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ABSTRACT HARDY SPACES

YIN LIU

(Communicated by I. Perić)

Abstract. In this paper, we study the abstract Hardy spaces on spaces of homogeneous X .
Firstly, we give the definitions of the atomic Hardy spaces Hp

ato and the molecular Hardy spaces
Hp

ε,mol(0 < p < 1) . Secondly, we give out the comparison between our Hardy spaces with some
other Hardy spaces. Finally, we prove the continuity theorem of the sublinear operator on the
Hardy spaces and give an example.

1. Introduction

The real variable theory of Hardy spaces Hp(Rn) on the n -dimensional Euclidean
space Rn has received more and more attention in recent decades, which initiated
by E.M. Stein and G. Weiss [36], and then systematically developed by C. Feffer-
man and E.M. Stein [21]. C. Fefferman and E.M. Stein [21] brought real variable
methods into this subject, eventually, the evolution of their ideas led to the atomic
or molecular characterizations and the applications of Hardy spaces, see the articles
[3, 6, 13, 15, 22, 25, 26, 31, 33, 38, 39, 41, 43, 45] and the references therein. Further-
more, the atomic and the molecular characterizations enabled the extension of the real
theory of Hardy spaces on Rn to spaces of homogeneous type, which is a more general
setting for function spaces than Euclidean space [11, 12].

There are lots of applications in various fields of analysis, for instance, harmonic
analysis, functional analysis and partial differential equations, see the articles [1, 2, 4,
5, 8, 9, 18, 19, 20, 23, 29, 30, 32, 34, 40, 42] and the references therein. Moreover,
it is well known that when p ∈ (1,∞) , Lp(Rn) and Hp(Rn) are essentially the same,
however, when p ∈ (0,1] , the space Hp(Rn) is more suitable for problems emerging
in the theory of the boundedness of operators, because some singular integrals (such as
Riesz transform) are bounded on Hp(Rn) , but not on Lp(Rn) .

In the Euclidean case (with the Lebesgue measure), the space Hp(Rn) has many
different characterizations [14, 37]. One of the important characterizations is in terms
of atoms:
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Recall that a function a supported in a ball Q of Rn is called a (p,q)-atom if
‖a‖Lq(Q) � |Q|1/q−1/p , and

∫
Q xka(x)dx = 0,0 � k � [1/p]− 1. It can be proved that

any (p,q)-atom a is in Hp(Rn) . Then the following atomic decomposition theorem
[10, 28] holds: a tempered distribution f ∈ S ′(Rn) belongs to Hp(Rn) if and only if
it has a decomposition

f =
∞

∑
k=0

λkak,

where the ak ’s are (p,q)-atoms and ∑∞
k=0 |λk|p < ∞.

As for the spaces of homogeneous type, let us recall the definition of the atomic
Hardy space in [12] .

Let (Y,d,ν) be a space of homogeneous type and ε > 0 be a fixed parameter. A
function m ∈ L2(Y ) is called a (p,2,ε)-molecule associated to a ball Q if

∫
Y mdν = 0,

for all i � 0,

(∫
2i+1Q\2iQ

|m|2dν
)1/2

� ν(2i+1Q)1/2−1/p2−εi and

(∫
Q
|m|2dν

)1/2

� ν(Q)1/2−1/p.

If in addition we assume supp(m)⊂Q , we call m a (p,2)-atom. Thus, a (p,2)-atom is
exactly a (p,2,∞)-molecule. Then a function h belongs to Hp

CW (Y ) (called the “Hardy
space of Coifman-Weiss” on Y [12]) if there exists a decomposition

h = ∑
i∈N

λimi, ν −a.e.,

where mi are (p,2,ε)-molecules and λi are coefficients which satisfy

∑
i∈N

|λi|p < ∞.

In 2008 and 2009, F. Bernicot and J. Zhao [6, 7] studied a kind of new abstract
Hardy spaces H1

ε,mol which keep the main properties of the classical Hardy spaces H1 .
In the present paper, we give a further research about the abstract Hardy spaces.

The paper is organized as follows.
In Section 2, first, we give some definitions and notations, such as the definitions

of the atomic Hardy space Hp
ato and the molecular Hardy space Hp

ε,mol(0 < p < 1) , and

then we introduce two useful properties about the spaces Hp
ato and Hp

ε,mol . In Section 3,
we give out the comparison between our Hardy spaces with some other Hardy spaces.
In Section 4, we prove the continuity theorem on the Hardy space, and then we give an
example which satisfies the assumption of the continuity theorem. At the end of this
section we give the embedding property.

Finally, we make some conventions on notations. If f � Cg , we write f � g ; if
f � g � f , we then write f ∼ g . For any subset E of X , we use χE to denote its
characteristic function.
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2. Preliminaries

About the definition of spaces of homogeneous type, we consider a set X equipped
with a quasi-metric d and a Borel measure μ .

Quasi-metric d is a function d : X ×X → [0,∞) satisfying
(i) d(x1,x2) = d(x2,x1) � 0 for all x1,x2 ∈ X ;
(ii) d(x1,x2) = 0 if and only if x1 = x2 ;
(iii) the quasi-triangle inequality: there is a constant A0 ∈ [1,∞) such that for all

x1,x2,x3 ∈ X ,
d(x1,x2) � A0(d(x1,x3)+d(x3,x2)).

The nonzero measure μ satisfies the doubling property:

∃A > 0,∃δ > 0,∀x ∈ X ,∀r > 0,∀t � 1,
μ(B(x,tr))
μ(B(x,r))

� Atδ , (1)

where B(x,r) is the open ball with center x ∈ X and radius r > 0. δ is the homoge-
neous dimension of X .

We say that (X ,d,μ) is a space of homogeneous type in the sense of Coifman and
Weiss if d is a quasi-metric on X and μ is a nonzero Borel measure on X satisfying
the doubling condition.

Here we are working with real valued functions and we will use “real” duality, and
we have the same results with complex duality and complex valued functions.

For Q a ball, and i � 0, we write Si(Q) the scaled corona around the ball Q :

Si(Q) :=
{

x,2i � 1+
d(x,c(Q))

rQ
< 2i+1

}
,

where rQ is the radius of the ball Q and c(Q) its center. It is easy to see that S0(Q)
corresponds to the ball Q and Si(Q) ⊂ 2i+1Q for i � 1, where λQ is as usual the ball
with center c(Q) and radius λ rQ .

Denote Q by the collection of all balls: Q := {B(x,r),x ∈ X ,r > 0} , and B :=
(BQ)Q∈Q a collection of L2 -bounded linear operator, indexed by the collection Q . We
assume that these operators BQ are uniformly bounded on L2 : there exists a constant
0 < A′ < ∞ so that:

∀ f ∈ L2, ∀Q ball,
∥∥BQ( f )

∥∥
L2 � A′‖ f‖L2 . (2)

In the rest of the paper, we allow the constants to depend on A,A′ and δ .
Now, we define atoms and molecules by using the collection B .

DEFINITION 1. Let 0 < p < 1 and ε > 0 be a fixed parameter. A function m∈ L2

is called a (p,2,ε)-molecule associated to a ball Q if there exists a real function fQ
such that

m = BQ( fQ),

with
∀i � 0,‖ fQ‖2,Si(Q) � μ(2iQ)

1
2− 1

p 2−εi.
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We call m = BQ( fQ) a (p,2)-atom if in addition we have supp(fQ) ⊂ Q . So an atom
is exactly a (p,2,∞)-molecule.

The functions fQ in this definition are normalized in Lp . It is easy to see that

‖ fQ‖Lp � 1 and ‖ fQ‖L2 � μ(Q)
1
2− 1

p .

So by the L2 -boundedness of the operators BQ , we know that each molecule belongs
to the space L2 .

Next, we define the atomic Hardy space Hp
ato and the molecular Hardy space

Hp
ε,mol . First, we recall some notions related to quasi-Banach spaces [24].

DEFINITION 2. A quasi-Banach space B is a vector space endowed with a quasi-
norm ‖·‖B which is non-negative, non-degenerate(i.e. ‖ f‖B = 0 if and only if f = 0),
homogeneous, and obeys the quasi-triangle inequality, that is, there exists a constant
K ∈ [1,∞) such that, for all f ,g ∈ B ,

‖ f +g‖B � K(‖ f‖B +‖g‖B).

DEFINITION 3. Let r ∈ (0,1] . A quasi-Banach space Br with the quasi-norm
‖ ·‖Br is called an r -quasi-Banach space if ‖ f +g‖r

Br
� ‖ f‖r

Br
+‖g‖r

Br
for all f ,g ∈

Br . Hereafter, ‖ · ‖r
Br

is called the r -quasi-norm of the r -quasi-Banach space Br .

DEFINITION 4. Let 0 < p < 1. A measurable function f is said to belong to the
space H

p
ato if there exists a sequence of (p,2)-atoms {mi}∞

i=1 , such that f = ∑i∈N λimi

in L2 , where for all i , λi are real numbers satisfying

∑
i∈N

|λi|p < ∞.

Furthermore, define
‖ f‖Hp

ato
:= inf

f=∑i∈N λimi

(∑
i
|λi|p)1/p.

The atomic Hardy space Hp
ato is then defined as the completion of H

p
ato with re-

spect to the p -quasi-norm ‖ · ‖p
Hp

ato
.

Similarly, we have

DEFINITION 5. Let 0 < p < 1 and ε > 0. A measurable function f is said to
belong to the space H

p
ε,mol if there exists a sequence of (p,2,ε)-molecules {mi}∞

i=1 ,

such that f = ∑i∈N λimi in L2 , where for all i , λi are real numbers satisfying

∑
i∈N

|λi|p < ∞.

Furthermore, define
‖ f‖Hp

ε,mol
:= inf

f=∑i∈N λimi

(∑
i
|λi|p)1/p.
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The molecular Hardy space Hp
ε,mol is then defined as the completion of H

p
ε,mol

with respect to the p -quasi-norm ‖ · ‖p
Hp

ε,mol
.

REMARK 1. (i) Using the theorem of completion of K. Yosida [44], we know that
H

p
ato has a completion space Hp

ato , that is, for any h ∈ Hp
ato , there exists a Cauchy

sequence {hk}∞
k=1 in H

p
ato such that

lim
k→∞

‖hk −h‖p
Hp

ato
= 0. (3)

Moreover, if {hk}∞
k=1 is a Cauchy sequence in H

p
ato , then there exists a unique h∈Hp

ato
such that (3) holds true. Similarly, we have the conclusion for H

p
ε,mol and Hp

ε,mol .
(ii) Let 0 < p < 1. We have the following inclusions:

∀ 0 < ε < ε ′, H
p
ato ↪→ H

p
ε ′,mol ↪→ H

p
ε,mol .

In fact, the space H
p
ato corresponds to the space H

p
∞,mol .

DEFINITION 6. According to the atomic Hardy space Hp
ato , we define that a func-

tion f ∈Hp
F,ato if f admits a finite atomic decomposition. We equip this space with the

norm

‖ f‖Hp
F,ato

:= inf
f=∑N

i=1 λimi

( N

∑
i=1

|λi|p
)1/p

,

where the infimum is taken over all the finite atomic decompositions. Similarly we
define the space Hp

F,ε,mol with the finite molecular decompositions.

REMARK 2. Since each molecule and each atom belongs to L2 , it is easy to see
that these previous spaces are included into L2 (not continuously). The space Hp

F,ato is
dense into Hp

ato and similarly for the molecular spaces.

At the end of this section, like [22], we give two useful properties about the atomic
Hardy space Hp

ato and the molecular Hardy space Hp
ε,mol .

THEOREM 1. Let (X ,d,μ) be a space of homogeneous type and 0 < p < 1 . Then
f ∈ Hp

ato if and only if there exist (p,2)-atoms {mi}∞
i=1 such that

f =
∞

∑
i=1

λimi in Hp
ato, (4)

and ∑∞
i=1 |λi|p < ∞ . Moreover,

‖ f‖p
Hp

ato
= inf

{ ∞

∑
i=1

|λi|p
}

,

where the infimum is taken over all possible decompositions of f as in (4).
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Proof. First, we assume that f ∈ Hp
ato . Note that if (4) holds true, it is obvious

that

‖ f‖p
Hp

ato
� inf

{ ∞

∑
i=1

|λi|p
}

, (5)

where the infimum is taken over all possible decompositions of f as in (4). It remains to
verify (4) and the reverse inequality of (5). For any f ∈Hp

ato , we consider the following
two cases.

Case (i) When f ∈ H
p
ato . By Definition 4, there exists a sequence of (p,2)-atoms,

{mi}∞
i=1 , such that f = ∑∞

i=1 λimi in L2 and ∑∞
i=1 |λi|p < ∞ .

Now we claim that (4) holds true.
Indeed, for every M ∈ N , f −∑M

i=1 λimi = ∑∞
i=M+1 λimi in L2 . Then we have that

∥∥∥∥ f −
M

∑
i=1

λimi

∥∥∥∥
p

Hp
ato

�
∞

∑
i=M+1

|λi|p → 0 as M → ∞.

Thus, the claim holds true. Again, by Definition 4 and (5), we get the desired result for
Case (i).

Case (ii) When f ∈ Hp
ato \H

p
ato . Using (i) of Remark 1, there exists a Cauchy

sequence { fk}∞
k=1 in H

p
ato such that

∥∥ f − fk
∥∥p

Hp
ato

� 2−k−2
∥∥ f

∥∥p
Hp

ato
.

It is easy to see that f = ∑∞
k=1( fk − fk−1) in Hp

ato , where we let f0 := 0. Since fk −
fk−1 ∈H

p
ato for all k ∈N , by Definition 4 and Case (i), we know that for any ε ∈ (0,∞)

and any k ∈ N , there exists a sequence of (p,2)-atoms {mk,i}∞
i=1 , such that

fk − fk−1 =
∞

∑
i=1

λk,imk,i in L2 and Hp
ato

and
∞

∑
i=1

|λk,i|p <
∥∥ fk − fk−1

∥∥p
Hp

ato
+

ε
2k .

Using this and f = ∑∞
k=1( fk − fk−1) in Hp

ato , we further prove that

f =
∞

∑
k=1

( fk − fk−1) =
∞

∑
k=1

∞

∑
i=1

λk,imk,i in Hp
ato,

and
∞

∑
k=1

∞

∑
i=1

|λk,i|p �
∞

∑
k=1

∥∥ fk − fk−1
∥∥p

Hp
ato

+
∞

∑
k=1

ε
2k

�
∞

∑
k=1

[∥∥ fk − f
∥∥p

Hp
ato

+
∥∥ fk−1 − f

∥∥p
Hp

ato

]
+ ε

�
∞

∑
k=1

2−k
∥∥ f

∥∥p
Hp

ato
+ ε =

∥∥ f
∥∥p

Hp
ato

+ ε,
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which together with the arbitrariness of ε , completes the proof of Case (ii) and hence
the necessity of Theorem 1.

Conversely, given f = ∑∞
i=1 λimi in Hp

ato and ∑∞
i=1 |λi|p < ∞ . Then for any k ∈

N , fk = ∑k
i=1 λimi ∈ H

p
ato and limk→∞ fk = f in Hp

ato . Therefore, f ∈ Hp
ato , which

completes the proof of the sufficiency and hence Theorem 1. �
Similarly, we have

THEOREM 2. Let (X ,d,μ) be a space of homogeneous type, 0 < p < 1 and ε >
0 . Then f ∈ Hp

ε,mol if and only if there exist (p,2,ε)-molecules {mi}∞
i=1 such that

f =
∞

∑
i=1

λimi in Hp
ε,mol , (6)

and ∑∞
i=1 |λi|p < ∞ . Moreover,

‖ f‖p
Hp

ε,mol
= inf

{ ∞

∑
i=1

|λi|p
}

,

where the infimum is taken over all possible decompositions of f as in (6).

3. Comparison with other Hardy spaces

In [6], F. Bernicot and J. Zhao gave the comparison between their Hardy spaces
H1 and other Hardy spaces. In this section, we will also study the comparison between
our Hardy spaces Hp(0 < p < 1) and some other Hardy spaces.

3.1. The space of Coifman-Weiss

If we choose BQ as follows:

BQ( f )(x) = f (x)χQ(x)−|Q|−1(
∫

Q
f )χQ(x),

then the Hardy space Hp
CW (Rn) (0 < p < 1) of Coifman-Weiss is obtained and our

atoms are the same as the ones defined in [35]. However, since the BQ satisfies that
supp BQ(f ) ⊂ Q for any f , so our molecule is different from the one in [35] and our
atomic and molecular spaces are the same if BQ satisfies this special property.

3.2. Hardy spaces for Schrödinger operators with non-negative
polynomial potentials

Let X = Rn and V be a non-negative function on X . We consider the following
Schrödinger operator

L( f )(x) := −Δ f (x)+V(x) f (x),

where V is a non-negative polynomial [16, 17].
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We all know that −L generates a semigroup (Tt)t>0 , which is L2 -bounded and
satisfies some gaussian estimates. J. Dziubański define a Hardy space Hp

L by a maximal
operator as follows: a function f belongs to Hp

L if

‖ f‖Hp
L

:=
∥∥sup

t>0
|Tt f (x)|

∥∥
Lp < ∞, 0 < p < 1.

Denote
m(x,V ) := ∑

β
|DβV (x)|1/(|β |+2),

and m(x,V ) �C , where C is a constant. In [16], J. Dziubański gives an atomic decom-
position of this space with the following definition: a function a is an Hp

L -atom if there
exists a ball Q = B(y0,r) with

supp(a) ⊂ Q, ‖a‖L2 � |Q|1/2−1/p, r � m(y0,V)−1,

and if r � 1
4m(y0,V )−1 , then ∫

Q
a(x)dx = 0.

This definition of atoms is a special case of ours if we define BQ for Q = B(y0,r)
a ball by

BQ( f )(x) :=

⎧⎪⎪⎨
⎪⎪⎩

f (x)χQ(x), 1
4m(y0,V )−1 < r � m(y0,V )−1,

f (x)χQ(x)−|Q|−1(
∫
Q f )χQ(x), r � 1

4m(y0,V )−1,

0, r > m(y0,V )−1,

With this choice we have
Hp

L = Hp
ato.

3.3. Hardy spaces associated to divergence form elliptic operators

Let X = Rn and A be an n×n matrix with entries

a jk : R
n → C, j = 1, · · · ,n, k = 1, · · · ,n,

satisfying the ellipticity condition

λ |ξ |2 � ReAξ ·ξ and |Aξ ·ζ | � Λ|ξ ||ζ |, ∀ξ ,ζ ∈ C
n,

for some constants 0 < λ � Λ < ∞ .
Denote the second order divergence form operator by

L f := −div(A∇ f ).

In [27], S. Hofmann, S. Mayboroda and A. McIntosh define the space Hp
L (0 <

p < 1) associated to this operator. For f ∈ L2(Rn) ,

‖ f‖Hp
L

:=
∥∥∥∥
(∫ ∫

Γ(x)

∣∣t2Le−t2L f (y)
∣∣2 dydt

tn+1

)1/2∥∥∥∥
Lp

,
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where Γ(x) = {(y, t) ∈ Rn× (0,∞) : |x− y|< t} .
They also give a molecular decomposition with the following definition: let 0 <

p < 1, ε > 0 and M > n
2 ( 1

p − 1
2 ) , a function m ∈ L2 is an Hp

L -molecule if there exists
a ball Q ⊂ Rn such that

‖(r−2
Q L−1)km‖2,Si(Q) � 2−iε |2i+1Q| 1

2− 1
p , i = 0,1,2, · · · ,k = 0,1, · · · ,M.

If we choose BQ as follows:

BQ( f ) := (r2
QL)Me−r2QL( f ) or BQ( f ) := (Id− (Id + r2

QL)−1)M( f ),

then our (p,2,ε)-molecules are Hp
L -molecules. Therefore, we have

Hp
ε,mol ↪→ Hp

L .

Here we have no idea about whether the inverse inclusion relation is right between
the spaces.

3.4. Hardy spaces associated to a general semigroup

In [13], X. T. Duong and J. Li defined a space Hp
L (0 < p < 1) with a linear

operator L of type ω on L2(X) with ω ∈ (0,π/2) . They assume that L generates a
holomorphic semigroup e−zl with 0 � |Arg(z)| < π/2−ω , which has a bounded H∞ -
calculus on L2(X) and Davies-Gaffney estimate for its kernel. They define a Hardy
space Hp

L : for f ∈ L2(X) ,

‖ f‖Hp
L (X) :=

∥∥∥∥
(∫ ∫

Γ(x)

∣∣t2Le−t2L f (y)
∣∣2 dμ(y)

V (x,t)
dt
t

)1/2∥∥∥∥
Lp(X)

,

where Γ(x) = {(y, t) ∈ Rn× (0,∞) : |x− y|< t} .
They also give a molecular decomposition by the definition: let 0 < p < 1, ε > 0

and M > [ n(2−p)
4p ] , a function m ∈ L2 is an Hp

L -molecule if there exist a function b ∈
D(LM) and a ball Q ⊂ X such that

m = LM(b),

and for every j = 0,1,2, · · · and k = 0,1, · · · ,M ,

‖(r2
QL)kb‖2,S j(Q) � r2M

Q 2− jεV (2 jQ)
1
2− 1

p ,

where D(T ) represents the domain of an unbounded operator T .
If we choose BQ as follows:

BQ( f ) := (r2
QL)Me−r2QL( f ) or BQ( f ) := (Id− (Id + r2

QL)−1)M( f ),

then our (p,2,ε)-molecules are Hp
L -molecules. Therefore, we have

Hp
ε,mol ↪→ Hp

L .

Here we have no idea about whether the inverse inclusion relation is right between
the spaces.
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4. Continuity theorem on the Hardy space

When 0< p � 1, it is well known that a Calderón-Zygmundoperator is continuous
from the Coifman-Weiss space Hp

CW to Lp . In [6], F. Bernicot and J. Zhao proposed
some general conditions which guarantee the continuity from their Hardy spaces into
L1 . In this section, we make some changes about the conditions, which also guarantee
the continuity from our Hardy spaces into Lp(0 < p < 1) .

We have the two following results:

THEOREM 3. Let 0 < p < 1 and T be an L2 -bounded sublinear operator satis-
fying the following “off-diagonal” estimates: for all ball Q and all j � 2 , there exist
some coefficients α j(Q) such that for all L2 -functions f supported in Q

(
1

μ(2 j+1Q)

∫
S j(Q)

|T(
BQ( f )

)|2dμ
)1/2

� α j(Q)
(

1
μ(Q)

∫
Q
| f |2dμ

)1/2

.

If the coefficients α j(Q) satisfy

Λ := sup
Q ball

∑
j�2

μ(2 j+1Q)
μ(Q)

(
α j(Q)

)p
< ∞,

then there exists a constant C such that

∀ f ∈ Hp
ato,

∥∥T ( f )
∥∥

Lp � C‖ f‖Hp
ato

.

THEOREM 4. Let 0 < p < 1 and T be an L2 -bounded sublinear operator satis-
fying the following “off-diagonal” estimates: for all ball Q and all k � 0, j � 2 , there
exist some coefficients α j,k(Q) such that for every L2 -function f supported in Sk(Q)

(
1

μ(2 j+k+1Q)

∫
S j(2kQ)

|T(
BQ( f )

)|2dμ
)1/2

� α j,k(Q)
(

1
μ(2k+1Q)

∫
Sk(Q)

| f |2dμ
)1/2

.

(7)
If the coefficients α j,k(Q) satisfy

Λ := sup
k�0

sup
Q ball

{
∑
j�2

μ(2 j+k+1Q)
μ(2k+1Q)

(
α j,k(Q)

)p
}

< ∞,

then for all ε > 0 , there exists a constant C = C(ε) such that

∀ f ∈ Hp
ε,mol ,

∥∥T ( f )
∥∥

Lp � C‖ f‖Hp
ε,mol

.

REMARK 3. Note that when ε = ∞ , Theorem 4 becomes Theorem 3. So it suf-
fices to prove Theorem 4.
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Proof of Theorem 4. First, we prove that there exists a constant C = C(ε) such
that for all (p,2,ε)-molecules m :

∥∥T (m)
∥∥p

Lp � C(Λ+‖T‖p
L2→L2). (8)

By Definition 1 we know that there exists a ball Q and a function fQ such that

m = BQ( fQ).

By decomposing the space X with the scaled coronas around Q and using the
linearity of BQ , we have

m = BQ( fQ) = ∑
k�0

BQ(χSk(Q) fQ).

Using the sublinearity of T , we get that
∣∣T (m)

∣∣ � ∑
k�0

∣∣TBQ(χSk(Q) fQ)
∣∣.

By decomposing the integral with the coronas (S j(2kQ)) j�0 which is a partition
of X , we obtain that

∥∥T (m)
∥∥p

Lp � ∑
k�0

∥∥TBQ(χSk(Q) fQ)
∥∥p

Lp � ∑
k�0
j�0

∫
S j(2kQ)

∣∣T(
BQ(χSk(Q) fQ)

)∣∣p
dμ

� ∑
k�0
j�0

μ(2k+ j+1Q)
1

μ(2k+ j+1Q)

∫
S j(2kQ)

∣∣T(
BQ(χSk(Q) fQ)

)∣∣p
dμ

� ∑
k�0
j�0

μ(2k+ j+1Q)
1

μ(2k+ j+1Q)

(∫
S j(2kQ)

∣∣T(
BQ(χSk(Q) fQ)

)∣∣p·(2/p)
dμ

)p/2

× μ(2k+ j+1Q)1−p/2

� ∑
k�0
j�0

μ(2k+ j+1Q)
(

1
μ(2k+ j+1Q)

∫
S j(2kQ)

∣∣T(
BQ(χSk(Q) fQ)

)∣∣2dμ
)p/2

.

Using the “off-diagonal” estimates (7) on T and the doubling condition (1) about
the measure μ (for the parts j � 1), we have

∥∥T (m)
∥∥p

Lp

� ∑
k�0
j�2

μ(2k+1Q)
μ(2k+ j+1Q)
μ(2k+1Q)

(
α j,k(Q)

)p
(

1
μ(2k+1Q)

∫
2k+1Q

∣∣χSk(Q) fQ
∣∣2dμ

)p/2

+ ∑
k�0
j�1

A2 jδ μ(2k+1Q)
(

1
μ(2k+1Q)

∫
X

∣∣T(
BQ(χSk(Q) fQ)

)∣∣2dμ
)p/2
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� ∑
k�0
j�2

μ(2k+1Q)
μ(2k+ j+1Q)
μ(2k+1Q)

(
α j,k(Q)

)pμ(2k+1Q)−p/2‖ fQ‖p
2,Sk(Q)

+ ∑
k�0
j�1

A2 jδ μ(2k+1Q)1−(p/2)‖TBQ‖p
L2→L2‖ fQ‖p

2,Sk(Q)

Using (2) and the L2 -decay on fQ , we obtain that

∥∥T (m)
∥∥p

Lp

� ∑
k�0
j�2

μ(2k+1Q)
μ(2k+ j+1Q)
μ(2k+1Q)

(
α j,k(Q)

)pμ(2k+1Q)−p/2μ(2k+1Q)p/2−12−pεk

+A′‖T‖p
L2→L2 ∑

k�0
j�1

2−pεk+ jδ

� ∑
k�0

2−pεk
(

∑
j�2

μ(2k+ j+1Q)
μ(2k+1Q)

(
α j,k(Q)

)p +2δ+1‖T‖p
L2→L2

)

� Λ+‖T‖p
L2→L2 .

We have that (8) holds true.
For any f ∈ H

p
ε,mol , there exists a sequence of (p,2,ε)-molecules {mi}∞

i=1 such

that f = ∑∞
i=1 λimi in L2 and

∞

∑
i=1

|λi|p ∼ ‖ f‖p
Hp

ε,mol
.

Since T is L2 -bounded, we have that, for any N ∈ N ,

∥∥∥∥
N

∑
i=1

T (λimi)−T f

∥∥∥∥
L2

=
∥∥∥∥T

( N

∑
i=1

λimi− f
)∥∥∥∥

L2
�

∥∥∥∥
N

∑
i=1

λimi − f

∥∥∥∥
L2

→ 0, N → ∞.

Moreover, for all η ∈ (0,∞) ,

μ
({

x ∈ X :
∣∣ N

∑
i=1

T (λimi)(x)−T f (x)
∣∣ > η

})
→ 0, N → ∞.

According to the Riesz theorem, we get that there exists a subsequence{
∑Nk

i=1 T (λimi)
}

k , such that

T f = lim
k→∞

Nk

∑
i=1

T (λimi) μ −a.e. on X ,
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which together with the Fatou lemma and (8), implies that

∥∥T f
∥∥p

Lp � lim
k→∞

inf
∫

X

Nk

∑
i=1

∣∣T (λimi)
∣∣p

dμ

�
∞

∑
i=1

∣∣λi
∣∣p∥∥T (mi)

∥∥p
Lp �

∞

∑
i=1

∣∣λi
∣∣p(Λ+‖T‖p

L2→L2

)

� Λ+‖T‖p
L2→L2 .

Moreover, using the density argument and the method similar to the Case (ii) of
Theorem 1, we extend T to be a bounded linear operator from Hp

ε,mol to Lp . �

EXAMPLE 1. If we choose BQ as follows:

BQ( f )(x) = f (x)χQ(x)−|Q|−1(
∫

Q
f )χQ(x),

then our atoms are the same as the ones defined in [35].
Thus, we set

BQ( f )(x) = f (x)χQ(x)−
(

μ(Q)−1
∫

Q
f dμ

)
χQ(x),

and let T be an L2 -bounded operator. If we suppose that the kernel K(x,z) of T
satisfies the Calderón-Zygmund condition: there exists θ > 0 such that for all x 
= z
and z′ ∈ B(z,d(x,z)/2)

|K(x,z)| � 1
μ(B(x,d(x,z))

,

|K(x,z)−K(x,z′)| � d(z,z′)θ

μ(B(x,d(x,z))d(x,z)θ ,

then we have that T satisfies the assumptions in Theorem 3 for 2/3< p < 1. Therefore,
T is continuous from Hp

CW = Hp
ato into Lp (2/3 < p < 1) . The following is the process

of proof.

Proof. First, we have that

(
1

μ(2 j+1Q)

∫
S j(Q)

|T(
BQ( f )(x)

)|2dμ(x)
)1/2

=
(

1
μ(2 j+1Q)

∫
S j(Q)

∣∣∫
Q
[k(x,z)− k(x,z′)]

(
BQ( f )(z)

)
dz

∣∣2dμ(x)
)1/2

�
(

1
μ(2 j+1Q)

∫
S j(Q)

[∫
Q
|k(x,z)− k(x,z′)||BQ( f )(z)|dz

]2
dμ(x)

)1/2

�
(

1
μ(2 j+1Q)

∫
S j(Q)

[∫
Q

d(z,z′)θ

μ(B(x,d(x,z)))d(x,z)θ |BQ( f )(z)|dz
]2

dμ(x)
)1/2
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�
(

1
μ(2 j+1Q)

∫
S j(Q)

[∫
Q

1
μ(B(x,d(x,z)))

|BQ( f )(z)|dz
]2

dμ(x)
)1/2

� 1

μ(2 j+1Q)1/2

∫
Q

(∫
S j(Q)

1

μ
(
B(x,d(x,z))

)2 |BQ( f )(z)|2dμ(x)
)1/2

dz

� 1

μ(2 j+1Q)1/2

1
μ(2 j+1Q)

∫
Q

(∫
S j(Q)

|BQ( f )(z)|2dμ(x)
)1/2

dz

� 1

μ(2 j+1Q)3/2
‖ fQ‖2,Qμ(Q) =

μ(Q)
μ(2 j+1Q)3/2

(∫
Q
| f |2dμ(x)

)1/2

=
μ(Q)3/2

μ(2 j+1Q)3/2

(
1

μ(Q)

∫
Q
| f |2dμ(x)

)1/2

.

Let α j(Q) = μ(Q)3/2

μ(2 j+1Q)3/2 , then we get that

∑
j�2

μ(2 j+1Q)
μ(Q)

(
α j(Q)

)p = ∑
j�2

μ(2 j+1Q)
μ(Q)

(
μ(Q)3/2

μ(2 j+1Q)3/2

)p

= ∑
j�2

(
μ(2 j+1Q)

μ(Q)

)1− 3
2 p

� ∑
j�2

(
2 jδ)1− 3

2 p
.

Therefore, when 2/3 < p < 1, we obtain that T is continuous from Hp
ato into

Lp . �
Now we establish the (Hp

ato,B,Hp
ε ′,mol,TB

)-boundedness of L2 -bounded operator
T , where ε ′ > 0,B := (BQ)Q∈Q , and TB := (TBQ)Q∈Q .

THEOREM 5. Let 0 < p < 1 and T be an L2 -bounded sublinear operator. As-
sume that ε ′ > 0 , then T is bounded from Hp

ato,B into Hp
ε ′,mol,TB

.

Proof. We claim that if m = BQ fQ is a (p,2) atom of Hp
ato,B , then Tm is a

(p,2,ε ′)-molecule of Hp
ε ′,mol,TB

and
∥∥T (m)

∥∥
Hp

ε ′ ,mol,TB

= 1. (9)

Indeed, suppose that (9) holds true. For each f ∈ H
p
ato,B , there exists a sequence

of (p,2)-atoms {mi}∞
i=1 and real numbers {λi}∞

i=1 such that f = ∑∞
i=1 λimi in L2 with

∥∥ f
∥∥p

Hp
ato,B

∼

∞

∑
i=1

|λi|p.

Since T is bounded on L2 , we have that∥∥∥∥
N

∑
i=1

T (λimi)−T f

∥∥∥∥
L2

=
∥∥∥∥T

( N

∑
i=1

λimi− f
)∥∥∥∥

L2
�

∥∥∥∥
N

∑
i=1

λimi − f

∥∥∥∥
L2

→ 0, N → ∞.
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Therefore, T f = ∑N
i=1 T (λimi) in L2 . And also we know that

∥∥T f
∥∥p

Hp
ε ′ ,mol,TB

�
∞

∑
i=1

∥∥T (λimi)
∥∥p

Hp
ε ′ ,mol,TB

�
∞

∑
i=1

|λi|p
∥∥Tmi

∥∥p
Hp

ε ′ ,mol,TB

�
∞

∑
i=1

|λi|p ∼
∥∥ f

∥∥p
Hp

ato,B
.

Moreover, using a density argument and the method similar to the Case (ii) of
Theorem 1, we extend T to be a bounded linear operator from Hp

ato,B to Hp
ε ′,mol,TB

.

Now we prove the claim. First, Since T , BQ and fQ are all L2 bounded, so we
have that Tm is also L2 bounded.

Furthermore, we know that supp fQ ⊂ Q , thus

‖ fQ‖2,Si(Q) � μ(2iQ)
1
2− 1

p 2−ε ′i.

As a consequence, we get that Tm is a (p,2,ε ′)-molecule of Hp
ε ′,mol,TB

. By the
definition of ‖ · ‖Hp

ε,mol
, we have that

∥∥T (m)
∥∥

Hp
ε ′ ,mol,TB

= 1. �

Next, in order to discuss the embedding of our Hardy spaces into Lp , additionally,
we assume that B = (BQ)Q satisfies some decay estimates: for M′′ a large enough
exponent, there exists a constant C such that

∀i � 0,∀k � 0,∀ f ∈ L2,supp(f ) ⊂ 2iQ,‖BQ(f )‖2,Sk(2iQ) � C2−M′′k‖f‖2,2iQ. (10)

We have the following embedding property.

THEOREM 6. Let 0 < p < 1 , then we have the following inclusions:

∀ε > 0,Hp
ato ↪→ Hp

ε,mol ↪→ Lp.

Proof. First, we show that all (p,2,ε)-molecules (and atoms) are bounded in Lp .
Using (10), we have

∥∥BQ( fQ)
∥∥p

Lp � ∑
j�0

∥∥BQ( fQχS j(Q))
∥∥p

Lp � ∑
j�0

∑
k�0

∥∥BQ( fQχS j(Q))
∥∥p

Lp,Sk(2 jQ)

� ∑
j�0

∑
k�0

(∫
Sk(2 jQ)

|BQ( fQχS j(Q))|p·(2/p)dμ
)p/2

μ
(
2 j+kQ

)1−p/2

� ∑
j�0

∑
k�0

μ
(
2 j+kQ

)1−p/2
2−M′′kp

∥∥ fQ
∥∥p

2,S j(Q)

� ∑
j�0

∑
k�0

2kδ (1−p/2)2−M′′kp2−ε jp � 1.
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In the above we use the doubling property of μ and the fact that M′′ is large
enough (M′′ > δ/p works). Thus, we get that all (p,2,ε)-molecules are bounded in
Lp , and we can conclude the embedding property by using the definition of the Hardy
spaces. �
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[16] J. DZIUBAŃSKI, Atomic decomposition of Hp spaces associated with some Schrödinger operators,

Indiana Univ. Math. J., 47, (1998), 75–98.
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