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HARDY AND SOBOLEV INEQUALITIES FOR

DOUBLE PHASE FUNCTIONALS ON THE UNIT BALL

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA ∗

Abstract. We prove Hardy and Sobolev inequalities for double phase functionals Φ(x,t) = t p +
(b(x)t)q on the unit ball B , as a continuation of our paper [26], where 1 � p < q , b(·) is non-
negative and (radially) Hölder continuous of order θ ∈ (0,1] . The Sobolev conjugate for Φ is
given by Φ∗(x,t) = t p∗ +(b(x)t)q∗ , where p∗ and q∗ denote the Sobolev exponent of p and q ,
respectively, that is, 1/p∗ = 1/p−1/n and 1/q∗ = 1/q−1/n .
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