as follows.

2 <ClyP [ lely Yo/~ yol) )~ yol "I ox
X|<IYol/2
<Clhfiyol " [ X Pax
X|<Iyol/2

<Clyllyol "yol"* < C.
Also, we see that

12 <CIYP [y @Y =Yol/ D= yol) bx—=yol x| P ax
Vol /2<|X|<2lyo|

<cPol [, alely—yol i)zl "dx

<CmerﬁA<MUmﬂ<6.

Next, we assume that |yo| < |y|/2 and estimate I, 1 < j < 3. To estimate 1; we

note that if |[x —yo| > 2|y —yo| and |yo| < |y|/2, then |x| > |y|/2. Using this and (4.2),
we have

IX|>2lyol

<cyl? [ aelyl/Ix) P dx
X|>[yl/2
<c [ alelyl/K)x " dx
xI=ly]/2
c
:c/ a(t)dt/t <C.
0

As above, if |x—yo| > 2|y — VYol and |yo| < |y|/2, then |x| > |y|/2. On the other
hand, in the region of integration of 1, we have |x| < |yo|/2. Thus |x| < |y|/4, which
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is incompatible with |x| > |y|/2. So, the region of integration of I, is empty and we
discard I».

Finally we estimate I3. We note that if |x —yo| > 2]y — Yo, [Yo| < |y|/2 and
IX] < 2|yol, then |y| < |x —Yo| < 3Jy|/2. Therefore, we see that

I3 <Cly)’ ﬁx—y0|>2\y—y0| @(cly —Yol/1x—Yol)x—yo| "|x| P dx
Yol /2< x/<2lyo|

<clyPlyol Py |
IVol/2<IX|<2]yol

=ClylPlyo| 1yl "lyo|" =Cly|P"lyo|" P < C.
This completes the estimates for 1.

We now estimate J. As in the case of I, we decompose J analogously: J =
J1 +Jo +J3, where

= [y =Yool = 11X P ax
[x|>2lyol

3= [y =Yool = 11X P ax
x|<lyol/2

Ja= [ yisaty-yol K= Y01 [I50? = Iy1P] bl P x.
[Yol/2<[x[<2]yol

We first assume that |yo| > |y|/2. Then
n<cliyolf —yP| [ x—yol "k Pax
Ix|>2lyol

<cliyol | [ I Pax

X[>2]yol

<Cllyol® + Iyl lyol P <C.

Jo is estimated as follows.

R<Clyolf —yP| [ ix—yol " Pax

IX|<[yol/2

<Cliyol ~ylP|lvol " [ piPox
IX|<I¥ol/2

<C(lyol® +1y1P)lyol "lyol" P < C.
To estimate Js, first we assume that |yo| > 2|y|. Then
38 <C|ol® = 1P| [y 1X Yol "I
Vol /2<[X|<2lyo|

<C|iol? ~?| ol * | X—yol "dx<C.

Yol <[x—Yo|<3|yo|



SOME WEAK TYPE ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS 243

Next, assume that |y|/2 < |yo| < 2]y|. Then, using the inequality

l\yo\ﬁ — Iylﬁ\ <Clyo—yllyolP 2,

which follows by the mean value theorem, we see that

35 <Clyo _y||y0|ﬁ_1/x7yo|>2\yfyo\ [x—yol x| P dx
Yol /2<Ix/<2ol
<Clyolf Mol P [ pe—yol "
[x—Yo|<3lyol

< ClyolPyo| P lyo| <C.

Next, assuming |yo| < |y|/2, J1, J» and Jz are estimated as follows.

J1 <C ’ ‘YO‘ﬁ - Mﬂ ‘ /X—Y()Dz\y—)’o\ ‘X_YO|7n|X|7L3 dx
IX|>2yo|

<Cliyolf ~yP| [ =yl " Pax
IX=Yo[>1y|

<Clyol” +1yP)yI P <c.

As in the case of 15, the region of integration of J, is empty. So, J, is excluded.
Finally, we estimate J3 as follows.

B <C|Yol® ~ V2] [,y 1X—Yol K1 i
IYol/2<[x[<2]yol

<C|ivol” = y1?[ly ~yol "ol # | dx
Yol /2<[x|<2]yol

< ClyPly| "ol P lyo|™ = Cly[P"lyo|" P <C.
This completes the estimates for J.

Combining the estimates for | and J, we have desired bounds for the second
integral in (4.1), which finishes the proof of Lemma 4.2. [

LEMMA 4.3. Let Kg be asin Lemma 4.2. Then Kj satisfies the condition (K.2)
with the measure dug .

Proof. Let
o= [ Jk(x=y)(1X1® = Iy/#)| Iy * oy
o<|x—y|<20

K(y) (/P = x— /)| pe—y| P .

o<|y|<2a
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We write o = lg 1+ g2+ 1o 3, Where

Ky (x1? = x=y1#)| lx—y| Py,

lo1 = o<|y|<2o
lyl<Ix|/2

la2 = iz <O = pe=y1)Ix—y P ay,
IyI>2[x|

laa= [ aoyeza [KOOXP = x=y1P)| x =yl Pay.
x| /2<]y|<2|x]

By straightforward computations, we have

lea <C ly|~"dy <C;

a<ly|<2o

lo2 < focyicaa W11y P+ 1)y
Iy|>2x|

<C ly|"dy + ‘\><Iﬁ\>/|*"*‘3 dy <C;

a<ly|<2o ly|>2|x

13 <C [ 4 oyia W (K=Y P+ )dy
x| /2<y[<2[x|

<c Yy +CxP [ xeylPay

a<|y|<2ea [x=y|<3[x]

<C+CxFMx"F <c.
This completes the proof. [

LEMMA 4.4. Let Kg(x,y) be as in Lemma 4.2. Then K satisfies the condition
(K.4) with the measure dpg .

Proof. Let L(x,y) = Kg(y,X). Then Kz satisfies the (K.4) condition if and only
if L satisfies the (K.3) condition. We note that

L(xy) =k(x=y)(x” —y/P),

where k(x) = —k(—x). Since k has properties similar to those of k which are required
inLemma 4.2, L satisfies (K.3) by Lemma 4.2 and hence Kg satisfies (K.4). [

Now we can give the proof of Theorem 1.2. T is bounded on L2(R",dpuj)
by Theorem 4.1. By Lemmas 4.2, 4.3 and 4.4, we see that Kg satisfies (K.3), (K2)
and (K.4), respectively. Thus by Theorem 1.1 we have the conclusion of Theorem 1.2

except for the LZ(R”,duﬁ) boundedness of T*(ﬁ) , Which is in Theorem 4.1.
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5. Appendix

Let K(x,y) be locally integrable in R" x R™\ A with the Lebesgue measure. In this
section we show that the D, condition for K is equivalent to the (D) condition for K
on [18, p. 30]. Also, proofs of Lemmas 2.2, 2.5 and 3.2 will be provided. Furthermore,
we see two results stated above relative to the regular Borel measure u as in Section 1;
one is approximation by functions of C7* for functions in LP(du), 1 < p < o, and the
other is Calderon-Zygmund decomposition for L*(du).

5.1. Equivalence of the conditions D, and (Dy)

For a positive integer k and 1 <r < oo, let

1/r
o= sup (I ™ [ ISa (K () - Kixa)l o)
kY>

y,Z€RN

where Si(y,z) = A(z; 2K|y — 2|, 2|y — z|). When r = e, ¢y is defined by usual modi-
fications. We recall that K satisfies the (D) condition if

2 Ck < oo,
k=1

We also write oy (27%) = c.
We see that o;(2%) and w,(27¥) are related as follows.

PROPOSITION 5.1. Let k € Z. There exists a positive constant ¢ such that
o (275 <cor (2% fork>1; (5.1)
o279 <c(of (27 Y + 0 (27%72)) fork>0. (5.2)

Proof. Fory,z € R" with y #z, let R=2|y —z|. Then (y,z) € A(R/4,R/2) and

S2)| " 1182l (Kxy) — K (x2)]" dx
Sk(y:2)
;
—c@ )" [ (2IR)" (K (x,y) — K (x,2))| dx
A(z;2k-1R,22k-1R)
< er(z—k+1)7
which proves (5.1).
Conversely, let R > 0 and (y,z) € A(R/4,R/2). Then R/4 < |y—1z| < R/2. Thus
A(z;2R,2"IR) C A(z; 24y — 2,23y — z).
Using this, we can easily see that (5.2) holds. [

By Proposition 5.1 we have

cY o2 )<Yoy ) <cY (279
k=0 k=1 k=0

for positive constants ¢,C, which implies the equivalence between the D, and (Dy)
conditions.
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5.2. Proof of Lemma 3.2
We observe that
A(z;s IR, 2s71R) c A(z; (2t) 'Rt IR)UA(z;t IR, 2t T1R)
for R > 0 under the assumption of the lemma, where A denotes the closure of A in R".

Using this in the integral of @, -1x(s) in the definition (s) = supg-o @ s-1r(S), We
get the conclusion of Lemma 3.2.

5.3. Proof of Lemma 2.2
We use the formula:
/ Fx)%dv(x) = /wv{x EEF(X)>A}8A%1dA.
See Rudin [19, ThEeorem 8.16 on p. (172] The proof is straightforward as follows.
/F ) dv(x / min(v 1A)5,15 L2

A/v(E
—/ E)6251da + ASAS2dA
A/v(E)

— V(E)A/VE) + AL (AV(E) !
1

_ S 1-6
- 1—6A V(E) )

which completes the proof.
5.4. Proof of Lemma 2.5

Let Oy (f) ={xeR": M (f)(x) >A}. Ifxeol(f) there exists a ball B such
that xe B and fg|f|du(y) >A. Thenfor ze B, My (f)(z) > fg|f|du(y) > A. There-
fore, B C O, (f) and hence

F 1110, du) = £ f]du) > 2,
which implies x € O (f xo, (1)) . It follows that O, (f) C O, (f xo, (1)) Using this and

the assumption for w, we have
= [ wodeo < [ weodue

{xeRMMu (F)(x)>A} 0,(f) 05 (fxo, (1))

- / w(x)du(x)

{xeRMMy (fxo, (1)) (¥)>2A}
<C [ 110010, (1 W0 du ()

=cat () W(x)dpa (),
{XeRMM (f)(x)>A}
which completes the proof.
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5.5. Approximation by C5 in LP(du), 1< p<eo

Let u be the regular Borel measure as in Section 1. Then, the set Cz’(R") is dense
in LP(R",du) for 1 < p <. This can be shown as follows. Let f € LP(R",du).
Given £ > 0 we can find a function g which is continuous and compactly supported
such that ||f —g|lp < &/2 (see [10, pp. 210- 211]) Let g(®) = g« g5, 0 <d<1,
where ¢ € C5(R"), fRn ( ydx =1 and ¢5(x) =06 "9(0~ 1x) Then g € C3(R")
and we easily see that g(®) — g uniformly on R" as § — 0 and supp(g )) CE for
some compact set E independent of §. This implies that ||g—g(®)||, < &/2 for some
6. Thus

I —g®lp < IIf —gllp+1lg—g'®|p <&,
which implies what we clalmed.

5.6. Calder 6n-Zygmund decomposition for L*(du)

Let f € LY(R",du) and A > 0, where u is as in Section 1. As in the case where
u is the Lebesgue measure, using the doubling condition of u, by the stopping time
arguments, we can find a family {Qm}s_; of disjoint right open dyadic cubes such that

A< u(C)_mrl/(5 [F()|du(x) <CA,

where a right open interval has a form [a;,by) x ... X [an,bn). Let U = UQm. Then
|f| <A (u-a.e.) on U, which can be shown by applying the weak type (1,1) bound-
edness of M, and the fact that the set of continuous functions with compact support is
dense in LY(R",du) (see [10, pp. 210-211]). Define

g(x) = f(x)xue(x +Z _Ifdu ) x5, (%),
(100 [ 194)

=3 b, balx) = (g, (0~ (1@n) ™ [ 1110 2,00

Let Qm be the closure of Qy in R". Then supp(bm) C Qm, [bmdu =0, ||bm1 <
CAu(Qm), f=9g+b and {Qn} is a family of non-overlapping cubes. Also, for a
weight function v, we have

190ty < CHFllLemy ) ap)s (5.3)
Z/ x) <CA™ l||fH|_1 (M (v)dpr)- (5.4)

Proof of (5.3). Since v < My (v) (u-a.e.), we have

/|f () [zue OV(X) dt () </|f(x)|Mu(v)(x)du(x).

Also, since 11 (Qm)~ 1f~ vdu < CMg(v)(z) for z € Qm, which can be shown by the
doubling condition for u we have

z(u@m) /@m'f'd“)/m W00 du() <Y, inf My()@) [ [1]d

m m 2€Qm

S CZ/(S My (v)du <C/\f\M“(v)du
m m
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Combining results, we get (5.3). O

Proof of (5.4). Since

1< A 1 (Qn) /Q Ildu,

using the doubling condition for p as in the proof of (5.3), we see that

> [ vau<TA @t [ [fldu [ van
m “/Qm m Qm Qm
<ZCAT jnf Mu(v)(2) | 1l
<¥eat [ fMuv)du
m Qm

<CAH Il o, vy

This completes the proof of (5.4). O
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