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LATTICE EMBEDDINGS IN FREE BANACH LATTICES OVER LATTICES
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(Communicated by P. Tradacete Perez)

Abstract. Any lattice embedding i : L −→ M between two lattices L ⊆ M induces a Banach
lattice homomorphism ı̂ : FBL〈L〉 −→ FBL〈M〉 between the corresponding free Banach lattices
generated by these lattices. We show that this mapping ı̂ might not be an isomorphic embedding.
Sufficient conditions for ı̂ to be an isometric embedding are provided by considering a notion
of locally complemented lattices. As a consequence, we obtain that every free Banach lattice
generated by a lattice is Banach lattice isomorphic to an AM-space.

Furthermore, we prove that ı̂ is an isomorphic embedding if and only if it is injective,
which in turn is equivalent to the fact that every lattice homomorphism x∗ : L −→ [−1,1] ex-
tends to a lattice homomorphism x̂∗ : M −→ [−1,1] . Using this characterization we provide an
example of lattices L ⊆ M for which ı̂ is an isomorphic not isometric embedding.

1. Introduction

In the last years, several free structures concerning Banach lattices have been con-
sidered and have attracted the attention of many researchers. On the one hand, B. de
Pagter and A. W. Wickstead considered in [11] the free Banach lattice generated by a
set. This concept was later extended by A. Avilés, J. Rodrı́guez and P. Tradacete in [6],
who introduced the free Banach lattice generated by a Banach space (the free Banach
lattice generated by a set A is lattice isometric to the free Banach lattice generated by
the Banach space �1(A) [6, Corollary 2.9]). Finally, a different approach was consid-
ered by A. Avilés and J. D. Rodrı́guez Abellán in [8] by considering the free Banach
lattice generated by a lattice.

Apart from being natural definitions in the framework of category theory, the con-
cepts of free Banach lattices have shown to be useful in order to provide relevant ex-
amples and counterexamples in the theory of Banach lattices. For instance, in [6] a
free Banach lattice over a Banach space is exhibited as an example of a Banach lattice
which is weakly compactly generated as a Banach lattice but not as a Banach space,
answering an open question posed by J. Diestel. Moreover, in [9] free Banach lattices
were used in order to exhibit examples of lattice homomorphisms which do not attain
their norm. See [2, 5, 7, 10, 13] for background on free Banach lattices.
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It is natural to ask whether the inclusion of two objects induces an inclusion of the
free Banach lattices generated by them. In [11] it is shown that if B is a non-empty sub-
set of A , then the free Banach lattice generated by B , FBL(B) , is isometric to a sublat-
tice of FBL(A) . This is no longer true for the free Banach lattice generated by a Banach
space. Namely, the problem of determining when an isomorphic embedding of Banach
spaces yields a Banach lattice isomorphic embedding between the corresponding free
Banach lattices was studied by T. Oikhberg, M. Taylor, P. Tradacete and V. Troitsky,
providing a complete answer in terms of operators taking values on �n

1 (see Theorem
2.2). In general, if F is a closed subspace of the Banach space E and we denote by
FBL[F ] and FBL[E] the free Banach lattices generated by F and E , respectively, then
FBL[F ] is isometric to a sublattice of FBL[E] whenever F is a 1-complemented sub-
space of E [6, Corollary 2.8] or whenever E = F∗∗ [10, Lemma 2.4]. Notice that in
the latest case F is locally complemented in E ; in general, this condition implies that
FBL[F ] is isometric to a locally complemented sublattice of FBL[E] (see [4, Corollary
4.2] for a generalized version of this result).

In this paper we focus on the analogous problem for the free Banach lattice gen-
erated by a lattice L , denoted by FBL〈L〉 . This problem has been previously con-
sidered in [8, Lemma 5.3], where it was proved that if L ⊆ M are linearly ordered
sets, then FBL〈L〉 is isomorphic to a sublattice of FBL〈M〉 (for an isometric version
see [16, Lemma 3.6]). Furthermore, [3, Proposition 4.2] asserts that FBL〈L〉 is a 1-
complemented Banach sublattice of FBL〈M〉 whenever L is complemented in M . We
wonder how this condition can be relaxed in order to obtain, not 1-complementation,
but an isometric inclusion.

Let us now describe the content of the paper. In Section 2 we introduce the nec-
essary notation and preliminary results among which Theorem 2.3 provides a sufficient
condition for a pair of lattices L ⊆ M to satisfy that FBL〈L〉 is an isometric sublat-
tice of FBL〈M〉 . In Section 3 we introduce, motivated by the definition of locally
complemented Banach spaces [14], the notion of locally complemented sublattices in
Definition 2. Next, we prove in Theorem 3.2 a result of extension of lattice homo-
morphisms which allows us to obtain the desired result, namely, that if L is a locally
complemented sublattice of M , then FBL〈L〉 is isometric to a sublattice of FBL〈M〉
(see Corollary 3.3). We conclude Section 3 showing several natural properties for a
pair of lattices L ⊆ M , such as M being linearly ordered or L being an ideal in M ,
which ensure that L is locally complemented in M (see Proposition 3.4). As a conse-
quence of one of this examples we obtain one of the main results of the article, which
asserts that FBL〈L〉 is Banach lattice isomorphic to an AM-space for every lattice L

(Theorem 3.6).
In Section 4 we focus on the “isomorphic problem”, i.e. we study when the in-

clusion of L into M induces a Banach lattice isomorphic embedding of FBL〈L〉 into
FBL〈M〉 . We prove that the map î : FBL〈L〉 −→ FBL〈M〉 induced by the canonical
inclusion i : L −→ M is an into isomorphism if, and only if, it is injective, which in
turn is equivalent to the fact that every lattice homomorphism x∗ : L −→ [−1,1] admits
an extension x̂∗ : M −→ [−1,1] . Two main ingredients are needed here: on the one
hand, a Banach lattice identification of FBL〈L〉 with a certain C(K) space when L has
a maximum and a minimum element [3, Theorem 2.7]; on the other hand, the fact that
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L is locally complemented in a lattice with maximum and minimum (see Proposition
3.4).

Finally, using the results obtained in Sections 3 and 4, we provide in Section 5 an
example of (finite) lattices L ⊆ M for which the map ı̂ : FBL〈L〉 −→ FBL〈M〉 is an
isomorphic but not isometric embedding.

2. Background and preliminary results

Given a Banach space E , we denote by FBL[E] the free Banach lattice generated
by E . This Banach lattice, introduced in [6], contains an isometric copy of E with the
property that every bounded operator from E to any Banach lattice X can be extended
to a Banach lattice homomorphism, i.e. to a bounded operator which is also a lattice
homomorphism, from FBL[E] to X preserving the norm. In this article we focus on
the notion of the free Banach lattice generated by a lattice L introduced in [8].

DEFINITION 1. Given a lattice L , a free Banach lattice over or generated by L

is a Banach lattice F together with a norm-bounded lattice homomorphism δL : L −→
F with the property that for every Banach lattice X and every norm-bounded lattice
homomorphism T : L−→X there is a unique Banach lattice homomorphism T̂ : F −→
X such that T = T̂ ◦ δL and ‖T̂‖ = ‖T‖ .

L

δL

��

T �� X

F
T̂

���������������

Here, the norm of T is ‖T‖ := sup{‖T (x)‖ : x ∈ L} , while the norm of T̂ is the
usual one for operators between Banach spaces.

This definition determines a Banach lattice that we denote by FBL〈L〉 in an es-
sentially unique way. Recall that a lattice L is said to be distributive if x∧ (y∨ z) =
(x∧y)∨(x∧z) for every x,y,z ∈ L . When L is a distributive lattice (which is a natural
assumption in this context, see [8, Section 3]) the function δL is injective and, loosely
speaking, we can view FBL〈L〉 as a Banach lattice which contains a (norm-bounded)
subset lattice-isomorphic to L in a way that its elements work as free generators mod-
ulo the lattice relations on L . Since every free Banach lattice generated by a lattice can
be seen as a free Banach lattice generated by a distributive lattice [8, Proposition 3.2],
for our purpose there is no loss of generality in considering only distributive lattices.
For that reason, all lattices considered in this text are assumed to be distributive.

In order to give an explicit description of FBL〈L〉 as a space of functions, define

L∗ = {x∗ : L −→ [−1,1] : x∗ is a lattice homomorphism} .

For every x ∈ L consider the evaluation function δx : L∗ −→ R given by δx(x∗) =
x∗(x) , and for f ∈ RL∗

, define

‖ f‖ = sup

{
n

∑
i=1

| f (x∗i )| : n ∈ N, x∗1, . . . ,x
∗
n ∈ L∗, sup

x∈L

n

∑
i=1

|x∗i (x)| � 1

}
.
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We will denote this norm by ‖·‖ or ‖·‖FBL〈L〉 , indistinctly.

THEOREM 2.1. ([8, Theorem 1.2]) Consider F to be the closure of lat{δx : x ∈ L}
under the norm ‖ · ‖ inside the Banach lattice of all functions f ∈ RL∗

with ‖ f‖ < ∞ ,
endowed with the norm ‖ · ‖ , the pointwise order and the pointwise operations. Then
F , together with the assignment δL(x) = δx , is the free Banach lattice generated by L .

Let us consider a lattice M and a sublattice L of M , and let i : L −→ M be the
inclusion mapping. Note that the mapping δM ◦ i : L −→ FBL〈M〉 defines a bounded
lattice homomorphism from L into the Banach lattice FBL〈M〉 and, consequently,
the universal property of free Banach lattices described in Definition 1 yields a Banach
lattice homomorphism ı̂ : FBL〈L〉 −→ FBL〈M〉 . Note that, formally speaking, ı̂(δx) =
δi(x) for every x ∈ L . Throughout the text, when we say that FBL〈L〉 is a sublattice
of FBL〈M〉 we will mean that this mapping ı̂ is an isometric embedding (we will only
explicitly mention this mapping in Section 4 for the reader convenience).

As we have pointed out in the introduction, given a Banach space E and a subspace
F of E , it is known that the map ı̂ : FBL[F ] −→ FBL[E] induced by the inclusion of
F in E is an isometric embedding when F is 1-complemented in E [6, Corollary 2.8]
and when E = F∗∗ [10, Lemma 2.4]. Recently, T. Oikberg, M. Taylor, P. Tradacete and
V. Troitsky∗ characterized when ı̂ is an isometry in the following terms.

THEOREM 2.2. (T. Oikberg, M. Taylor, P. Tradacete and V. Troitsky) Let E be a
Banach space and F be a closed subspace of E . Let i : F −→ E be the inclusion
operator. The following are equivalent:

1. ı̂ : FBL[F ] −→ FBL[E] is an isometry from FBL[F ] onto its range.

2. For every n ∈ N and every bounded operator T : F −→ �n
1 there exists an oper-

ator T̂ : E −→ �n
1 so that T̂ |F = T and ‖T̂‖ = ‖T‖ .

In the next theorem we obtain a version for free Banach lattices over lattices of the
implication (2)⇒(1) . Let L be a lattice. Given a lattice homomorphism φ : L −→ �n

1 ,
for some n ∈ N , then

φ(x) =
n

∑
k=1

x∗k(x)ek

for some x∗k : L −→ R . Moreover, since the natural projections Pk : �n
1 −→R are lattice

homomorphisms, it follows that each x∗k = Pk ◦φ is a lattice homomorphism for every
1 � k � n .

THEOREM 2.3. Let L ⊆ M be two lattices. Assume that for every n ∈ N and for
every norm-bounded lattice homomorphism φ : L −→ �n

1 there exists a norm preserv-
ing lattice homomorphism extension Φ : M −→ �n

1 . Then FBL〈L〉 is a sublattice of
FBL〈M〉 .

∗Result announced in a talk given by M. Taylor on October 16th, 2020, at the Banach spaces webinars.
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Proof. Pick f ∈ lat{δx : x ∈ L} , where lat{δx : x ∈ L} denotes indistinctly the
vector lattice generated by {δx : x ∈ L} inside FBL〈L〉 or FBL〈M〉 , and let us prove
that ‖ f‖FBL〈M〉 = ‖ f‖FBL〈L〉 . Let us prove ‖ f‖FBL〈M〉 � ‖ f‖FBL〈L〉 , which is the non-
trivial inequality (the other inequality is a direct consequence of the fact that the map
ı̂ induced by the inclusion has norm ‖ı̂‖ = 1). To this end, pick ε > 0 and choose
x∗1, . . . ,x

∗
n ∈ L∗ so that ∑n

k=1 | f (x∗k)| > ‖ f‖FBL〈L〉 − ε and sup
x∈L

∑n
k=1 |x∗k(x)| � 1. Define

the lattice homomorphism φ : L −→ �n
1 by the equation

φ(x) :=
n

∑
k=1

x∗k(x)ek.

Note that, by the definition of the norm of a lattice homomorphism, we get that ‖φ‖ �
1. By assumption there exists an extension Φ : M −→ �n

1 with ‖Φ‖ � 1. Now, Φ is
given by Φ(x) := ∑n

k=1 x̂∗k(x)ek , where ∑n
k=1 |x̂∗k(x)| � 1 for every x ∈ M and x̂∗k(x) =

x∗k(x) holds for every x ∈ L . Since f ∈ lat{δx : x ∈ L} we get that f (x∗) = f (y∗)
whenever x∗(x) = y∗(x) for every x ∈ L . In particular, f (x̂∗k) = f (x∗k) holds for every
k � n . Finally

‖ f‖FBL〈L〉 − ε <
n

∑
k=1

| f (x∗k)| =
n

∑
k=1

| f (x̂∗k)| � ‖ f‖FBL〈M〉.

Since ε > 0 was arbitrary we conclude that ‖ f‖FBL〈M〉 = ‖ f‖FBL〈L〉 for every f ∈
lat{δx : x ∈ L} . The conclusion follows since FBL〈L〉 = lat{δx : x ∈ L}‖·‖FBL〈L〉 . �

PROBLEM 1. We do not know whether the converse of Theorem 2.3 is true, i.e.
whether if ı̂ : FBL〈L〉 −→ FBL〈M〉 is an isometry onto its range then for every n ∈
N and every norm-bounded lattice homomorphism φ : L −→ �n

1 there exists a norm
preserving extension Φ : M −→ �n

1 .

3. Isometric embeddings and local complementation

Let M be a lattice and L be a sublattice of M . In Theorem 2.3 we have ob-
tained a sufficient condition which guarantees that FBL〈L〉 is an isometric sublattice
of FBL〈M〉 . This condition is, however, a bit difficult to check in practice because it
involves the possibility of extending lattice homomorphisms taking values in �n

1 . In
this section we provide a sufficient condition which is more tractable in the sense that
it can be checked just looking at the lattices L and M . We provide several examples
of lattices satisfying this condition and, in particular, one of these examples shows that
FBL〈L〉 is Banach lattice isomorphic to an AM-space for every lattice L .

In the context of free Banach lattices over Banach spaces, if F is a 1-complemented
subspace of E then FBL[F] is a 1-complemented sublattice of FBL[E] [6, Corollary
2.8]. A lattice version of this result is given by the following proposition. For any set
A , we write 1A to denote the identity function 1A : A −→ A .

PROPOSITION 3.1. Let L ⊆ M be two lattices. Let i : L −→ M be the canonical
inclusion and assume that there exists a lattice homomorphism r : M −→ L so that
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r ◦ i = 1L (in short, L is complemented in M), then FBL〈L〉 is a 1-complemented
Banach sublattice of FBL〈M〉 .

Proof. Let i : L−→M be the inclusion lattice homomorphismand let r : M−→L

be a retraction. By using the universal property of the free Banach lattice generated by
a lattice, we can find Banach lattice homomorphisms ı̂ : FBL〈L〉 −→ FBL〈M〉 and
r̂ : FBL〈M〉 −→ FBL〈L〉 such that ‖ı̂‖ = ‖r̂‖ = 1 and (r̂ ◦ ı̂) ◦ δL = r̂ ◦ (ı̂ ◦ δL) = r̂ ◦
(δM ◦ i) = δL ◦ r ◦ i = δL . It follows from the uniqueness in the universal property that
r̂ ◦ ı̂ = 1FBL〈L〉 , so we are done. �

The assumption of being complemented, though being an intrinsic condition on
the lattices L and M , is still quite restrictive. For instance, it is proved in [16, Lemma
3.6] that if M is a linearly ordered set then any subset L ⊆ M satisfies that FBL〈L〉 is
an isometric sublattice of FBL〈M〉 . However, it is easy to construct examples where
there is no complementation condition (for instance, Q ⊆ R). Because of this reason
we look for a weaker intrinsic criterion which still implies isometric containment. In
order to do so, we look again at the case of Banach spaces, and we look for a version
of the concept of locally complemented Banach spaces. Being inspired by the original
definition given by Kalton [14], we propose the following:

DEFINITION 2. Let L ⊆ M be two lattices. We say that L is locally comple-
mented in M if for every finite sublattice F of M there exists a lattice homomorphism
T : F −→ L such that T (x) = x for every x ∈ F∩L.

It is clear that if L is complemented in M then it is locally complemented. Many
examples exhibited in Proposition 3.4 reveal that local complementation does not imply
complementation.

Before presenting examples of locally complemented lattices, we prove the fol-
lowing theorem which justifies our interest in this concept.

THEOREM 3.2. Let L ⊆ M be two lattices. If L is locally complemented in M ,
then for any finite-dimensional Banach lattice X and any norm-bounded lattice ho-
momorphism φ : L −→ X there exists a lattice homomorphism Φ : M −→ X which
extends φ and so that Φ(M) ⊆ φ(L) . In particular, ‖Φ‖ = ‖φ‖ .

Proof. Pick any finite sublattice F of M . By assumption there exists a lattice
homomorphism TF : F −→ L such that TF(x) = x for every x ∈ F∩L. Now define
φF := φ ◦ TF : F −→ X , which is a lattice homomorphism. Moreover, it is clear that,
given x ∈ F , then

‖φF(x)‖ = ‖φ(TF(x))‖ � ‖φ‖,
which, in other words, means that φF(x) ∈ ‖φ‖BX . We extend φF to ΦF : M −→
‖φ‖BX by the equation

ΦF(x) :=
{

φF(x) if x ∈ F,
0 if x /∈ F.
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Notice that ΦF is not a lattice homomorphism. However, as it is defined, it is obvious
that ΦF belongs to the compact space (‖φ‖BX)M , endowed with the product topology.
Define

S := {F ⊆ M : F is a finite sublattice}.
Recall that, since M is a distributive lattice, finitely generated sublattices are finite [12,
Theorem II.2.1]. Thus, S is a directed set with the order E � F if and only if E ⊆ F .
With this point of view, (ΦF)F∈S is a net in the compact space ((‖φ‖BX ,‖ · ‖))M .
By compactness, we get a cluster point Φ of the net (ΦF)F∈S . Let us prove that Φ
satisfies the desired requirements. First, let us prove that Φ is a lattice homomorphism.
To this end, pick x,y ∈ M . Then, for any F ∈ S such that {x,y} ⊆ F we get

ΦF(x∨ y) = φF(x∨ y) = φF(x)∨φF(y) = ΦF(x)∨ΦF(y),
where we have used that φF is a lattice homomorphism for every F . Since Φ is a
cluster point of (ΦF)F∈S and the lattice operations on X are norm-continuous we get
that

Φ(x∨ y) = Φ(x)∨Φ(y).

A similar argument shows that Φ also preserves infima. The arbitrariness of x,y im-
plies that Φ is a lattice homomorphism.

Now we prove that Φ(x) = φ(x) for every x ∈ L . Pick x ∈ L . For every F ∈ S
with x ∈ F we get that

ΦF(x) = φF(x) = φ(TF(x)) = φ(x),
since TF(x) = x for every x ∈ F∩L . This shows that Φ extends φ .

Let us finally prove that Φ(M) ⊆ φ(L) . To this end, pick any x ∈ M and notice
that, for every F ∈ S with x ∈ F we get that

ΦF(x) = φF(x) = φ(TF(x)) ∈ φ(L),
and now the cluster condition implies that Φ(x)∈ φ(L) , which concludes the proof. �

REMARK 1. After an inspection of the proof, one might think that we can replace
X being finite-dimensional with X being a dual Banach lattice by using a Linden-
strauss compactness argument involving the weak*-compactness of the unit ball of a
dual Banach space. However, this technique does not work since the resulting map-
ping Φ might not be a lattice homomorphism because, in general, it is not true that
the lattice operations in a dual Banach lattice are w∗ -continuous. Indeed, if one con-
siders the Rademacher sequence (rn)n∈N in L2([0,1]) , then (rn)n∈N → 0 weakly, but
rn ∨ (−rn) is the constant function 1 for every n ∈ N . So limn→+∞(rn ∨ (−rn)) = 1 �=
0 = (limn→+∞ rn)∨ (limn→+∞−rn) , where these limits are taken with respect to the
weak topology.

An application of the previous theorem to X = �n
1 together with Theorem 2.3 yields

the desired consequence.

COROLLARY 3.3. Let L ⊆ M be two lattices. If L is locally complemented in
M , then FBL〈L〉 is an isometric sublattice of FBL〈M〉 .
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Let us devote the end of this section to provide natural examples of pairs of lattices
L ⊆ M for which L is locally complemented in M . First, let us recall the following
well-known concepts in lattice theory.

DEFINITION 3. Let L ⊆ M be two lattices.

1. M is said to be linearly ordered if x � y or y � x for any x,y ∈ M .

2. We say that L is an ideal in M if x ∈ L whenever there is y ∈ L with x � y .

3. We say that L is a filter in M if x ∈ L whenever there is y ∈ L with x � y .

The notions of filter and ideal are of capital importance in Boolean algebras and
play an important role in the Stone duality theorem of Boolean algebras (see [15]).

Now we are able to exhibit several natural examples of locally complemented
sublattices.

PROPOSITION 3.4. Let L ⊆ M be two lattices. If,

1. M is linearly ordered, or

2. L is an ideal in M , or

3. L is a filter in M , or

4. M = L∪{m,M} with the property that m = minM and M = maxM ,

then L is locally complemented in M .

Proof. Let F ⊆ M be a finite sublattice. If F∩L = /0 , we can take as T : F −→ L

any constant map. Thus, without loss of generality, we suppose L∩F �= /0 .
For (1), since M is linearly ordered, the map T : F −→ L given by

T (x) =

⎧⎨
⎩

inf{y ∈ L∩F : y � x} if there exists y ∈ L∩F with y � x,

sup{y ∈ L∩F : y � x} otherwise,

is a well-defined lattice homomorphism such that T (x) = x for every x ∈ L∩F .
For (2), set z := sup(F∩L). The fact that L is an ideal in M allows us to define a

map T : F−→ L given by T (x) = x∧z for every x ∈ F . The fact that M is distributive
guarantees that T is a lattice homomorphism. Now, if x ∈ F∩L we clearly have that
T (x) = x∧ z = x .

The proof of (3) is similar to the previous one, taking z := min(F∩L) and T : F−→
L the lattice homomorphism given by T (x) = x∨ z for every x ∈ F .

Finally, for (4), we define T : F −→ L by T (x) = x for every x ∈ F∩L , T (m) =
inf(F∩L) if m ∈ F , and T (M) = sup(F∩L) if M ∈ F . �

As we have said before, if L is a complemented sublattice of M , then it is locally
complemented. The converse is not true. For example, Q is not complemented in R

but it is locally complemented by (1) in Proposition 3.4. However, a kind of converse
can be established when we deal with finite sublattices in the following sense.
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PROPOSITION 3.5. Let L ⊆ M be two lattices. If L is finite and locally comple-
mented in M , then L is complemented in M .

Proof. Since L is distributive, there exists a Boolean algebra B and an injec-
tive lattice homomorphism ψ : L −→ B [12, Theorem II.19]. Since L is finite, we
can assume that B = {0,1}n for certain n ∈ N . Now we consider ϕ : B −→ �n

1 by
ϕ((x1, . . . ,xn)) = (y1, . . . ,yn) ∈ �n

1 , where yi = 1
n if xi = 1 and yi = − 1

n if xi = 0.
This defines an injective lattice homomorphism φ = ϕ ◦ψ : L −→ �n

1 . By Theorem 3.2
we can find an extension Φ : M −→ �n

1 so that Φ(M) ⊆ φ(L) = φ(L) , where the last
equality holds since L is finite. If we consider a lattice homomorphism q : φ(L) −→ L

so that φ ◦q = idφ(L) and q◦φ = idL , then r := q◦Φ : M −→ L defines a mapping so
that r◦ i = idL , where i : L−→M denotes the inclusion lattice homomorphism. Hence
L is complemented in M , as desired. �

At first glance example (4) in Proposition 3.4 might seem naı̈ve. Nevertheless, on
the one hand, it is not true that if M = L∪F with F being a finite sublattice then L is lo-
cally complemented in M ; a simple counterexample to this fact can be seen in Example
1. On the other hand, for every lattice L we can consider the lattice M := L∪{m,M}
obtained adding to L a minimum m and a maximum M . Thus, a combination of ex-
ample (4) in Proposition 3.4, Corollary 3.3 and [3, Theorem 2.7] yields that FBL〈L〉
is isomorphic to a sublattice of a C(K)-space for every lattice L . Recall that a Banach
lattice X is said to be an AM-space if ‖x∨ y‖ = max{‖x‖,‖y‖} for every positive dis-
joint elements x,y ∈ X . By the classical Kakutani-Bohnenblust-Krein Theorem (see,
for instance, [1, Theorem 3.6]), a Banach lattice is an AM-space if and only if it is
lattice isometric to a sublattice of a C(K)-space. Thus, we have proved the following
result.

THEOREM 3.6. FBL〈L〉 is Banach lattice isomorphic to an AM-space for every
lattice L .

We have finished the previous section with Problem 1, asking whether the converse
of Theorem 2.3 is true. We have shown that if L is a locally complemented sublattice
of M then L and M satisfy the hypothesis of Theorem 2.3. Nevertheless, we do not
know whether local complementation is equivalent to the hypothesis of Theorem 2.3:

PROBLEM 2. Let M be a lattice and L be a sublattice of M . Assume that L and
M satisfy the hypothesis of Theorem 2.3. Is L locally complemented in M?

4. Isomorphic embeddings

In this section we deal with isomorphic lattice embeddings. Namely, we provide
necessary and sufficient conditions for the map ı̂ : FBL〈L〉 −→ FBL〈M〉 to be an iso-
morphic lattice embedding. In order to do so, let us assume that L is a lattice with
maximum M and minimum m . Then, KL := {x∗ ∈ L∗ : max{|x∗(m)|, |x∗(M)|} = 1} ⊆
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[−1,1]L is a compact space when endowed with the product topology. Consider the
map φL : FBL〈L〉 −→C(KL) defined by the equation

φL( f )(x∗) := f (x∗) for every x∗ ∈ KL.

Notice that every element in L∗ is of the form λx∗ , where 0 � λ � 1 and x∗ ∈
KL . Moreover, every function f ∈ FBL〈L〉 is positively homogeneous, i.e. f (λx∗) =
λ f (x∗) for every 0 � λ � 1 and x∗ ∈ L∗ , since FBL〈L〉 is generated by positively ho-
mogeneous functions. Thus, a function f ∈ FBL〈L〉 is zero if and only if its restriction
to KL is zero. Therefore, φL is injective and ‖φL‖ � 1 by the definition of the norm
in FBL〈L〉 . Indeed, it was proved in [3, Theorem 2.7] that φL is surjective and that
1
2‖ f‖ � ‖φL( f )‖ � ‖ f‖ for every f ∈ FBL〈L〉 , so φL is a lattice isomorphism and
FBL〈L〉 is 2-Banach lattice isomorphic to C(KL) .

Now, given a lattice M with maximum and minimum M and m respectively, a
sublattice L ⊆ M so that m,M ∈ L and the inclusion i : L −→ M , we can consider the
Banach lattice isomorphisms φL : FBL〈L〉 −→C(KL) and φM : FBL〈M〉 −→C(KM) .
Take r : KM −→ KL the restriction operator, that is, r(x∗) := x∗|L for every x∗ ∈ KM ,
and consider the composition operator Cr : C(KL) −→ C(KM) given by the equation
Cr(g) := g ◦ r for every g ∈ C(KL) . It follows from the definition of Cr , φL and φM

that Cr ◦φL = φM ◦ ı̂ or, in other words,

ı̂ = φ−1
M ◦Cr ◦φL.

Now we get that ı̂ : FBL〈L〉 −→ FBL〈M〉 is an (into) isomorphism if and only if Cr

is an into isomorphism. It is clear that Cr is an into isomorphism if and only if r is
surjective (in such a case it is obvious that Cr is even an isometry), which is in turn
equivalent to the fact that Cr is injective (see, for instance, [17, Corollary 4.2.3 and
Proposition 7.7.2]). Now r is surjective if and only if every lattice homomorphism
y∗ : L −→ [−1,1] with max{|y∗(m)|, |y∗(M)|} = 1 admits an extension to a lattice ho-
momorphism ŷ∗ : M −→ [−1,1] . Since every element in L∗ is of the form λy∗ , where
0 � λ � 1 and max{|y∗(m)|, |y∗(M)|} = 1, we conclude that r is surjective if and
only if every lattice homomorphism y∗ : L −→ [−1,1] admits an extension to a lattice
homomorphism ŷ∗ : M −→ [−1,1] . Thus, we have obtained the following result.

PROPOSITION 4.1. Let M be a lattice with maximum and minimum M and m
respectively. Let L ⊆ M be a sublattice containing m and M . The following are
equivalent:

1. ı̂ : FBL〈L〉 −→ FBL〈M〉 is an into isomorphism;

2. ı̂ : FBL〈L〉 −→ FBL〈M〉 is injective;

3. Every lattice homomorphism y∗ : L −→ [−1,1] admits an extension to a lattice
homomorphism ŷ∗ : M −→ [−1,1] .

Our aim is now to remove the assumptions on the existence of a maximum and a
minimum in M and L . This will be done in two steps, where we will apply the results
of the previous section. First, we will remove the assumption on L .
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LEMMA 4.2. Let M be a lattice with maximum and minimum M and m respec-
tively. Let L be a sublattice of M and i : L −→ M be the inclusion operator. The
following are equivalent:

1. ı̂ : FBL〈L〉 −→ FBL〈M〉 is an into isomorphism;

2. ı̂ : FBL〈L〉 −→ FBL〈M〉 is injective;

3. Every lattice homomorphism y∗ : L −→ [−1,1] admits an extension to a lattice
homomorphism ŷ∗ : M −→ [−1,1] .

Proof. Let j : L −→ L ∪ {m,M} and k : L ∪ {m,M} −→ M be the canonical
inclusions. It is clear that i = k ◦ j , from where ı̂ = k̂ ◦ ĵ , where ĵ : FBL〈L〉 −→
FBL〈L∪{m,M}〉 and k̂ : FBL〈L∪{m,M}〉 −→ FBL〈M〉 are maps induced by j and
k respectively. By (4) in Proposition 3.4 we get that L is locally complemented in
L∪{m,M} and, consequently, ĵ is an isometry by Corollary 3.3. Hence, ı̂ is an isomor-
phism (resp. injective) if and only if k̂ is an isomorphism (resp. injective). By Propo-
sition 4.1 we get that this is equivalent to the fact that every element of (L∪{m,M})∗
extends to an element of M∗ . Taking X = R in Theorem 3.2 we get that this condition
is in turn equivalent to the fact that every element of L∗ extends to an element of M∗ ,
which concludes the proof. �

The previous lemma will allow us to obtain a complete characterization of when ı̂
is an into isomorphism.

THEOREM 4.3. Let M be a lattice and L ⊆ M be a sublattice. The following are
equivalent:

1. ı̂ : FBL〈L〉 −→ FBL〈M〉 is an into isomorphism;

2. ı̂ : FBL〈L〉 −→ FBL〈M〉 is injective;

3. Every lattice homomorphism y∗ : L −→ [−1,1] admits an extension to a lattice
homomorphism ŷ∗ : M −→ [−1,1] .

Proof. Set O := M∪ {m,M} the lattice obtained adding a maximum M and a
minimum m to M . We can consider j : M −→ O the canonical inclusion and de-
fine k := j ◦ i : L −→ O . We get that k̂ = ĵ ◦ ı̂ , where ĵ : FBL〈M〉 −→ FBL〈O〉 and
k̂ : FBL〈L〉 −→ FBL〈O〉 are the corresponding induced operators. By (4) in Propo-
sition 3.4 we get that M is locally complemented in O and, consequently, ĵ is an
isometry by Corollary 3.3. Now it is clear that ı̂ is an into isomorphism (respectively
injective) if and only if so is k̂ and, by Lemma 4.2, this is equivalent to the fact that
every element in L∗ extends to an element in O∗ , which is in turn equivalent to the fact
that every element in L∗ extends to an element in M∗ by Theorem 3.2, as desired. �

As an application we can easily obtain examples of lattices L ⊆ M for which the
canonical inclusion is not an isomorphism.
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EXAMPLE 1. Let M = {m,a,b,M} be the lattice with four elements with m being
the minimum, M the maximum, and a and b not comparable between them. Then, ev-
ery lattice homomorphism x∗ ∈M∗ satisfies x∗(a)∨x∗(b)= x∗(M) and x∗(a)∧x∗(b) =
x∗(m) , so x∗(a),x∗(b) ∈ {x∗(m),x∗(M)} and x∗ takes at most two different values.
Nevertheless, in the sublattice L = {m,a,M} , which is linearly ordered, we can eas-
ily construct lattice homomorphisms taking three different values. Such homomor-
phisms in L∗ cannot be extended to homomorphisms in M∗ . Thus, by Theorem 4.3,
ı̂ : FBL〈L〉 −→ FBL〈M〉 is not an into isomorphism.

5. An isomorphic embedding which is not an isometry

In this section we aim to give an example of a lattice M and a sublattice L so that
the mapping ı̂ : FBL〈L〉 −→ FBL〈M〉 is an into isomorphism but not an isometry.

Let M = {1,2,3}×{1,2,3} endowed with the coordinatewise order, and take the
sublattice L = {(1,1),(2,2),(2,3),(3,2),(3,3)} .

(1,1)

(1,2) (2,1)

(1,3) (2,2) (3,1)

(2,3) (3,2)

(3,3)

(a) Representation of M .

(1,1)

(2,2)

(2,3) (3,2)

(3,3)

(b) Representation of the sublattice L .

PROPOSITION 5.1. The map ı̂ : FBL〈L〉 −→ FBL〈M〉 is an isomorphic lattice
embedding.

Proof. Let x∗ : L −→ [−1,1] be a lattice homomorphism. Note that

x∗((2,2)) = min{x∗((2,3)),x∗((3,2))}
and

x∗((3,3)) = max{x∗((2,3)),x∗((3,2))}.
Let us define an extension y∗ : M −→ [−1,1] of x∗ . We put y∗(x) := x∗(x) for every
x ∈ L . We have to define y∗((1,2)),y∗((1,3)),y∗((2,1)) and y∗((3,1)) so that y∗ is
a lattice homomorphism. Notice that a necessary and sufficient condition for y∗ to
be a lattice homomorphism is that the restriction of y∗ to any diamond of M (i.e. its
restriction to any sublattice isomorphic to the lattice defined in Example 1) is a lattice
homomorphism; in particular, the restriction of y∗ to any diamond must take at most
two different values.

We must distinguish several cases:
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• If x∗((2,3))= x∗((3,2)) , we define y∗(y) := x∗((2,3)) for every y∈{(2,1),(3,1)}
and y∗(y) := x∗((1,1)) if y ∈ {(1,2),(1,3)} .

• If x∗((3,2))< x∗((2,3)) , then necessarily y∗((1,3))= x∗((2,3)) and y∗((1,2))=
x∗((2,2)) . Since x∗((1,1)) � x∗((2,2)) , this implies that y∗((2,1)) = x∗((1,1))
and so y∗((3,1)) = y∗((2,1)) = x∗((1,1)) .

• The case that x∗((2,3)) < x∗((3,2)) is symmetric to the previous one.

In any of the previous cases a standard computation shows that the map y∗ is a lattice
homomorphism. Thus, every lattice homomorphism in L∗ extends to a lattice homo-
morphism in M∗ , so the conclusion follows from Theorem 4.3. �

From the above estimates it is clear that every lattice homomorphism x∗ : L −→
[−1,1] takes at most three different values (either on the chain {(1,1),(2,2),(2,3)} or
on the chain {(1,1),(2,2),(3,2)} ) and can always be extended to M . Furthermore, we
have shown that if it takes three different values then it extends to M in a unique way.
The following result shows that L and M satify our purposes.

PROPOSITION 5.2. The isomorphic lattice embedding ı̂ : FBL〈L〉 −→ FBL〈M〉
is not isometric.

Proof. We will prove that there exists some f ∈ FBL〈L〉 such that ‖ f‖FBL〈L〉 >
‖ı̂( f )‖FBL〈M〉 . We use the same notation than in Section 4. Recall that φL : FBL〈L〉 −→
C(KL) is a lattice isomorphism, so any continuous function g : KL −→ R is identified
through φL with an element φ−1

L (g) ∈ FBL〈L〉 , which is just obtained extending g to
L∗ through the equality g(λx∗) := λg(x∗) for every x∗ ∈ KL and every λ ∈ [0,1] .

Fix 0 < ε < 1
2 and set the lattice homomorphisms x∗1,x

∗
2 ∈ KL given by:

• x∗1((1,1)) = −1, x∗1((2,2)) = x∗1((2,3)) = 0, x∗1((3,2)) = x∗1((3,3)) = ε .

• x∗2((1,1)) = 0, x∗2((2,2)) = x∗2((3,2)) = ε, x∗2((2,3)) = x∗2((3,3)) = 1.

For i = 1,2 let Vi := {x∗ ∈ KL : |x∗(x)− x∗i (x)| < ε
2 for every x ∈ L} be a neigh-

borhood of x∗i in KL . By the classical Tietze’s extension theorem, we can consider
g : KL −→ [0,1] a continuous function such that g(x∗1) = g(x∗2) = 1 and g(x∗) = 0 for
every x∗ ∈ KL \ (V1∪V2) . Let f ∈ FBL〈L〉 be the extension of g to L∗ by the equality
f (λx∗) = λg(x∗) for every x∗ ∈ KL and every λ ∈ [0,1] .

Notice that supx∈L(|x∗1(x)|+ |x∗2(x)|) = 1+ ε . Thus,

‖ f‖FBL〈L〉 = sup

{
n

∑
i=1

| f (y∗i )| : n ∈ N, y∗1, . . . ,y
∗
n ∈ L∗,sup

y∈L

n

∑
i=1

|y∗i (y)| � 1

}

�
∣∣∣∣ f

(
1

1+ ε
x∗1

)∣∣∣∣+
∣∣∣∣ f

(
1

1+ ε
x∗2

)∣∣∣∣ =
2

1+ ε
.

We are going to show now that ‖ı̂( f )‖FBL〈M〉 � 1
1−ε . Suppose that ‖ı̂( f )‖FBL〈M〉 >

1
1−ε , and let us obtain a contradiction. Notice that each element x∗ ∈V1∪V2 takes three
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different values, so it admits a unique extension x̂∗ to M . Furthermore, if x∗ ∈V1 then
x̂∗((1,3)) = x∗((1,1)) <−1+ ε

2 . Analogously, if x∗ ∈V2 then x̂∗((1,3)) = x∗((2,3)) >
1− ε

2 . In any case,

‖x̂∗‖ = sup
x∈M

|x̂∗(x)| = |x̂∗((1,3))| > 1− ε
2

> 1− ε. (1)

Notice that

‖ı̂( f )‖FBL〈M〉 = sup

{
n

∑
i=1

| f (y∗i |L)| : n ∈ N, y∗1, . . . ,y
∗
n ∈ M∗, sup

y∈M

n

∑
i=1

|y∗i (y)| � 1

}
.

Therefore, if ‖ı̂( f )‖FBL〈M〉 > 1
1−ε then there exists y∗1, . . . ,y

∗
n in M∗ such that

supy∈M ∑n
i=1 |y∗i (y)| � 1 and ∑n

i=1 | f (y∗i |L)| > 1
1−ε . Without loss of generality, we can

assume that | f (y∗i |L)| �= 0 for every i � n . By the definition of f , this is in turn

equivalent to the fact that y∗i |L
‖y∗i |L‖ ∈V1∪V2 for every i � n . But then, by (1),

|y∗i ((1,3))|
‖y∗i |L‖

> 1− ε for every i � n.

Thus,
n

∑
i=1

| f (y∗i |L)| =
n

∑
i=1

‖y∗i |L‖
∣∣∣∣ f

( |y∗i |
‖y∗i |L‖

)∣∣∣∣ �
n

∑
i=1

‖y∗i |L‖ <
n

∑
i=1

|y∗i ((1,3))|
1− ε

� 1
1− ε

,

which yields the desired contradiction.
In conclusion, ‖ı̂( f )‖FBL〈M〉 � 1

1−ε and ‖ f‖FBL〈L〉 � 2
1+ε . Since ε > 0 is arbi-

trarily small, we conclude that ı̂ is not an isometry. �
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pean Initiative under Fundación Séneca [21319/PDGI/19]. J. D. Rodrı́guez Abellán was
also supported by project 20262/FPI/17, Fundación Séneca, Región de Murcia (Spain).
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