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Abstract. We prove the fractional Korn inequality for sufficiently smooth subsets of R
d . We

also give a framework for obtaining the Korn inequality directly from the appropriate Hardy-
type inequality.

1. Introduction

Let D be a bounded open subset of R
d , d > 1, and let p ∈ (1,∞) . For x ∈ R

d we
denote x = (x′,xd) with x′ ∈ R

d−1 , xd ∈ R . Whenever we mention a vector field on
D ⊆ R

d , we mean a measurable mapping from D into R
d . The space Lp(D) consists

of all the vector fields u for which the norm ‖u‖Lp(D) := (
∫
D |u(x)|p dx)1/p is finite.

We define the fractional Sobolev space of vector fields as follows:

Ws,p(D) =
{

u ∈ Lp(D) : |u|pWs,p(D) :=
∫

D

∫
D

∣∣u(x)−u(y)
∣∣p

|x− y|d+sp dxdy < ∞
}

.

Ws,p(D) is endowed with the norm given by the formula ‖u‖Ws,p(D) := (‖u‖p
Lp(D) +

|u|pWs,p(D))
1/p. We also introduce the Sobolev space with projected difference quotient:

X s,p(D) =
{

u ∈ Lp(D) : |u|pX s,p(D) :=
∫

D

∫
D

∣∣(u(x)−u(y)) (x−y)
|x−y|

∣∣p

|x− y|d+sp dxdy < ∞
}

.

We equip X s,p(D) with the norm ‖u‖X s,p(D) := (‖u‖p
Lp(D) + |u|pX s,p(D))

1/p . Further-

more, we define the spaces Ws,p
0 (D) and X s,p

0 (D) as the closures of (C1
c (D))d in the

norms ‖ · ‖Ws,p(D) and ‖ · ‖X s,p(D) , respectively.
Obviously, ‖u‖X s,p(D) � ‖u‖Ws,p(D) . Our main goal here is to establish a reverse

inequality with a multiplicative constant on the left-hand side, which is known as the
fractional Korn inequality.
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THEOREM 1.1. Assume that p > 1 , s ∈ (0,1) , and sp �= 1 . If D is a bounded
C1 open set or a bounded Lipschitz set with sufficiently small Lipschitz constant, then
there exists C � 1 such that for every u ∈ X s,p

0 (D) we have

C‖u‖X s,p(D) � ‖u‖Ws,p(D).

In particular, X s,p
0 (D) = Ws,p

0 (D) .

This result was obtained very recently by Mengesha and Scott [3] with the use of a
complicated extension operator intrinsic to studying projected seminorms. We present
a significantly shorter proof which omits the extension: we first obtain the inequality
for the epigraphs in Theorem 3.1 by using the result of Mengesha and Scott [6, Theo-
rem 1.1] for the half-space together with an appropriate change of variables, and then
we apply an argument via the partition of unity.

In Section 4 we show that the Korn inequality for vector fields of the class (C1
c (D))d

can be obtained directly from the appropriate Hardy-type inequality for D with the use
of an operator which extends the vector field by 0 to the whole space. This in particular
yields a simpler proof of the Korn inequality for the half-space than the original one
due to Mengesha [2]. It may also facilitate the proofs for more general sets D in the
future.

The usage of the Hardy inequality imposes the conditions of vanishing at the
boundary and sp �= 1, which are most likely superfluous for the Korn inequality, but
dropping them would require a completely different method of proof.

For applications, open problems, and a wider context concerning the fractional
Korn inequality we refer to the aforementioned works of Mengesha and Scott. We re-
mark that the arguments below were obtained independently of the ones in [3].

Acknowledgements. I thank Bartłomiej Dyda for helpful discussions and remarks
to the manuscript. Research was partially supported by the Faculty of Pure and Applied
Mathematics, Wrocław University of Science and Technology, 049U/0052/19.

2. Preliminaries and auxiliary results

Let f : R
d−1 → R be a continuous function. The open set {(x′,xd) ∈ R

d : f (x′) <
xd} will be called the epigraph of f . The epigraph of a Lipschitz (resp. C1 ) function
will be called a Lipschitz (resp. C1 ) epigraph.

DEFINITION 2.1. We say that an open set D ⊆ R
d is Lipschitz with constant

L > 0 if there exist balls B1, . . .Bn with centers belonging to ∂D , epigraphs U1, . . . ,Un

of functions f1, . . . , fn with Lipschitz constant L or better, and rigid motions R1, . . .Rn ,
such that the following conditions are satisfied

• ∂D ⊂
n⋃

i=1
Bi ,

• Ri(Bi∩D) ⊂Ui and Ri(Bi∩∂D) = Ri(Bi)∩∂Ui .
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We say that D is a C1 set if the above conditions are satisfied with the difference that
the epigraphs U1, . . . ,Un and the functions f1, . . . , fn are C1 instead of Lipschitz.

We also consider an additional open set (not necessarily a ball) Bn+1 , relatively

compact in D , such that D ⊂
n+1⋃
i=1

Bi . Note that if D is C1 , then the balls and the

epigraphs may be so chosen that D is Lipschitz with an arbitrarily small constant L .
Throughout the paper we will use certain Lipschitz maps as substitutions in the

integration process. Below we establish some basic facts about these transformations.

LEMMA 2.2. Let U and V be open subsets of R
d and assume that T : U → V

is a bijection such that T and T−1 are Lipschitz with constant K � 1 . Then for every
non-negative measurable function u : V → R we have

(1/K)d
∫
V

u(x)dx �
∫
U

u(Tx)dx � Kd
∫
V

u(x)dx.

Proof. This fact follows conveniently from the result of Hajłasz [1, Appendix],
see also Rado and Reichelderfer [5, V.2.3]. To verify the validity of the constants we
first claim that JT — the Jacobian of T satisfies |JT | � Kd almost everywhere in U .
Indeed, let x0 ∈U and r > 0 satisfy B(x0,r) ⊂U . If we take f = T and u = 1TB(x0,r)
in [1], then we get that ∫

B(x0,r)
|JT (x)|dx =

∫
TB(x0,r)

dy.

Thus,
1

|B(x0,r)|
∫

B(x0,r)
|JT (x)|dx =

|TB(x0,r)|
|B(x0,r)| . (2.1)

The limit r→ 0+ on the left-hand side of (2.1) exists and equals JT (x0) for almost every
x0 ∈ U by the Lebesgue differentiation theorem. Furthermore, we have TB(x0,r) ⊆
B(T (x0),Kr) , hence the right-hand side of (2.1) is bounded from above by Kd . This
proves the claim that |JT (x)| � Kd for almost every x ∈ U . Similarly we show that
|JT−1 |� Kd almost everywhere in V . Thus, the lemma follows from [1] and the formula
|JT−1(Tx)| = |JT (x)|−1 . �

We will commonly map the epigraph of a Lipschitz function f : R
d−1 → R to the

half-space R
d
+ as follows:

T (x′,xd) = (x′,xd − f (x′)), x′ ∈ R
d−1, xd > f (x′). (2.2)

Clearly this is a bijection with the inverse

T−1(x′,xd) = (x′,xd + f (x′)), x′ ∈ R
d−1, xd > 0.

LEMMA 2.3. If f is Lipschitz with constant L and T is defined as in (2.2), then
for every x and y in the epigraph of f we have

C(L)−1|x− y|� |Tx−Ty|� C(L)|x− y|, (2.3)

where C(L) =
√

1+L(L+1). In particular, C(L) → 1 as L → 0+ .
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Proof. Let x and y belong to the epigraph of f . We may reduce the problem
to the planar geometry. Let a = |x′ − y′| , b = |xd − yd| , c = |x− y| , c′ = |Tx− Ty| ,
d = | f (x′)− f (y′)| . Note that d � La .

x

y

a

bc

T x

Ty

a

b+d
c′

Figure 1: The picture presents the pessimistic variant with (xd −yd)( f (x′)− f (y′)) > 0 .

We will work with the context given in Figure 1. Assuming that x �= y , we have

(c′)2

c2 = 1+
2bd +d2

a2 +b2 � 1+
2Lba+L2a2

a2 +b2 =� 1+L
(L+1)a2 +b2

a2 +b2 � 1+L(L+1).

This gives the right-hand side part of (2.3). A similar argument may be used with T−1

in place of T , giving the left-hand side of (2.3). �

LEMMA 2.4. Assume that D is bounded and that ψ ∈C∞
b (D) . Then |uψ |X s,p(D) �

‖u‖X s,p(D) . An analogous result holds with Ws,p in place of X s,p .

Proof. We have

∫
D

∫
D

∣∣(uψ(x)−uψ(y)) (x−y)
|x−y|

∣∣p

|x− y|d+sp dxdy �
∫

D

∫
D

∣∣(ψ(x)−ψ(y))u(x) (x−y)
|x−y|

∣∣p

|x− y|d+sp dxdy

+
∫

D

∫
D

∣∣ψ(y)(u(x)−u(y)) (x−y)
|x−y|

∣∣p

|x− y|d+sp dxdy.

The latter integral is smaller than ‖ψ‖p
L∞(D)|u|pX s,p(D) . For the former we use the fact

that |ψ(x)−ψ(y)| � |x− y| to get that it does not exceed c‖u‖p
Lp(D) . The proof for

Ws,p is identical. �
Let Bδ = {x ∈ B : d(x,∂B) > δ} . In the next section we will apply an argu-

ment using a partition of unity subordinate to B1, . . . ,Bn,Bn+1 from Definition 2.1.
This in particular will require extending vector fields given on Bi∩D and supported in
(Bi)δ ∩D for some fixed δ > 0, to a rotated epigraph (1 � i � n ) or to the whole of
R

d ( i = n+1). The following result enables us to perform such operations.

LEMMA 2.5. Let the open sets B,U ⊆ R
d satisfy U ∩Bδ �= /0 and U \B �= /0 .

Assume that u ∈ X s,p(U ∩B) has support contained in U ∩Bδ for fixed δ > 0 . If we
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let ũ = u in U ∩B and ũ = 0 in U \B, then ‖ũ‖X s,p(U) � ‖u‖X s,p(U∩B). Analogous
result holds with Ws,p in place of X s,p .

Proof. Obviously, it suffices to estimate |ũ|X s,p(U) . Since ũ = 0 on Bc
δ we have

∫
U

∫
U

∣∣(ũ(x)− ũ(y)) (x−y)
|x−y|

∣∣p

|x− y|d+sp dxdy � |u|pX s,p(U∩B) +2
∫
U∩Bδ

|u(x)|p
∫
U\B

dydx
|x− y|d+sp

� |u|pX s,p(U∩B) + c(δ )‖u‖p
Lp(U∩B) � ‖u‖p

X s,p(U∩B).

The proof for Ws,p is identical. �

3. Proof of the Korn inequality

We will show that the Korn inequality holds for the epigraphs with sufficiently
small Lipschitz constant and then use this fact to establish Theorem 1.1.

THEOREM 3.1. Assume that sp �= 1 and that D is the epigraph of a Lipschitz
function f with sufficiently small Lipschitz constant L. Then there exists C � 1 such
that for every u ∈ X s,p

0 (D) we have

C‖u‖X s,p(D) � ‖u‖Ws,p(D).

Consequently, X s,p
0 (D) = Ws,p

0 (D) .

Proof. Following the approach of Nitsche [4, Remark 3] we will show that there
exist c1 = c1(L) and c2 = c2(L) , such that

|u|pWs,p(D) � c1|u|pX s,p(D) + c2|u|pWs,p(D). (3.1)

We will propose an explicit form of c1 and c2 so that it will be obvious that for
sufficiently small L we have c2 < 1 and the statement will follow by subtracting
c2|u|pWs,p(D) .

Let u ∈ (C1
c (D))d ⊆ Ws,p

0 (D) . If we substitute (w′,wd) = (x′,xd − f (x′)) and
(z′,zd) = (y′,yd − f (y′)) , then by Lemmas 2.2 and 2.3 (see the latter for the definition
of C(L)) we get

|u|pWs,p(D) � C(L)2d
∫

Rd
+

∫
Rd

+

|u(w′,wd + f (w′))−u(z′,zd + f (z′))|p
|(w′,wd + f (w′))− (z′,zd + f (z′))|d+sp dzdw

� C(L)3d+sp
∫

R
d
+

∫
R

d
+

|u(w′,wd + f (w′))−u(z′,zd + f (z′))|p
|w− z|d+sp dzdw. (3.2)

Let v(w′,wd) = u(w′,wd + f (w′)) . Note that the above inequalities are in fact compar-
isons, in particular the double integral in (3.2) is finite, which means that v∈Ws,p

0 (Rd
+) .

Now, if we let CK be the constant in the Korn inequality due to Mengesha and Scott
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[6, Theorem 1.1], and ud — the d -th coordinate of u , then we can estimate the double
integral in (3.2) as follows:∫

R
d
+

∫
R

d
+

|v(w)− v(z)|p
|w− z|d+sp dzdw

� CK

∫
R

d
+

∫
R

d
+

∣∣(v(w)− v(z)) (w−z)
|w−z|

∣∣p

|w− z|d+sp dzdw

= CK

∫
R

d
+

∫
R

d
+

∣∣(u(w′,wd + f (w′))−u(z′,zd + f (z′))) (w−z)
|w−z|

∣∣p

|w− z|d+sp dzdw

� 2p−1CK

∫
R

d
+

∫
R

d
+

∣∣(u(w′,wd + f (w′))−u(z′,zd + f (z′)))

◦ ((w′,wd + f (w′))− (z′,zd + f (z′)))
∣∣p|w− z|−d−sp−pdzdw

(3.3)

+2p−1CK

∫
Rd

+

∫
Rd

+

∣∣(ud(w′,wd + f (w′))−ud(z′,zd + f (z′)))( f (z′)− f (w′))
∣∣p

|w− z|d+sp+p dzdw.

(3.4)

By going back to the old variables and by using Lemma 2.3 once more, we get that
(3.3) is estimated from above by

2p−1CKC(L)3d+sp+p
∫

D

∫
D

∣∣(u(x)−u(y))(x− y)
∣∣p

|x− y|d+sp+p dxdy

=2p−1CKC(L)3d+sp+p|u|pX s,p(D).

In (3.4) we also substitute the old variables so that it is estimated from above by

2p−1CKC(L)3d+sp+p
∫

D

∫
D

∣∣(ud(x)−ud(y))( f (y′)− f (x′))
∣∣p

|x− y|d+sp+p dxdy

�2p−1CKC(L)3d+sp+pLp
∫

D

∫
D

∣∣ud(x)−ud(y)
∣∣p

|x− y|d+sp dxdy

�2p−1CKC(L)3d+sp+pLp|u|pWs,p(D).

Overall, we get (3.1):

|u|pWs,p(D) � 2p−1CKC(L)6d+2sp+p|u|pX s,p(D) +2p−1CKC(L)6d+2sp+pLp|u|pWs,p(D).

Since C(L) ≈ 1 for small L , the second constant can be made arbitrarily small, which
yields the Korn inequality for u ∈ (C1

c (D))d .
Now let u ∈ X s,p

0 (D) . There exists a sequence un ∈ (C1
c (D))d such that ‖un −

u‖X s,p(D) → 0 as n → ∞ . We may assume without loss of generality that un → u
almost everywhere. By the Korn inequality for the smooth functions we find that for
every m,n ∈ N ,

|un|Ws,p(D) � |un−um|Ws,p(D) + |um|Ws,p(D) � C|un−um|X s,p(D) +C|un|X s,p(D).
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By letting m go to infinity, and then computing liminf with respect to n and using
Fatou’s lemma, we conclude that |u|Ws,p(D) � C|u|X s,p(D) , which ends the proof. �

Proof of Theorem 1.1. First, suppose that u ∈ Ws,p
0 (D) . We may assume that

D is a Lipschitz set with the constant L satisfying the assumptions of Theorem 3.1.
Let B1, . . . ,Bn,Bn+1, R1, . . . ,Rn, f1, . . . , fn , and U1, . . . ,Un be as in Definition 2.1, and
let Un+1 = R

d and Rn+1 = I . We consider a smooth partition of unity ψ1, . . . ,ψn+1

subordinate to B1, . . . ,Bn+1 , i.e., 0 � ψi � 1, supp(ψi) ⊂ Bi , and ∑ψi = 1 on D .
We define ui = uψi , i = 1, . . . ,n+1. By the triangle inequality we have

|u|Ws,p(D) �
n+1

∑
i=1

|ui|Ws,p(D).

Furthermore, |ui|Ws,p(D) � ‖ui‖Ws,p(Bi∩D) by Lemma 2.5.

Now, for i = 1, . . . ,n + 1 we extend Ri(ui)(R−1
i (·)) from Ri(Bi ∩D) to Ui by 0

and we call the resulting vector fields ũi . Unlike ‖u‖X s,p(D) , the norm ‖u‖Ws,p(D) is
invariant under the rotations of u , so it is crucial that we rotate u1, . . . ,un at this point, so
that they agree with the new coordinate system. Obviously, we have ‖ui‖Ws,p(Bi∩D) �
‖ũi‖Ws,p(Ui) and by Lemma 2.5 the right-hand sides are finite for all i , hence ũi ∈
Ws,p

0 (Ui) . By using Theorem 3.1 for ũ1, . . . , ũn and the Korn inequality for the whole
space [6, Theorem 1.1] for ũn+1 , we obtain

|u|Ws,p(D) �
n+1

∑
i=1

‖ũi‖X s,p(Ui).

By the definition of ũi and Lemmas 2.4 and 2.5, we get that for every i = 1, . . . ,n+1,

‖ũi‖X s,p(Ui) � ‖Ri(ui)(R−1
i (·))‖X s,p(Ri(Bi∩D)) = ‖ui‖X s,p(Bi∩D) � ‖u‖X s,p(D).

This concludes the proof of the Korn inequality for u ∈ Ws,p
0 (D) . The result for

X s,p
0 (D) is obtained as in the last part of the proof of Theorem 3.1. �

4. Application of the Hardy inequality

In [2, Theorem 2.3] Mengesha gives a Hardy-type inequality for the half-space
R

d
+ , p � 1, s ∈ (0,1) , sp �= 1, and u ∈C1

c (Rd
+) :

∫
R

d
+

|u(x)|p
xsp
d

dx � |u|p
X s,p(Rd

+)
.

In this section we give a simple framework which allows to obtain the Korn inequal-
ity for open sets D directly from its counterpart for the whole space and the Hardy
inequality for D .



366 A. RUTKOWSKI

PROPOSITION 4.1. Let p > 1 , s ∈ (0,1) . Assume that the open set D ⊂ R
d ad-

mits the following Hardy inequality for u ∈ (C1
c (D))d :

∫
D

|u(x)|p
d(x,Dc)sp dx � |u|pX s,p(D).

Then the Korn inequality holds for D, that is, there exists C � 1 such that for u ∈
(C1

c (D))d ,
C|u|X s,p(D) � |u|Ws,p(D).

Proof. Let u ∈ (C1
c (D))d and let ũ be the vector field u extended to the whole of

R
d by 0. First, by the Korn inequality for the whole space [6, Theorem 1.1] we obtain

|u|Ws,p(D) � |ũ|Ws,p(Rd) � |ũ|X s,p(Rd).

We estimate the right-hand side as follows:

|ũ|p
X s,p(Rd) � |u|pX s,p(D) +2

∫
D
|u(x)|p

∫
Dc

dy
|x− y|d+sp dx.

By using the polar coordinates we see that for every x ∈ D ,∫
Dc

|x− y|−d−sp dy �
∫

B(0,d(x,Dc))c
|y|−d−sp dy � d(x,Dc)−sp.

Therefore, by the Hardy inequality we get

∫
D
|u(x)|p

∫
Dc

dy
|x− y|d+sp dx �

∫
D

|u(x)|p
d(x,Dc)sp dx � |u|pX s,p(D),

which ends the proof. �

REMARK 4.2. Thanks to the above result, we can significantly simplify the proof
of the Korn inequality for the half-space by Mengesha by omitting the discussion of
the extension operator [2, Section 4.1]. If we had at our disposal the Hardy inequality
for the sets discussed in Theorem 1.1, we would obtain a slightly stronger statement:
|u|Ws,p(D) � |u|X s,p(D) , that is, the estimate without the Lp norm of u on the right-hand
side.
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