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A NOTE ON THE GENERALIZED HAUSDORFF AND PACKING

MEASURES OF PRODUCT SETS IN METRIC SPACE

RIHAB GUEDRI ∗ AND NAJMEDDINE ATTIA

Abstract. Let μ and ν be two Borel probability measures on two separable metric spaces X and
Y respectively. For h,g be two Hausdorff functions and q∈ R , we introduce and investigate the
generalized pseudo-packing measure Rq,h

μ and the weighted generalized packing measure Qq,h
μ

to give some product inequalities :

H q,hg
μ×ν (E ×F) � H q,h

μ (E) Rq,g
ν (F) � Rq,hg

μ×ν (E×F)

and
Pq,hg

μ×ν (E×F) � Qq,h
μ (E) Pq,g

ν (F)

for all E ⊆ X and F ⊆ Y , where H q,h
μ and Pq,h

μ is the generalized Hausdorff and packing
measures respectively. As an application, we prove that under appropriate geometric conditions,
there exists a constant c such that

H q,hg
μ×ν (E×F) � cH q,h

μ (E) Pq,g
ν (F)

H q,h
μ (E) Pq,g

ν (F) � cPq,hg
μ (E×F)

Pq,hg
μ×ν (E ×F) � cPq,h

μ (E) Pq,g
ν (F).

These appropriate inequalities are more refined than well know results since we do no assump-
tions on μ ,ν ,h and g .
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