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WEIGHTED INEQUALITIES FOR MULTILINEAR OPERATORS
ACTING BETWEEN GENERALIZED ZYGMUND SPACES
ASSUMING MUSIELAK-ORLICZ BUMPS CONDITIONS

LUCIANA MELCHIORI

(Communicated by J. Soria)

Abstract. We study continuity properties for multilinear operators between generalized Zyg-
mund spaces of LlogL type, in the variable exponent setting with different weights. In order to
attack this goal we consider generalized bump conditions on the weights involved.

We shall be dealing with two different classes of operators. The former deals with op-
erators dominated by multilinear sparse forms and the latter are potential operators and their
commutators. These classes includes the multilinear Calderén-Zygmund operators, the bilinear
Hilbert transform, the multilinear fractional integral operator and the multilinear Bessel poten-
tial, among others. The symbols of the commutators belong to some generalized spaces that
include bounded mean oscillation spaces and the classical Lipschitz spaces.

1. Introduction

The main purpose of this paper is to give sufficient conditions on a family of
weights that guarantee weighted norm inequalities for multilinear versions of operators
from harmonic analysis between generalized Zygmund spaces of LlogL type. In order
to obtain this objective we consider certain conditions on the multilinear weights which
are perturbations of the of the well known classes given in the literature [ 28, 3, 22].

We shall be dealing with two different classes of operator. The former deals
with operators dominated by multilinear sparse forms. This includes the multilinear
Calderon-Zygmund operators (CZO’s) and the bilinear Hilbert transform, among oth-
ers. The second class is the family of potential operators and their commutators. Exam-
ples of operators of this type are provided by the multilinear fractional integral operator
and the multilinear Bessel potential. The symbols of the commutators belong to a gen-
eralized Lipschitz spaces that include bounded mean oscillation spaces (BMO) and the
classical Lipschitz spaces.

In [34], Sawyer and Wheeden obtained power bump type conditions on a pair of
weights in order to prove boundedness results for the fractional integral operator | o,
between Lebesgue spaces with different weights. These type of conditions appear as
suitable analogues for the Muckenhoupt conditions that characterize the boundedness of
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I, for the case of one weight (see [29]). Motivated by the results above, in [31], Pérez
considered weaker norms than those involved in the conditions in [ 34], and obtained
two-weighted boundedness estimates for potential type operators. Later in [ 23], two
weighted norm inequalities in the spirit of those in [31] were proved for the higher
order commutators associated to potential operators with BMO symbols. Recently
these results were extended to the context of spaces with variable exponents in [ 25] and
[26].

On the other hand, in [10] the author studied a similar problem for CZO’s and their
commutators with BMO symbols. In that paper, Cruz Uribe and Pérez conjectured
that weaker conditions involving Young functions, are sufficient to obtain the desired
results. This conjecture have been studied extensively, for a complete history we refer
the reader to [9, 8, 7, 19] and [11] for the references that they contain. The problem
considered in [10] was approached in the general setting of variable exponents in [ 27].

Motivated by the work in [21], K. Moen ([28]) considered the multilinear frac-
tional integral operator and proved two weighted L P — LY estimates, generalizing to the
multilinear context some results given in [31]. Later, Bernardis, Gorosito and Pradolini
([3]) extend the result to multilinear potential operators and their commutators with
BMO symbols.

One of our main results generalizes the main theorem in [ 3] not only by consider-
ing power bump type conditions involving Musielak-Orlicz spaces but also by dealing
with variable Lebesgue spaces. Moreover, the classes of the symbols in our results is
wider than the corresponding considered in [3].

Related with the results involving operators controled by sparse forms, our re-
sults consider power bump type conditions involving Musielak-Orlicz spaces and ex-
tend those from [10] to the multilinear context and the general setting of the generalized
Zygmund spaces of LlogL type.

As far as we know the main results of this work are new even in the classical
setting.

The paper is organized as follows. In Section 2 we introduce basic definitions and
known results to state and prof our main results. In Section 3 we present the classes of
multilinear operators wich are our focus of study and our main results associated to it.
Finally, in Section 4 and 5 we prove our main results.

2. Preliminaries

2.1. Musielak-Orlicz spaces

With % we denote the set of all Lebesgue real valued, measurable functions on
R".

A convex function v : [0,00) — [0,e0) with y(0) =0, lim{_q+ w(t) =0 and
limi_o W(t) = oo is called a @-function.

A real function W : R" x [0,e0) — [0,00) is said to be a generalized ®-function
(G@-function), and we denote ¥ € ®(R"), if ¥(x,t) is Lebesgue-measurable in x for
every t >0 and W(X,-) is a ®@-function for every x € R".
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If ¥ € ®(R"), then the set

L¥(R") = { /‘Px|f dx<oo}

defines a Banach function space equipped with the Luxemburg norm given by

1. |nf{/l>0/ ( )dx<1}

The space LY(R") is called a Musielak-Orlicz (MO) space (or generalized Orlicz
space). The MO spaces provide the framework for a variety of different function
spaces, including classical (weighted) Lebesgue and Orlicz spaces, generalized Zyg-
mund spaces of LlogL type and variable exponent Lebesgue spaces. We refer the
reader to [17, 13, 6] for a detailed description of these spaces or some particular cases
of these and their properties. Below we shall describe some definitions and results in
these spaces relevant for the present work.

Let ¥ € ®(R"), then for any x € R" we denote by W*(x,-) the conjugate function
of W(x,-) which is defined by

W (x,u) =sup (tu—W¥(xt)), ux=0.
t>0

Also we can define W1, the generalized inverse function of ¥ by
Ylxt) =influ>0:¥(xu) >t}, xeR"t>0.

The following result is a generalization of the classical Holder inequality to the
MO spaces.

LEMMA 1. Let ¥ € ®(R"), then
[, 100809 S 1 F . e @

forall f e LY(R") andge LY (R").

For W € GD(R") wich satisfies that every simple function belongs to L*" (R"),
we have the following norm conjugate formula,

Ml sop [ 11000001 @

9l ...

for every function f € L¥(R") (see [[14], Corollary 2.7.5]).
For ¥ € ®(R") and r > 0, a rescaling of W is given by

r¥(x,t) =¥(xt"). 3
It follows directly from the definition of the Luxemburg norm that,

ey =1 .- “)
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2.1.1. Generalized Zygmund space of LlogL type
We say that p(-) € Z(R") if p(-) : R" — [1,e0) is measurable function. We denote
p~ = inf p(x) and p™ = sup p(x).
XeRM

XeRN
Let p'(-) the conjugate exponent of p(-) given by p’(-)=p(-)/(p(-)—1). Itis not hard to
prove that (p')~ = (p*) and (p')* = (p7)'.
For p(-) € 2(R") and q(-):R" — R such that q* < e, we define the function

Pp.q0) (%,1) = 1P (log(e+t)) 4 ©

for t > 0 and x € R", with the convention -0 = 0. To guarantee the convexity
property of ¢y, o) We suppose that the two exponents satisfies the inequality

2(p(x) —1) +q(x) =0,

forall xe R". Then @p o) € P(R").

The generalized Zygmund space of LlogL type, is the MO space associated to
Pp).q)» LPO90 (RM). We shall denote this space LPU (logL)40) (R").

When q(-) =0, LPO (logL)40) (R") = LPO(RM) is the well known variable Lebesgue
space. We denote |\f|||_p ) (logL)0 = = |[fllp, (see [6] and [14] for more information).

By [Lp (logL)%0]j0c (R") we denote the space of the functions f such that f €
LPO (logL)a0) (K) for every compact set K R,

A locally integrable function w defined in R" which is positive almost every-
where is called a weight. For a glven Welght w, we define the weighted generalized
Zygmund space of LlogL type [LP")(log L) Nw (R”) as the set of the measurable func-
tions f defined on R" such that fw € LPY(logL)3")(R™). When q(-) = 0, we denote
[LPO (logL)30)](R") = LEY (RM).

A stardar prove show that if p(-) € Z2(R"), q(-) : R" — [0,) with p*,q" < o
and w e [LPO) (Iog L)a hoc(R”) , then the set of bounded functions with compact support
is dense in [LPY) (logL)30) ], (R™).

Simple calculus shows that 7, . (x,t) ~ tP ¥ (log(e+t))~9X/(PK-1) Then,
from (2) we can deduce the following result.

LEMMA 2. Let p(-) € Z(R") with p~ > 1, q: R" — [0,) with q© < cc and w
a weight, then

If H[LP(')(IogL)Q(-)]W = Slép /]R“ [F()g(x)|dx, (6)

holds for every measurable function f, where the supremun is taken over all functions
g suchthat ||gw~ HLP' ) logL)-a0/p0-1) < L.

The following classes of exponents appear in connection with the boundedness
properties of different operators from harmonic analysis on the spaces defined above.
We say that p(-)€ 2'9(R") if p(-)e 2(R") and satisfy the following inequalities

1 1 C

'p(x) - IO(Y)‘ S logle+ 1/x—y) Y€ R"
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and
C

1 1
— o< ——= __ XeR" 7
ol < e g
for some positive constants C and p... It is easy to see that the inequality (7) implies

that limy_...1/p(X) = 1/p.
Let g(-):R" — R, we say that q(-) € 2'%1%9(R"), if is bounded, i.e. it satisfies

—oo< g~ <t <o, and there exists a positive constant C such that

C
e+log(e+1/|x—yl))’

[a(x) —a(y)| < o vx,yeR".

In [24], the authors proved that p(-) € 22'9(R") with 1 < p~ < p* < e and
q(-) € 2'%9%9(R") are sufficient conditions in order that the Hardy-Littlewood maximal
operator M is continuous in LP®) (logL)30)(RM).

2.1.2. Variable L ebesgue spaces

When we deal with variable Lebesgue spaces, we have the following known results
that we shall be using throughout this paper.

LEMMA 3. ([14], Lemma 3.2.20) Let s(-), p(-),q(-) € Z(R") besuchthat 1/s(-) =
1/p()+1/q(-). Then
19l < 11l 9l - 8)

Particularly, if s(-) = 1, the inequality above gives
1009016y < 1l Il ©
which is an extension of the classical Holder inequality.

LEMMA 4. ([14], Lemma 3.2.6) Let p(-) € Z(R") and s be a constant such that
s>1/p. Then [|[f¥l| ) = I fllgy, -

LEMMA 5. ([14], see Corollary 4.5.9) Let p(-) € 22'%9(R"). Then I2all ) I2ally ()
~|Q)|, for every cubes Q C R".

Moreover, we have the following result.

COROLLARY 1. Let p(-),d(-) € 2'%9(R") such that p(-) < d(-). Suppose that
1/p(:)=1/B(:)+1/d(-) then, for every cube Q C R",

H?CQHp(.) = HXQ”[;(.) ||XQHd(.) .
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LEMMA 6. ([26], Lemma 3.7) Let k be a positive integer and p(-) € 22'%9(R")
suchthat 1<p < pT<e.LetacT. and be %,. Thenfor every Q € 2,

%0 —bg)[|
Ixall p()

S aQ¥Ib], -
LEMMA 7. ([26], Lemma 3.8) Let a € T.. and b € %, then the following in-
equality
Ibsq — bl S a(3Q) [[bl| «,
holdsfor every Q€ 2.

LEMMA 8. ([26], Lemma 3.9) Let d(-) € 2'%9(R") with d.. < d(-) < d" <
and 6(-) bedefinedasin (29) and be L(5(-)). Let Q beacubein R" and z € kQ for
some positive integer k. Then

16(2) — bal < I1xallys, -
The following lemma can be deduced from [[ 14], Corollary 7.3.21].

LEMMA 9. ([14]) Let p(-) € 2'9(R") and ¥ c 2 adigoint family. Then

1 xqlly
Y ot 2| Y fxo

Qe¥ ||XQH p Qc9

p() p()

for every f € LPY(R").

[o[o}

The following lemma gives a doubling property for the functional define by £(Q) :=
Ixall o with p() € Z1%9(R").

LEMMA 10. ([33], Equation (2.11)) If p(-) € 22'%9(R") with pt < o, thenthere
exists a positive constant Cp, such that the inequality

||752Q||p(.) <Cpllxall p() (10)
holds for every cube Q C R".
Let y > 0, by iteration of inequality (10) it is not difficult to prove that
26l oy S el (12)

holds for every cube Q C R", with an appropriate constant depending on y and C,.
Let p(),q(-) € 22'%9(R") such that p(-) < q(-), then

12t o) - 2@t
12alloe ™ lxallg

Indeed, let B(-) be defined by 1/B(-) =1/p(-) —1/q(-). Then B()) € Z2'%9(R") and,
by Holder’s inequality (8) and Corollary 1 we obtain (12).

f € Lijgo(R"). (12)
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2.1.3. Maximal operators

A corresponding maximal operator associated to ¥ € ®(R") is

1xQflly(..
My(... F(X) = sup -] (13)
Qox HXQH\}I(.’.)
and, the fractional type version of this maximal operator is given by
%0 fllw(..
Mg ().w(.) FOO =supllxallg) To— (14)
POKCIT T 05 0 Tiallry

where () € Z(R").
For the case of a rescaling of W, taking into account (4), the maximal operator

satisfies y
2 f e\ "
Mry(..) F(X) = sup Ll {QV] . (15)
Qax HXQ||\{1(.7_)

If W(xt) =t5%), then My = My, was introduced in [14] and Mg, w = Mg, s
was defined in [25].

Notice that, when s(-) =1 and B(-) =n/o, Mg; =M and Mg, ) = Mg Where
M and M,, are the Hardy-Littlewood maximal function and its fractional version, re-
spectively.

The next boundedness result for Mg, 5, was proved in [25] in generalized Zyg-
mund space of LlogL type.

THEOREM 1. Let p(-),r(-) € 2'9(R") suchthat p(-) <r(-) <rt <eand q(-) €
2'%91%9(RM) & non-negative function. Suppose that B(-) is the exponent define by
1/B()=1/p() —1/r() and s(-) € 2'9(R") satisfies (p/s)” > 1. Then

Mg () s - LPY (log L)% (RM) < L"O (log L) 30 (R™).

REMARK 1. Forthe case s(-) = S, where Sis a constant, if p(-) € 22'%9(R") with
1<S<p <p'<eandq() e 2'9%9RM), from the result of [24] it can be deduced
that Ms: LPO) (logL)d9®) (R") < LPO) (logL)d®) (R™).

2.2. Sparsefamily

We now introduce the dyadic structures we will working with. These definitions
and a substantial treatise on dyadic calculus can be found in [ 20].

We say that a collection of cubes 2 in R" is a dyadic grid if it satisfies the fol-
lowing properties:

1. If Q€ 2, then £(Q) = 2K for some k € Z.
2. IFP.Qe 2, then PNQ € {P.Q.0}.
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3. Forevery k € Z, the cubes 7 = {Q € 2 : £(Q) = 2K} form a partition of R".

We shall use the following proposition that contain the so called 2" dyadic lattices
trick. The origin of this result is obscure. A very careful history of this result is given
by Cruz-Uribe in [5] (see the footnote following Theorem 3.4) where the credit is given
to Okikiolu [30]. We state the result from [[18], Proof of Theorem 1.10].

PROPOSITION 1. There are 2" dyadic grids %, such that for any cube Q C R"
there exists a cube Q; € % satisfying Q C Q; and £(Q;) < 64(Q).

Given a dyadic grid 2, aset . C Z is sparse if there exist n € (0,1) such that
(S1) Forevery Q € .7 there exist E(Q) C Q such that n|Q| < |E(Q)|.

(S2) The sets E(Q) are pairwise disjoint.

The classic example of a dyadic grid is the standard dyadic grid on R" and an
example of a sparce family can obtain by a careful construction of Calderén-Zygmund
cubes associated with an L% . function at an infinite number of levels (for details see
[32, 5]).

3. Statement of the main results

3.1. Operatorsdominated by multilinear sparseforms

In this subsection we present a class of operators related to a class of multilinear
sparse forms, and state the main results associated with these operators.

Given a dyadic grid 2, asparse family ¥ C 2,and F = (r1,...,Imy1) With rj >
1, forevery 1 <i<m-+1, let us consider the multilinear sparse form A o introduced
in [22] as

1 Yrmia m 7 q _ 1/ri
Agp(h fr,... . fm) = — [ h(x)'mtd — [ fix)"id ,
o0 f1s-- T Qezy'Q'(|Q|/Q(X) ’ iHl(|Q|/Q 09

(for the definition of dyadic grid and sparse family see Subsection 2.2).

Our goal is to give weighted boundedness results for operators which are con-
trolled by multilinear sparse forms A » . We denote T € D(Ay) if T is an operator
such that for every h, f1,..., f,y non-negative bounded functions with compact support
on R",

/]R" hT((f1,..., fm))|dXx < S,uypA,%r(h7 f1,..., fm), (16)

where the sup is taken over all sparse families and < means that there exists a positive
constant C such that (16) holds with < replaced by < C.

We now present some operators satisfying the assumption (16). The first example
is the multilinear Calderon-Zygmund operator. Let T be an m-linear operator satisfy-
ing

T(f1,...,fm)(X) = anK(x,yl,...,ym)fl(yl)... f(Ym) dy1 ... dym
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whenever fy,.... fm € 4°(R") and x ¢ UL suppfj. We say that T is a multilinear
Calderon-Zygmund operator if it can be extended as a bounded operator from L Pt x
... x LPm to LP for some 1 < pg,...,pm < with 1/p1+...+1/pm=1/p. The
kernel K satisfies two conditions: the size estimate and the smoothness condition. The

size estimate is 1

m nm-
-0 ¥ —YJD

The smoothness condition assume

|K(y07~~~»Yj7~~~»Ym)—K(y07~~~»)/j7~~~»Ym)|

_ Vi —Yjl| 1
S0 Z'm' ‘ . ‘ m nm
=0 lYi—Yi <2i,j=o\Yi —VJD

forall 0 < j < m, whenever |y; —3/J-\ < %maX()gkgm‘yj —Yk|, where @ is a modulus
of continuity, i.e. a positive nondecreasing continuous and doubling function.

If T is a multilinear Calderobn-Zygmund operator, independently and simultane-
ously, in [4] and [20], the authors proved the following pointwise sparse bound that
is stronger and imply form bounds like (16). Let 2 a dyadic grid, . C & a sparse
family and

m
Ty(fla"' ) fm)(X) = Z XQ(X)H|fi|Q'
Qe i=1
Then there exists 3" dyadic grids &; and associated sparse families . C % such the

inequality
3n
\T(f17...,fm)|,SZTyi(fl,...,fm) (17)

i=1
holds for every fi,...,fm € €°(R"). Hence (17) shows that (16) holds with T =
(1,...,1).

The second example is a class of rough bilinear singular integrals studied by A.
Barron [1]. Suppose Q € L9(S"-1) for some q > 1 with [gn1Qdo = 0, the rough
bilinear operator is define by

Q - )
Taf 0)09 =p [ [ fi0xyn) folxyy AV g,
RN JRM (Y1, ¥2)]
In [1] the author prove that (16) holds for ¥ = (r,r,r) with any 1<r<eo.
The last and the most prominent example is the bilinear Hilbert transform defined

as
BH(f,g)(x):p.v./ﬂ{f(x—t)g(x—&-t)?.

In [[12], Theorem 2] (see also [2]), this operator and some other bilinear multipliers
have been shown to satisfy (16) with T = (ry,rp,r3) satisfying 1 <ry,r,rs < eo and
! + ! + ! <2
min{r;,2} = min{r,2} = min{rs,2}
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The next theorem gives a continuity property for T € D(Ar) acting between gen-
eralized Zygmund space of LIog L type with different weights. For notational conve-
nience, we write LP®)(logL)30) (R") = LPi®)(logL)d"), and by 2 we denote the set of
cubes in R" with sides parallel to the coordinate axes.

To state the result we give the following definition. We say that a pair of G®-
functions (Y',¥) satisfy condition «#¥", and we denote (Y,W) € &7, if it satisfies

/ ||fXQ||r ||9XQH\}/(.7.)
[Ql

< . (18)
lxalhv.y Txalls..

We shall give later some examples of G ®-functions satisfying condition .77,

THEOREM 2. Let F=ry,...,Imi1 > 1 and T € D(Ay). Let q(-) € 22'%9%9(R")
be a non-negativefunctionand p1(-),. .., pm(-) € Z2'%9(R") with p; >1 and 1/p(-) =
YM.1/pi(-) suchthat

n<p <p<eforl<i<m and 1<p <p'<rp.
Let (Yi,W), 1 <i< m+1 pairs of G®-functions satisfying condition </,
Mriw, (. - :LPO(logL)d0 — LPO (logL)9") for 1 < i< m (19)

and
LPO (logL) =90/ (PO-1) s | PO (Jog L) =90/ (PO-D), (20)

SUDDOSG that (V17~~~,Vm,W) is any m+ 1-tuple of weights such that v; belongs to
[LPO(logL)®]j6¢, 1 <i < m, and that satisfies

M

"m1¥mia () :

1/rm — 1/r|
g ST fy b -
o ra— I b <o,
€2 xolly, hiy =L lxally

Then

T: [Lpl (logL)d¢ ] [me (log L) ] %[Lp<'>(|og|_)q@]w.

V1 Vm

We can also obtain continuity properties for T € D(Af) acting between variable
Lebesgue spaces associated to different exponents.

THEOREM 3. Let F=rq,...,my1 > 1 and T € D(Ar). Let pi(-),..., pm(-) and
d(-) exponentsin @'OQ(R”),thh p, >1and1/p()=3";1/pi(-) suchthat

n<p <p<e and 1<p <p()<d()<d <rp,
Let (Yi,W), 1 <i<m+1, pairsof G®-functions satisfying condition <77,

Mg,y LPO < LPO for 1 <i <m (22)
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and
M50t ¥ L0 o LPO (23)
where () isdefinedby 1/8(-) =1/p(-) —1/d(:). Supposethat (vi,...,Vm,W) isany

m+ 1-tuple of weights such that v; belongsto L,F(’)'c()( RM), 1 <i< m,andthat satisfies

1 — 1/I‘,
sup Itallgg) Qw2 lm[HXQV e ) <o (24)
oe2 ||xQ||p. lzallme, i ||xQH1/“

Tma(
Then
T: L\F,’ll(') . .ox Lm0 1 40,
Let us now give some examples of G ®@-functions that satisfy the hypothesis of the
theorems above. In order to check the examples see the details in [ 26].

EXAMPLE 1. Let p(-) € 22'%9(R") and R,r > 1 two constants such that r < p~ <
pt < e and
n+
S o1
[(p/T)]

If s(-) = R(p(-)/r), Y(x,t) =t3® and ¥(x,t) =t5® then (Y,¥) € /¥ . Also, note
that Myy(..) = M;g(y. Then by Theorem 1, for some non-negative function q(-) €
gzloglog(Rn),

M., - LPO (logL)4% (R") < LPO) (log L )90 (R™).

EXAMPLE 2. Let p(-) € 2'%(R") with 1 < p~ < pt < and
(p)"
(p)~

If we define Y1 (x,t) =t°P® (log(e+1))°P® and ¥ (x,t) = t(°P)X¥ then (Y1, ¥1) €
/Y . Also,

o >

My, () : LPO(R") — LPO(R).

EXAMPLE 3. Let d(-) € 22'%9(R") with 1 < d~ < d* < = and

d+
n> a
If Yo (x,t) =190 (log(e+41))19™) and W, (x,t) =t(9' X then (Y, ¥,) € «7# . More-
over, if p(-) € 2'99(R") satisfies d'(-) < p/(-) < (p) <o and () is the exponent
defineby 1/B8(-)=1/d'() —1/p/(-), then

Mﬁ(.)7\p2(.7.) : Ld/(') (Rn) — Lp/(') (Rn).
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EXAMPLE 4. Let p(-), n and ¥, as in the above example. Let u(-) € 22'%9(R")
with 1 < u~ < put < oo such that

11

OO

for some constant & € (0,1) and v()) € Z2'9%(R"). If we define

Yo (x,t) = t“(x)(log(e+t))v(x)ﬂ(x)’
then (Y2,¥;) € &7 .

3.2. Multilinear potential operatorsand their commutators

We now consider the multilinear potential operator defined in [3] as

m
Pr(fy, .m0 = [ TO=Ya,.ox=ym) [Tfi(h) dys....dym,
i=1

where T is a non-negative function defined on R"™. We also deal with the commutator
associated to this operator, given by

(- ﬁprb, fu,. . ) (%), (25)

where
Prp, (e, fm)(X) = bj(X)Pr (f1, ... fm)(X) — P (f1,...,bjfj, ..., Tm)(X).

In this subsection we present two weighted strong type inequalities for the operators
above. As in [3] we assume that the function T" satisfies a growth condition. More pre-
cisely, we say that a non-negative locally integrable function T" defined in R "™ satisfies
a J-condition (or that T € fR) if there exist two positive constants € and & such that
the inequality

C
sup T(Wy...Wnp) < W/@z I(y1...Ym)dys...dym

Wl"'WmE’Q/(Zk#l,O) “2kse)

holds for every k € Z, where

m
JZ{(t,ﬁ,s) = {yla'“)ym . 6(1_8)t < 2 |y|| < 6(1+8)2t}7 t>0. (26)
i=1

Although the basic example of operators of this type is provided by the multilinear
fractional integral operator defined by the kernel

C(Wi,...,Wn) = (ilml) ;

=
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for 0 < oo < nm, another important example is the multilinear Bessel potential. For
o > 0 the kernel of this operator is given by

o =M kD% o dt
ra(xl,,Xm) :C(X’n’m/ eﬁtei I }“ I tazan,
0

where Cynm= W and y(-) is the gamma function. As in [3], T, satisfies

the 93 -condition.

We now define the functional related with the space where the symbol b belongs.
We consider a functional a: 2 — [0,-). We say that a satisfies the T.. condition, and
we denote by a € T.., if there exists a finite positive constant t.. such that for every
Q,Q € 2 suchthat Q' C Q,

a(Q) <t.a(Q). @7)

We denote the least constant t.. in (27) by ||a||w.. Clearly, ||a||.. >

Let 0 < p < and a€ T... We say that a function b € L} (R") belongs to the
generalized Lipschitz space .#% if

1 1/p
W x@ (g fypbare) <=

where the supremum is taken over all cubes Q C R" and bg denote the average ﬁ Job.

We consider the vector of symbols b= (by,...,bm) € (Z£)™.
We denote T the function definded by

I(t) = g I'(z)dz
Z<t

THEOREM 4. Let p1(-),..., pm("),r(-) € 2'%9(R"), suchthat p; >1and 1/p(-) =
M, 1/pi(-) that satisfies
l<p <pO)<r()<ri<e
andTeR. Let1<p <oo,ac T andBe(,,zﬂP) . Supposethat (Vi ..., Vm,W) isany

m+- 1-tuple of weights such that v; € LIOC and, for some constants R > (p{)™/(p{)~
and S>rt/r—,

sup a(Q)Ti(¢(q)) 121w 17srq I llngty _ 8)
Qe2 Ixallpy IxQlls i1 HXQHRip{(.) .

Then
P L x o Lm0 o 1)),

Let us observe that, if a(Q) = |Q|®/", 0 < § <1, then ac T... It is known
that .Z} :=IL(8) coincides with the classical Lipschitz spaces A define as the set of
functions b such that

Ib(x) —b(y)| S [x—yI°
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for every x,y € R".
On the other hand, if d(-) € 2'%9(R"), 0 < & < n such that n/d~ < o and §(")
is the exponent defined by
o) o 1
o2 = 29
n n d(') b ( )
the functional a(Q) = ||%Q||n/5(.> satisfies the T.. condition and %, = L(4())) is a
variable version of the spaces L(6) defined above.
For Wy,...,¥m G®-functions, we define the following multilinear version of the
maximal operator My given in (13), as follows

m ||Xin||\{1-(. )
My (. ) (T Tm) (X) = su — 7
R AL 3 | b s
When ¥, = ... =¥m=1, the maximal operator .#Zy,..), . wy(.,.) = -4 Was introduced

An auxiliaty result for prove the Theorem 4 is the foIIowmg that gives a variation
of the classical Calderon-Zygmund decomposition, associated to the maximal operator
M (,...sm() (for the result that describes the classical Calderon-Zygmund decomposi-
tion we refer the reader to [15, 16]). For a dyadic drid 2 we define

in [21]. When W;(x,t) =t5X, we denote ./, . SRS ):Q///Sl(_) )

m | xQfills ()

M f1,..., fm)(X) = —= 3,
0oty (e IO = 9B L el

77777

PROPOSITION 2. Let s1(-),...,Sm(-) € 2'9(R") with 1/s()=3¥M,1/5() such
that s(-) > 1 and 2 beadyadicgrid. Supposethat f1,..., f,, are measurablefunctions
such that

IIJCquHS

im - (30)
Q=1 Ixallse
Then the following are true:

1. For each A > 0, there exists a disjoint collection of maximal cubes {Qj}jen C 2
such that

s >2=JQ, @D

.....

jeN
and for every j,
m | xo; fi
A<H% <C2my. (32)
i=1 ||XQ1H3(.)

2. There exists a positive constant ¢ such that, if o > ¢ and for each k € Z we
consider {Q'j‘} jen the collection of maximal dyadic cubes from (1) with

Qu={xeR".aZ, oo tm)) > b =k,
J
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then .7 = {Q*} jenkez isa sparse family.

Particularly, if b € L(8(-)), we can improve the Theorem 4 in the sense that we
can introduce certain type of norms in the conditions on the weights involving G ®-
functions.

THEOREM 5. Let py(-),..., pm(-),r(-) € Z'%9(R") suchthat p; > 1 and 1/p(-) =
>, 1/pi() that satisfies

1<p <p()<r()<rf<e
and T € R. Let B(-) bea function such that
1 1 1

BO) p() r()

Let d(-) € 2'%9(R") and &(-) defined as in (29), such that d.. < d(-) and let b e
(L(8()))™. Let (Y;,¥i), 1 <i<m+1, pairs of Gd-functions satisfying condition
gV,

%\y e Pin() : Lpl(-) X ... X me(-) N Lp() (33)

l()
and
Mgy () L0 —LPO, =1 m (34)

Supposethat (vi,...,Vm,W) isany m+ 1-tuple of weights such that v; € Llﬁ’)'c() and

xalley Wiy, y () 2 ||7CQVi71HYi(.7_)

(35)
HXQHp(.) ||XQ||rm+1(.7.) i=1 H%QHri(.,.)

sup [ xalln/s () T(¢(Q)
Qe¥

Then
PF,B : L\F,)ll(') X ... X L\F,’r'r?(') — L5§'>.

REMARK 2. Note that condition (35) with Y, 1(x,t) =t°"™® (log(e+t))°"™ and
Yi(xt) = t"P®(log(e+1))"P ™ is weaker than condition (28) since, if ¢ < R and
n < S, we have

QW4 - - Wl and v .y - 12V llsiy

HXQHrmH(.,.) ™ xellre I2allvy ™ lxallsyq

4. Proofsof theorems from subsection 3.1

In this section we present the proofs of Theorem 2 and Theorem 3.

Proof of Theorem 2. Since v; € [Lpl (Iog L) hoc |mpI|es that the set of bounded
functions with compact support is dense in [LPi®) (logL)a0)],, (R"), it is enough to show
that

m

T fmll oo gogLyene S TTIHE Lo gogLyaoy,
i=1
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foreach fq,..., f,y > 0 a bounded function with compact support. This is in turn equiv-
alent by duality to

m
LT (e B COMOIG00 @ S TTI 0 g,
i=1 '

for all non-negative bounded functions with compact support fq,..., fy, and g with
19116 togL)-a0r/p0-1 () < - Let fi,.... fm and g be functions with these properties.
By (16) it is enough to prove that, for every spase family . C 2 a dyadic grid,

%,‘Q' (ﬁ / G (X)L dx) Yrmin m (|Q| /f o dx)l/ri

m

HHf|H |_p| (logL)d )] (36)

i=1

By condition «7¥" we have

1 1/fmiz m /i
_ fm+1 "'mt1q f rI d
& (1 Jogormtorsax) T 1 [ e ex)

1/fmia

Y ()

S Z Q| melj(grml Wi ()
Q= HXYQJK W1 () HXYQK

Ymia(-)
1/ri

Y L L

i=1 mek

@37)
il HXYQIJ'(HYi('v')

Consequenly by the hypothesis on the weights (21) and (4) we have

1 1/rmi1 m 1/r
I fm1 Fm1 f rI
210l fpgwrm w1y oo )

Hx K X K Fivi
S 27|Q| H " rmi1Pmia (s ﬁ”m I rivi(, ).
o (/1 PRI S 2 P

Using that .7 is a sparse family and Holder inequality (1) we obtain

1 1/fmi1 m 1/ri
I fm1 'm+1 g f rI d
Q§7|Q| <|Q| /Qg(X) it X) <|Q| / X)

H’w fiv

"mi1¥mea (s H
Ly

M1 Pmia ()

i)

‘XYQ'J'( riPi(-,)
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5 RN Ml‘m+1‘l’m+1 H MI‘,‘}’, f Vl y) dy

5 HMrerllI’erl HLP ) (logL)~90)/(P0)~1) H HMU\Pl fV| HLpI IogL)Q(') :

Thus by conditions (19) and (20) we can conclude (36) and complete the proof of
Theorem 2. [

Proof of Theorem 3. Proceeding in the same way as in the proof of Theorem 2
(see (37)) replacing the corresponding spaces we obtain

1 L/rmi1 m 1/
— m+1 m1 fi(x rI
R (CTALED

<2 g, H%mkwr“”l Ve () -
Qe nyQ‘f Wima() H YQIJ'('le(w)
1/ri

m lirivli'i X Kvi_l
nyijf qu H i Hr
XH I(':') I('a')
= HX}QTH\H(.,) H%QTHM.,.)

Consequenly the hypothesis on the weights (24) we have

1 - frt g )1/rm1 m ( 0 d )1/fi
ngq(@' g0 w007 o

fivi
< 2 Q| ”xQHd(') HXYQIJ(Q rme1¥me1( HnyQk I iic,)
Qes HXQ”F’(') nyQk i=1 HX),QK
e W () ()
By Corollary 1 the last sum is equivalent to
)( kg « fivi
2 ‘QH‘XQH[} H et Pme () T me I i)
=1
Qes H VQk M1 ¥t () ! H YQIJ( rivi(-,)

Using that .7 is a sparse family and Holder inequality (9) we obtain

1 1/fmi1 m 1/ri
i fm1 'm+1 g f rI d
21011 pgeormworesox) T (7 s en)

< Y E@Ilxallg HX N Fmi1¥mea (s ﬁHxVQkf'v' N
Qe H ka ¥t o) i=1 ’ YQ'J( .
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S Jon MBO 1m0 ( H'V'r. (. (fivi) (y) dy
m
S Mt @)l l}ll (o (i)

m
S Hg||d’(~)H||fivi||pi(~) = HH fi”LP_i(') )
i=1 i=1 Vi

where we have used conditions (22) and (23). This concludes the proof of Theorem
3. O

5. Proof of results from subsection 3.2

In this section we present the proofs of Theorem 4, Proposition 2 and Theorem 5.
In order to give the proof of Theorem 4 we state and prove three auxiliary results.

LEMMA 11. Let s1(),...,sm(-) € Z2'9(R"), with 1/s(-) = Y™, 1/s/(-) suchthat
s()>1.LetveZ and Q € 2. If we define

0={Q:Qe2,QCcQy Q) =2"},

then

m
2 ||g%QHs' HHfllQH N Hg%QoHs'(.)HHfilQoHS(.) (38)
Qe0 i=1

for every f; € L3V(RM) and g e LSV (D).

loc

Proof. Let fi € L,O()(R”) and g e Ll‘d‘o(') (R"). By Lemma 5 we have

C C

laxallse ™ lIfixalls

> loxalls HHfOCQHS > [Ql

Qeo gco  lxallsy =1 xallse
N ||9XQH5/(.) m||fixalls() i
RnQeﬁ H%QHg i1 lxalls

“Jo <Q§ﬁ ot %: >H<Q§ﬁ rl ”n;;q )dx'

Hence, by Hélder’s inequality (8) we obtain

2. llaxalls( HHfllQH
Qeo
lgxalls I fixall
S| X e > ro |
Qeo HX ”g ) =1||Qec ||XQ||S(.) s0)
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Since ¢ is a disjoint family, by Lemma 9, we conclude that

m
>, laxalls, HHflells 9> x| I
'=1

Qe Qeo

fi Y xo

Qe

s()
m

< lloxals l}” fixaollsy O

s()

Recall that T is definded by

I(t) = ['(z)dz,

Z<t
and we introduce the function T as

r(t) = Sup (yl7~~‘7ym)7
Vi YMEA 1.0

where </ 5 ¢) is the set defined in (26).

LEMMA 12. Let u(-) € 2'9R"), T € % and Qy € 2. Then, for every h €
LD (R"), we have

loc

h - oMl
e a SF[5(1+8)€(Q0)]Q07HHXQ b o)

r(
Q€% :QcQ 2 1l XQOH#()

where g, are the constants provided by condition 3.

Proof. Let he LIO()( R™). Suppose that £(Qg) = 2~% with dy € Z. By the equiv-

C
alence (5) and Lemma 11 we have

h
¥ F(ﬁg_@) g 1xQ HM,(J

Qe2:QcQy ”XQ”IJ()

~ Y 279r(2-d- > Ihxallue 2allwr
d>do QCQy:(Q)=2"¢

S Moy 2ol 2 27424, (40)

d>dy

Note that, by condition R,

2 2—dnmr(2—d—l) 5
d>dy

F d
/5(1 £)2-d-1<ly|<8(1+e)2~ (v)ay

\\/

(2 Xs(1-e)2-d-1<|y|<5(1+e)2 d(Y)> dy

d>dy

I(y)dy=T[8(1+€)¢(Qo)],

Jyeares
<

ly|<o(1+¢)¢

since the overlap is finite. Comblnlng th|5 and (40) yields inequality (39). O



280 L. MELCHIORI

LEMMA 13. Let k be a positive integer and p(-) € @'W(R”) suchthat 1< p~<
ph<eo. Letac T, and be L with b o, #0. If H € L, (R"), then

1 K I2aQH I
3G o P ~Bl ) ey aldQ Iy, T L e

forevery Qe 2, whered =1 or d = 3.

Proof. Suppose d = 3, the argument to prove the case d =1 is similar. Let Q €
2. By Holder inequality (9) and Lemma 5 we have

b — bg|* H
/ Ib(y) — bol*H(y)dy < [[xaqlb—bol[| 5, llxaq Hp(.)' @)
[3Q] HXSQHp/(.) 1 x3Qllp

By Lemmas 6 ans 7, we can estimate the first factor of this product as follows

lxsalb—bolll, _ [lxselb—bso||y,  [lxsalbso—bol|ly,
||X3Q||p/(.) ~ ||X3Q||p/(.) ||7CSQ||p/(.)
< aBQ)X b,

Hence, combining (42) with the previous inequality we deduce (41). O

Proof of Theorem4. Since v; € L,F(’)'C()(R”) implies that the set of bounded functions

with compact support is dense in L i()( R™), it is enough to show that

m

) (LY

W i=1

st

foreach fq,..., fm > 0 bounded functions with compact support. This is in turn equiv-
alent by duality to

L TP (e T 00 WGOG00 d < HHquLp.

for all non-negative bounded functions with compact support fq,..., fn, and g with
190y < 1. Let fi,..., fm and g be functions with these properties. By definition of
commutators (see (25)) it is enough to prove that, forevery j=1,....m

[P, (faeees ) GO0g dx<H||f.HLp.~ (43)

77777

Foreach t >0, we set T'(t) = SUPy,  ymetro L V1s---Ym), Where ¢ 5 ¢) is the
set defined in (26). It was proved in [[3], Proof of Lemma 4.1] that, for x € R", we can
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discretize the commutator as follows

Fro, (e )] < 3T (D2 00— @l [T smc

Qe

Q) . (v dv
+ ZT(5) e T1 [ home
/ 103 (yj) — (by)al i (yi) dy;.

Hence

/|Prbj (fro- ., Fm) 0 WO)G() dx

( )/ [0 (x) — (bj)qIw(x) dxH/ fi(y1) dyi

Qe@
m
< )/W dXH/flyldyl
QE@ i=1,i#] 3Q
x [ 1bi0) — (by)al ). (#4)
where 7 is the standard dyadic grid. Let us denote sj(-) = Rip{(-) and I(-) = Jr(-).
Since (p))* <Ri(pj)~ and r* <Jr—,wehave ()" =(s ) < p; and (I’)+ =)<
(rt)’. Then we can take constants n; and 6 such that
()" <m<p and ()" <6<(r),
and aj(-),u(-) define by
1 1 1 1 1 l
—=—+— and — 4 = (45)
@) s() u@ 10 e

)
Observe that wi(-), 7(-) € Z'%9(R") since s(-),1(-) € 2'9(RM). Thus, by (44), using
Lemma 13 twice with H =gw, p() = u(), d=1and H = fj, p() = oj(-), d=3
respectively, we obtain that

[P, (faes ) GO0
<lbly, 3 F(@) IQIa(Q)M]m[ JRTALY

0c 12l 3Q
#1bl, X T(U2) [wiwaax [T [ i)y
Qe i= |7éJ 3Q
X3Q "
< |Qla(3Q) brsafilley (46)

HXSQ”wj(.)



282 L. MELCHIORI

Notice that, by inequalities (12) and (11), condition a € T.. and Proposition 1 we can
estimate (46) as follows

/]R P (fr.. ) (0 W()Q(X) dx

T 117 | PRI | < ToY § | RS
Sl 3, T (102 jgmiaag 2 fy 10T g
3Q:Qc7 2 ||X3Q||u(,) i-1 ”st”wi()

2« —/UQ 12wl ™ lxQfill g
< ||b||$az z F(%) IQIm“a(Q) Dzl ﬂ()H o wa()' (47)
t=1Qc% XQlluey =1 2Qllax()

Consequently, it is enough to estimate

—(0(Q) 1 l2QWal ey 2 1xQfill
bl 3 T(“R ) lomta) 7
f%é 2 xall,, Eummm

for every dyadic grid 2.

Let 2 be a dyadic grid. The next task is to replace the sum over &, by the sum
over cubes from a sparse family. Since fq,..., f, are bounded functions with compact
support, we have that

mxQfill gy _ (T . (| 2supp i || .
im <TTiIfill tim 2——290 _q,
|Q[—eiy HXQH -1 [Q—e0 HXQH@(.)

Let o > 0 the constant provided by the Proposition 2 for @, (-),...,om(-), f1,..., fm
and 2. If a > max{o,«}, where K is the constant involved in the inequality (32),
there exist a sparse family {Q'j‘}jemez C 2 that satisfies

K. -

m
o <[] 77

“t [,

oi()

For k € Z we define the set

%kz{Qeg:ak<ﬁ%<ak“}.
i .

=1 HXQH@()
Then every cube Q € Z for wich

m [ 2Qfill )
i=1 HXQH@()

belongs to exactly one k. Furthermore, if Q € %, it follows that Q C Q‘J? for some
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j € N. Then we obtain that

il fill o
.Y a(Q)F<@> o 1729l 5 17l
aQe@ 2

b.
[bj %l =1 lxQllwg

[12QaWll () [1xQfill ()
HXQ”“(.) i—1 ||XQ||wi(.)

sl % a(Q)r(@> ot

_/4Q QoW
ST YD N ASIEDY a(Q)r<%) Qi
keZ jeN Qe Qe Qllu()
o Jratl,,
5||bi||$ k%%n H QJ)
S (S
J Hfllag
- r(@)qmﬂlegWU(.)
Qe?icQcq xallgy
ragon], o],
< Ibifl, 3 ¥ a@TI8(+e)e Q)] I ] 7
keZ)eN HXQT () = HXQIJ(

where ¢,8 are the constants provided by condition R, T'(t) = Jiz<T'(2)dz and we
have used Lemma 12. Let y= 8(1+ ¢€), then by monotony, using that a € T.. and
inequality (11) we can follow our chain of inequalities with

] [ P
2 Y Y ar@OT(re @) [y 2 [ 2
T A A P R P

< by

Recalling the definition of the exponents (see (45)), Holder’s inequality (8), Corollary
1 and the hypothesis on the weights we obtain

—(4(Q) 2wl e llxQfill )
o), 3 2 (1) 1o
Ibill 2 2 Tl L ol

W
H%M

‘|(.)

Sloilly, X X arQT( Qk>>ka|H “l,
HXYQIJ( 18!

keZ jeN HXYQT 0
R o

HW H%M

xl'[

s()
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o |z, m H"vojkf“’iHm

|1
Slbilly, X X Q57—

KEZ jeN HXYQK
]

o el = e,

Let () defined as in Corollary 1. Then, by this corollary, the last sum is equivalent to

Jrte], [t

il

ol 2 % @il

i=1
e, =t e,

Using that {Q‘j‘}jewez is a sparse family and Holder inequality (9) we obtain that

([t 1WAl = 11xQ il
Il S a(Q)r<$> QI k0 a0
. el b Txalag

Qe

T | v

S PP (e/l) PA o | n
== ltal, = e,
Slibill, L, Mﬁ<->7e(g)(>’)i11'\/'m(fiVi)(y)dy

m

S Hijza HMﬁ(-)ﬂ(g)pr(.)HHMm(fiVi)Hpi(')

m
ffaEH fi ||L\5’I|() 3

iy

< by

where we have used that by Theorem 1,
My, : LPO(RM) < LPO(RM)

since p; > n;, and
M0 1 L"O(R") — LPO®")

since (r')~ > 6. This proves (43) and concludes the proof of Theorem 4. [J

Proof of Proposition 2. To prove (1) we may assume E; # 0 since otherwise there
is nothing to prove. Let A, be the family of dyadic cubes such that

m f;
A;LZ{QEQZHXQ sy >)L};

i=1 HXQ”S(.)

this is non-empty since E; # 0. For each Q € A, there exists a maximal cube Q' € A,
with Q € Q', since (30). Let {Q;}jen C A, denote the family of such maximal cubes;
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clearly they are pairwise disjoint. Also, let (/Q\J € 2 such that Qj C (/)\, and E((/g\j) =
20(Qj), then (/Q\J C 4Qj. By maximality and Lemma (10), we have that

nlzofly, o 6., % .,
S = el ¢ e o
<C§mm HXQ\inHs() <cm,

= g,

If x € E, , there exists a cube Q € 2 such that Q > x and

m xfills

— > A.
i=1 H?CQHS()

Hence, Q C Q; for some j € N. Conversely, since x € Q;j forsome j € N, by property
(32),
m | xq fiHS(.)

i=1 ||XQjHS()

Then //lg?_) f1,..., fm(X) > A, that imply x€ E;, .
To prove (2), let o > 1 be a constant that will be chosen later. For each non
negative k € Z, we consider the set

> A.

ka{xeR“:///g?,)fl,...,fm(x)>ak}:Uij (49)
i
where {Q‘f}jeN is the collection of maximal dyadic cubes from (1) that satisfies

o 201

oc<H‘

C2m k (50)

\ka

Let F¥=Qf\ Q1. Since Qi1 C Q it is immediate that the sets F¥ are pairwise
dISjOInt Note that

@ _ |Q,K\(Q,Krkmk+1>| L \ijmskw -

We estimate |Q'J-‘m Q. 1|. If A denotes one of the constants involved in (5), using that

LR S O
80 s() S0

1
1s()’

M3
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we obtain
AN = 3 [Q
|2Q+1§Qk
m
<A| ngchHme (-)EH%Q:<+l si() 2
Notice that
gt gl
T T <Gan.
HXQKH s() = HxQJk s()

Hence, by (53) and Lemma 11, we can estimate (52) as follow

QA NQes| <At ¥
QI cQk

m
(.)ngle L Hs()

< Aokt H
o C lek

m
§(.)EHXQ'j<fiHS()

m
§<~>EHXQT 50)

< ACa~icm

gy
< ACa'cimB|Ql|
= oo Q.
Consequently, if o > o, by (51), we can conclude

I5
Js1-Z50

Q] o

Hence . = {Qlj(}jeN’keZ is a sparse family. O

Proof of Theorem 5. As in the proof of Theorem 4 it is enough to prove that, for
every j=1,...,m,

L P, (e )00 05000 < TT1 g )

for all non-negative bounded functions with compact support f4,..., fm and g with
9llr) < 1. Let fi,..., fm and g be functions with these properties. We use the same
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technique as in the proof of the Theorem 4 to obtain that
L TP, (F fm) (9 WO0G00 0

Qe@ ( )/ () = (bj)Iw(x) dXH/ fi(yi) dy;
er ( )/W i7réj/ani(yi)dyi

/ b (yj) — (bj)al fj (y;) dyj, (55)

where 2 is the standard dyadic grid. Hence, by Lemma 8,
[P, (fr Em) (9 WO0G00 0
— E(Q)) mel 1/ LI | /
< rf—— — [ wx)gX)dx| | =—= fi(y) dy.
< 3 T(“2) Il 10 7 [ wixat [ gy L, fomey
(56)

The next task is to replace the sum over &, by the sume over cubes from a sparse
family. Since fq,..., fm are bounded functions with compact support, we have that

|supp fil
filyi)dy; < fill., =0.
|Q‘H°°i 1|3Q|/ yl yl HH IH ‘Hw |Q|

Let o > max{2"™ 6"||.#||} where |.#| is the constant from the L' x ... x L! —
LY/m= inequality for .#. It was proved in [28] that there exists a sparse family
{QY jenkez C 2, such that for every k € Z,

m 1 /
k k+1
< fi(yi)dyi < o

Hence, proceeding as in the proof of Theorem 4 we obtain that

L IPrs, (feee ) (0 (G0 dx

=( 4Q me1 1 L
<2 )XQ||n/5<.)Q| = <x>g<x)dxi11‘3Q‘ JIRLOLY
< i

*Z Bl |sqk»/qk e

Q)
T) Qe [ woogtgdx

< X7
Q<% Qch
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say Y

keZ jeN
m

— (x)g(x) dx —/ fi(yi) dy,

ij/qf EBQH 3Q )y

where €,6 are the constants provided by condition %, T'(t) = f|z\<t I'(z)dz and we

have used Lemma 12. Let y = §(1+ ¢€); then we can follow our chain of inequalities
with

SEDIDY

keZ jeN

X T8+ )0(Q] Q|

1
k k - (\:
L TOH@) IS 'W/ [ 1W/YQ$ fi(yi)dy

By condition <77 and by the hypothesis on the weights (35) we obtain

/]R P (Fo, - fm) 09 W(X)g(x) dx
SEDIDN AN <e<QT>>yQ,*|HX’QJ L L
keZ jeN nyQkHWm+1 H YQKHYm+1
H Hx@kfv‘ H HXJQTVFIHW.)
2 () et ¥i()

o [t

Pmi1 (s

o el

cus 5 it
keZ jeN ‘XYQT

') ‘XVQJ' H

W1

By Corollary 1 the last sum is equivalent to

|10
H"wok

W)

o [t

Wmia (s

@3, 3101 |t

keZ jeN

= e ,~HW.,.)

Using that {Qlj(}jeN’keZ is a sparse family and Holder inequality (9) we obtain that

ol

Winia () ﬁ

) HXYQJK

<3 S IE@ e,

keZ jeN

Wi()

5 /R Mﬁ<->7wm+1<~7~>(9)(y>///w1<~7~>7....,~vm<~7~>(f1V1 ----- fimvim) (y) dly
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S IMB . mea () @y 1)) T2V B[

m
< fill pic
NEH |||L\5’i|()7

where we have used conditions (33) and (34). This proves (54) and concludes the proof
of Theorem 5. [
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