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ON BACKWARD ALUTHGE ITERATES

OF COMPLEX SYMMETRIC OPERATORS
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Abstract. For a nonnegative integer k , an operator T ∈ L (H ) is called a backward Aluthge
iterate of a complex symmetric operator of order k if the k th Aluthge iterate ˜T (k) of T is a
complex symmetric operator, denoted by T ∈ BAIC(k) . In this paper, we study several prop-
erties of the backward Aluthge iterate of a complex symmetric operator. We show that every
nilpotent operator of order k+2 belongs to BAIC(k) . Moreover, we prove that if T belongs to
BAIC(k) , then T has the property (β) if and only if T is decomposable. Finally, we show that,
under some conditions, operators in BAIC(k) have nontrivial hyperinvariant subspaces and we
consider Weyl type theorems for such operators.
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