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COMPACTNESS OF THE TWO-DIMENSIONAL
RECTANGULAR HARDY OPERATOR

VLADIMIR DMITRIEVICH STEPANOV * AND ELENA PAVLOVNA USHAKOVA

(Communicated by L. E. Persson)

Abstract. Criteria in terms of weights v and w are given for the compactness of the two—
dimensional Hardy operator I, from Lebesgue space LJ(R2) to L{,(R%) for I < p<g<eo. A
two-sided estimate is found for the measure of non—compactness of I : LY (Ri) — Lﬁ(Ri) for
the same case of summation parameters p and ¢. The situation when g < p is also discussed.

1. Introduction

Let 1 < p,q < ~ and two non-negative on R? := (0,)? functions v and w
(weights) be fixed. Consider an integral Hardy operator of the form

(e = [ [ fendsar ) er, (1)

acting from weighted Lebesgue space L} (R2) to analogous function space Li,(R?).
The space L} (Ri) consists of all Lebesgue measurable functions f on ]Ri satisfying
Hf”i_v = fRi |f|Pv < oo. The conjugate (or dual) to I, operator I; has the form

(L) (x,y): //fstdsdt (x,y)ERi.

In this work we study the compactness property of I: Lf (R) — LI, (R2).
The boundedness of the operator I, in Lebesgue spaces was investigated in [8, 14,
16, 17, 20]. In particular, E. Sawyer in [17] obtained a criterion for the inequality

[@Hl,.. <l )

to hold in the case p < ¢ forall f > 0 with a constant C > 0 independent of f.
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THEOREM 1. (E. Sawyer [17, Theorem 1A]) Let 1 < p < g < e and assume v,w
are given weights. Put p' :=p/(p—1) and 6 :=v' =7 . The inequality (2) holds if and
only if

1 L
Api= sup Ay[(s,1);0,w] = sup [Lw(s,1)]7[Lo(s,1)] 7 <eo, 3)
(s.2) ERi (s, I)GR2

Ay:= sup A[(s,t);0,w] = sup (// Lo qw) [Lo(s,1)] ”<°° “4)

(A»‘,I)E]Rz+ (s, €R2

l
_ L
7

As:= sup As[(s,t);0,w] = sup (/ / (Lw)? ) [Lw(s,1)] 7 <eo. (5)

(s,t)ERi (s, €R2

Moreover, the best constant C > 0 in the inequality (2), which coincides with the norm

12 HL{;(R%)HL?V(R% "= SUPpepp(p2 ) Hﬁ‘szH‘Lq‘:" of the operator I, is equivalent to A; + A, +

Az with equivalence constants depending of summation parameters p and q only.

The main feature of the results by E. Sawyer is the absence of any constraint
condition on weights v and w, except the ones necessarily following from the finiteness
of the functionals A;, A, and A3 given by (3)—(5). On the contrary, in papers [16, 20]
one of the two weight functions must be factorizable, that is, representable as a product
of one—dimensional functions. But, in contrast to E. Sawyer’s theorem, the results from
[16, 20] can be generalized to n— dimensional Hardy operators for all natural n > 2.

The one—dimensional analog of the condition (3) is the finiteness of the Muck-
enhoupt constant (see [15], [6] and monographs [10, 11]). Characteristics (4) and (5)
are two—dimensional generalizations of the Tomaselli functional [19, definition (11)]
in its direct and dual forms. Observe that boundedness conditions for the operator
(Ii f)(x) = [y f(r)dt, which correspond to the characteristics (3)—(5), are equivalent to
each other in one—dimensional weighted Lebesgue spaces, that is C =~ A} = Ay =~ A3
(in one—dimensional interpretation) (see [5]). In the two—dimensional case this, gener-
ally speaking, is not true. Moreover, for p = ¢ there is no pair of constants amongst
A;, i=1,2,3, to be sufficient for the validity of the inequality (2) (see examples in [17,
§4]). However, an important refinement of Sawyer’s theorem was obtained in the recent
paper [18] for the case 1 < p < g < eo. More precisely, Theorem 2 below stands that E.
Sawyer’s result is actual for p = g only, while for p strictly less than g the finiteness
of the only functional A := A is necessary and sufficient for the boundedness of the
operator I, from L} (R%) to L},(R2).

THEOREM 2. ([18, Theorem 2]) Let 1 < p < g < oo. Denote o := a(p,q) :=

2
=Y o — (v
7 , o =o(q,p') and

24 a oo N T 1
Cma/ = 33[1{(?)(11113)({06 26]( )q/}<ﬁ>lj+3p+f/ (OC/)I’/1|.

The inequality (2) holds if and only if A < . Besides, the following estimate is true
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for the best constant C in (2):
AL C<<Cy yA.

In [18], a connection was also established between the characterization of the in-
equality (2) in the case p < g by three constants, as in Theorem 1, with an equivalent
characteristic with the only constant A, as in Theorem 2:

1
A <G KCrifAI+A +A3] <Ciy[1+alp.g)r +alqd,p) 7 A,

besides,
lim[o(p,q) + o(q,p')] = eo.
rlq

According to the information available to the authors, the study of the compactness
of the two—dimensional rectangular integration operator I of the form (1) has not been
carried out before. In §2 of this paper, the compactness criteria for I : L} (R%) —
Lﬁ(Ri) in the case p < g are obtained. § 3 complements the work with the case p =gq.
Based on the results of [18] concerning the fulfillment of the inequality (2) for g < p,
we give in § 4 a necessary condition and a sufficient condition for the compactness of the
operator I for 1 < g < p. A two—sided estimate for the measure of non-compactness
for I, : LV(R2) — L%,(R?%) is contained in § 5.

Throughout the work, relations of the form ® < ¥ mean the fulfillment of in-
equalities @ < ¢V with ¢ > 0 independent of @ and . We write ® ~ ¥ in the case
of ® <YW < @. The symbols := and =: are used to define new values. The notation
(F,G) means an integral of the form fRi F(x,y)G(x,y)dxdy, symbol | | is used for

disjoint union of sets.

2. A general scheme and the main result

Let p < g and the operator I, is bounded from L{(R2) to L},(R2). Then A < o
by Theorem 2, from which it follows that ¢ € L' ((0,x) x (0,y)) and w € L' ((x,e0) x
(y,%0)) for all (x,y) € R3. Without loss of generality we assume that pre-images of
the operators I, and I5 are non—negative functions.

Let a,b,c,d € (0,00), where a < ¢ and b < d. Put

Q) := {(O,a) X (0,00)} U {[a,oo) X (O,b)},

Q.. = {[a,%0) x (d,e2) } U {(c,00) x (b,d]} = W, LW,

and
Q:=a,c] x [b,d].

Then Ri =QuUQLIQ...

Further, introduce the projectors P, f := xa,f. Paf = xaof, Pa.f = xo.f-
Notice that the operator of the form PohPq : LY (R%) — Li(R2) coincides with I :
LY (Q) — LL(Q) and is compact (see Remark after Theorem 2 in [7, Chapter XI,
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§3.2]). This follows from the fact that a kernel kg of the mapping Pol,Po of the

form .

1 _1
kQ(xJ;SJ) ZXQ(XJ)W"(X»)’)V p(s7t)X(a,x)><(h,y)(s7t)

satisfies the condition

K=/

=

1
q

dxdy) < oo,

[/2 |kg(x,y;s,t)’p,dsdt] !
R+

2
T

since

K= (/ac/de(X,y) [/ax/hyc(s,z)dsdz} ’?/dxdy>’l’ < [Ifw(a,b)]é[lza(c,d)]z% < oo,

In what follows we shall use a scheme for approximation of the /,, in its operator
norm, by compact operators (see e.g. [12]). To this end, we write

b — PolhbPo = PoyloPo, + Pal Po, + Pa.. b Po, + Po.LPo + Po. LbPo,, - (6)
Consider rectangles
W =[a,b] x [c,d] and V = (o,B)x(y,0)

in R%, and let

1

(x7y)V_E(S’I)XV(S’t>'

KA 1
KW,V = (/ |:/ ’kW,V(x7y;Sat)|p det:| ’ dxdy) ! < oo,
RZ [J/RZ

+

=

kW,V(xLy;Sat) = XW(an)W

Since

then the operator Py L Py : LY (Ri) — L?V(Ri) is compact. Indeed, the kernel kwy of
the operator Py Py in its precise form is given by

1 _1
kv (3, y55,1) = xw (6, )W (6, 9)v" 7 (8,8) Xy [(0.6) x (0,9)] (5:1)-

b rd Xy 7
Kf v = / / w(x,y) (/ / G) dxdy < oo
: a Jc o Jy

a-c>0,min(b,) -min(d,d) < oo, (7)

and the compactness of Pyl Py : LY (Ri) — LL(R2) follows, for example, from [13,
Theorem 7.3]. We have for the second term in (6) that

In such a case

=

if

PalhPoy = Py dxb.d112P0.0) % (0,00) T Plac] x[b,d112Pla,e0) x (0,6 3)

and we see that the conditions (7) are satisfied for all the operators on the right hand
side of (8). Therefore, PolhPg, : LY (R%) — LY,(R?%) is compact. Analogously one can



COMPACTNESS OF THE TWO-DIMENSIONAL HARDY OPERATOR 539

confirm the compactness of Pq,_I>Pq. For the study of Po_IhFPq, we use the represen-
tation

4
Q=|]V;
j=1
with

Vl = (O7a) X (Oad)a V2 = (a,c) X (Oab)v V3 = (O7a) X (d’oo), V4 = (c’oo) X (O’b)
Then
Po..LPo, = PW112(PV1 +PV2) +PW212(PV1 + Py, +PV3)
+ Pw,L(Py, + Py,) + Pw,LPy,.  (9)

It can be easily checked by applying the criterion (7) that the first two terms on the right
hand side of (9) are compact. Thus,

I, — PalhPo — PalhPo, — Pa.,lbPo — Pw,L(Py, + Py,) — Pw,lo(Py, + Py, + Pyy)
= PoyhPoy, + Pw, 1> (Py, + Py,) + Pw,LPy, + PohPa,. (10)

Denote
1T := ||T||L{?(R2+)_>L3(R2+)'
By Theorem 2,
|PaghaPag || < Coor sup  Ai[(1,2): 020y W] < Coer sup Ar[(u,2);0,w].
(u,z)€RZ. (u,2)€Q
(11)

An additional condition of the form

lim sup A;[(u,2);0,w] =0 (12)

Q12 (4 7)€,

reduces the norm || P, Pg, || to infinitesimal value. Analogously, since (0 xq..)(4,z)
=0 for all (u,z) & Qu, then

|Pa.bbPo.|| < Coo sup Ai[(u,2);0%0.,wxe.] <Coo sup Ai[(u,z);0,w],

(u,2)€RY (1,7)EQwr
and the requirement
lim sup Ap|(4,z);0,w| =0 (13)
Q.19 (1,2) €Qoo [ ]

makes the norm ||Pg_ L Pq.. || infinitely small as well.
For the rest terms on the right hand side of (10) we find

(| Pw, Py || < Coo SUBAI [(a,z);a,w] —0, d— oo, (14)
>

||RV112P‘/4H < COC,OC’ SupAj [(I/L,d);G,W] —0, c— oo, (15)
uz=c

| Pwy 1Py, || < Cop o supAy [(u,0);0,w] —0, ¢ — oo, (16)

uz=c
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Let us demonstrate now the necessity of the condition (12) for the compact 1 :
LY(R%) — L}(R3). Let

u rz *1/17
Fue)(s:1) = X(W(O?@(&z)o(&z)( /0 /O c) L (2) € Q.

Then
1 fwa =1

For any linear functional G € [Lf(R%)]* there exists an element g € Lf 1,7,,, (R%) such
that

<Gvf(u,z)> = Ri f(u,z)g < Q% f(u,z)g

u [z , 1/p'
([ [rere)” o e
0 JO

which means that any sequence from the family f, ) with (4,z) € o converges

weakly to 0 in LY (Ri) By the compactness of I, this entails strong convergence
of I f(u,z) , that is

Hbf(u,z)”%w — 0, Q| @. 17)

W= o)

oo [ ()
L)

=Al[(u,2);0,w],

On the other side,

and

112 fu.2)

and (12) now follows from (17). The necessity of the condition (13) can be proven
analogously, while the same for (14)—(16) is a consequence of (13).
Thus, the following statement has been proven in detail above.

THEOREM 3. Let 1 < p < q < o and v, w be weight functions. Suppose the
two—dimensional rectangular operator I, of the form (1) is bounded from LY (Ri) to
LY(R%). Then I : LY(R%) — LL(R3) is compact if and only if A := A < o and the
conditions (12) and (13) are satisfied.
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3. The case p =¢q

We shall use the representation R2 = QqUQUQ.. from §2.

THEOREM 4. Let p > 1. Suppose that the Hardy operator I of the form (1)
is bounded from L (R2) to Li(R2), where v,w are weights. Then L : Lj(R2) —
L{Z(Ri) is compact if and only if ¥, 3A; < o and the conditions (12) and (13) in
combination with

lim sup Ay|(u,2);0,w| =0, (18)
Q12 (4 7)€, [ ]
lim sup Ay [(u,2);0%a.,wxe.] =0 (19)
WT@(MZ)EQ
and
lim sup As[(u,2);0x0,,wxQ,] =0, (20)
Q19 (4 2)eQq
lim  sup A3[( );G,w]:O 2D
MTZ(MZ)GQ

are satisfied.

Proof. Sufficiency. We repeat the proof of the previous theorem up to the equality
(10). After this it remains only to show that the norms of the operators on the right hand
side of (10) tends to zero under the influence of the conditions (12), (13), (18)—(21). To
this end, according to Theorem 1, one has to use estimates for operator norms of the
type || HL{;(R%HL@(R% by sums of the form A; + A, + Aj.

We write for the first operator on the right hand side of (10):

w

HPQOI2PQOH 2 675907“}%90)

where

AI(GXQO»WXQO): sup Al[(SJ);GXQmWXQO]
(s.1)ERZ

1
= sup [Bw(s,0)xe,(s,1)] 7 [Lo(s,0)xe,(s,1)] 7,
(s.1)ERZ

Ax(0x9ywxQ)) = sup Az[(s,1);0xa,, wXQ,]
(.\',I)G]R%r

1

= sup (/ / (L(oxa,))” Wsto) : [L(oxa,)(s:1)] 7,

(s,1) €R2
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A3(Oxa,, wxQ,) = sup Az[(s,1): 0%, Wwxa,]
(s,t)ERi

€1
P4 1

= sup (// (I (wxa,)) Gﬂmo) [ (wya,)(s,1)] 7.
(s,;t)eRZ
The estimate

AI(GXQ()?WXQO)S sup Aj [(M7Z);67W]
(M.,Z)EQO

can be obtained analogously to (11) in the proof of Theorem 3. For the constant
Ax(0xq,,wxe,) wWe write

Ar(Oxa,wxa,) ~[ sup + sup ( / / L(oxa,)) wmo> X
(s,0)€Q  (s.)ZQ0
X [Iz(GXQO)(S,l):I ” =:J1+ />

The term J; is regulated by the condition (18). To evaluate J, we notice that for
(S,I) ¢ s20

QN {(0,s) x (0,1)} € {(0,a) x (0,1) } U {(0,s) x (0,b) },

QN {(0,5) x (0,1)} D {(0,a) x (0,1)}, QoN{(0,5)x (0,1)} D {(0,s) x (0,b)}.
It holds

S sup K//lz (oxa,)) WXQO>
St€90

+ (/OS/O (12(6%90))17wa0> F] [12(07590)(5,1)]‘% — Ty + .

Further,

Jo S sup (/ / hL(oxa,))’ W%QO) : [L(oxa,)(a,1)] 7,

(s,1)€Q0

s s ([ [ o)y WXQO>1[12(GXQO)(S b .

(5,1)#Q0

Since for (s,7) & Qg the points (a,r) and (s,b) belong to the boundary of Qy, then
Ju+Jn S

Since
Qoﬂ{(s,oo) X (t,oo)} =9
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for (s,1) & Qp, then

As(oxa,,wxe,) = sup Az[(s,1);0%0,, wxa,],
(s5,0)€Q0

which is governed by the condition (20).
Analogous estimates are true for the operator Po_ L Pg_, . Indeed, we have

3
|Pa.bPa.|l < Y Ailloxa., wia.)
i=1

where

Al(oxa..wxa.)= sup A([(s,1):0xa..wxe.]
(s.1)ERZ

\|._.

1
= sup [Ifw(s,t)xgm (sJ)] p [Izc(s Hxa. (s, t)]
(s.1)ERZ

Ar(Oxa.. wxa.) = sup Ax[(s.1);0xa.,wxa.]
(s.1)€RZ

= sup (// h(oxa..) W)CQ) [L(oxa.)(s,1)] 7,

(s, ERZ

==

As(oxa..wxa.)= sup As[(s1);0xa.,wxe.]
(.\',I)G]R%r

= sup (/ / (L (wxe..) GXQW)L/[Iz(WXQ )(SJ)]*#

(s, €R2

Since
{(O,S) X (O,t)} NQ., =

for (s,7) & Q. then

Ai(0xa. wxa.) S sup Aj[(u,z);0,w]
(,2) €Qoo

and

Ay (oK., wxe.) S sup Asx[(u,z);0,w],
(,2) €Qoo
where in the both inequalities their right hand sides are governed by (13) and (19),
respectively. For A3(oxq.,wxq.) we write
1/
Asz(oxa.,wxa.)=~] sup + sup (/ / (Ir(wxa..) G)(g ) X
(5,)€Qe  (5,) Qo0
1

X [I;(WXQN)(S,Z)]7? =:H|+H,.
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The H, is controlled by (21). If (s,7) € Q. then (s,7) € QUQy. Let (s,7) € Q.
Therefore,

Q.x,ﬂ{(s,oo) X (t,oo)} C {(sng) X (d7°°)} U {(qoo) X (t,oo)}7
Qmﬂ{(s,oo)x(t,oo)} D {(s,oo)x(d,oo)},
Q.. {(s5,00) X (£,0)} D {(c,00) X (£,%0) }.
We have

1
Hy < sup [(/ / (L (wxa.) G%g)
(s,0)eQ

+ (/Cm/[m(li(wxgm))%mm) i [lg(wmm)(s,,)]‘i —: Hyy + Hyy.

Further,

Hy; S sup (// (L (wxe.) G%Qm) L (wxa. )(Sad)]_i,

(s,1)eQ

1

7 1
e ( [ [ eeza) am)" [ (wxa)(e,1)] 7

(s,1)eQ
Since for (s,7) ¢ Q. the points (c,7) and (s,d) belong to the boundary of Q.., then

Hy +Hy S H.

For (s,1) € Qp argumentation is similar.
For the remaining operators on the right—hand side of (10) we use the one—dimen-

sional Hardy inequality. For the operator Py, LPy, we write

| Pw, Py, || =sup (2 7 (e [ f(s,t)dsdt)” wix,y )ldxdy)
/20 (Jo S £P(s,t)v(s, t)dsdt)ﬁ

(fd (Ja F(1)dr)" W (v)dy)

f>0 (Jo" I fP(s,t)v(s,1)dsdr)

1
<S“( CONVARCD
P X
u>d

v supUTFP OV ()T
120 ([ 7 £7(s,0)v(5,0) ds)

==

E
1
P

~|-

)

P

W(y):/: (x,y)dx /fst Vt)z(/ouc(s,t)ds) P,.



COMPACTNESS OF THE TWO-DIMENSIONAL HARDY OPERATOR 545

By applyng Holder’s inequality, we find

/d TRV (1)t = /d ) ( /0 ’ f(s,t)ds)pV(t)dt< /d : /O "0 (s, 0)v(s, 1) dsdt.

Thus,

Pwllsz3|<Sup</ LS dxdy) (/ | o stdsdt)

< supAi|[(u,a);0,w)],
u>d

which means that the norm of Py, I, Py, is regulated by (13).
Similarly, we can write for Py, LPy, :

==

(i 157 (B I3 #0010 1) s )i, v) dixy)
||BV112PV4H =Ssup T
- (f:’ f(ffl’(s,t)v(s,t)dsdt> r
[ (JEF(s)ds)” W (x)dx)
17 f2 o (s,0)v(s, t)dsdt)

1
Ssup</ ) (/ vi= 1’ dt)l) X
u=c

s sup UL FP )V (s)ds) 7
PO(f 3 o (s.0v(s. ) dsdr)

Si=| ==

s
o

==

W(x):/dm (x,y)dy, F(s /fst Vs)z(/oba(s,t)dt)_g.

From this one can obtain by Holder’s inequality

/ FP(s)V(s)ds = /N (/Obf(s7t)ds>pV(s)ds < /:, /Obfp(s,t)v(s,t)dsdt.

Therefore,

| Pw, Py, || < ili[: (/ / w(x,y dxdy) (/ / (s,t dsdt)

X SupAl [(M,d), o, W]a

u=c

= |-
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that is the norm of Py, L, Py, is controlled by (13).
By similar argumentation the estimate

||PW212PV4|| S SupAl[(”ab);GvW}

u=c

can be done, and the sufficiency of the conditions (12), (13), (18)—(21) for the compact-
ness of the bounded operator I : L (R% ) — L{,(R%) is now performed.

(Necessity) Sequences of test functions to be applied for establishing the necessity
of the conditions (12), (18) and (13), (21) can be defined analogously to those in the
proof of Theorem 3. To confirm that (19) and (20) are necessary as well, it is enough to
choose

u [z -1/p
f(u,z) (S,l) = X[(O,u)x(O,z)]ﬁﬂw(SJ)O-(SJ) (/O /0 Xﬂwo') for (M7Z) € Q.,

and, respectively,

-1/
1

£t (09) = Lo ([ [Traw) G e O
u Z

4. The case g < p
THEOREM 5. Let |l <g<p <o 1/r:=1/q—1/p, and v, w be weights. Sup-

pose that the two—dimensional rectangular Hardy operator I, is given by (1). Then
L :LY(R2) — LL(R2) is compact if

B, := (/R2+ o (u,z) (/Mw/:(lzc)qlw>§dudz)% < oo, (22)

Conversaly, if I : LY (R%) — L,(R%) is compact then B < oo, where

B:= </Rz dy[ho(x,y)] v dx<_ [fw(x.y)] $>> |

+

-/ , (o] 7 dud [Fw(x.y)] ) %

([, vt

+

=~

dxdy [12(5()67)1)] P/> ’
and the two last equalities follow by integration by parts.

Proof. 1t is well known (see [1], [9, § 5.3]) that for 1 < g < p a regular integral
operator from L} (R2) to L{,(R%) is compact if it is bounded. Thus, the assertions of
Theorem follow from [18, Theorem 3]. [l
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5. Measure of non—compactness

Define
o(T) :=inf||T — P||,

where the infimum is taken over all bounded linear mappings P : L (R%) — Li,(R%)
of finite rank. The quantity ¢(7') coincides with the so called set of measure of non—
compactness of an operator T bounded from L} (Ri) to L%(Ri) (see [3, § 2] and [2,
Proposition 3.1]). In order to obtain a two—sided estimate on ¢(l) we put

A1(Q):= sup Ai[(u,2);0,w], A(Qu):= sup Ai[(u,2);0,w];

(1,2)€Q0 (1,2) EQoo
A2(Qo) = sup Ar[(u,2);0,w], Ay(Q«):= sup Ar[(u,2);0xqa..wxe.;
(u,2)€Q (1,2) €Qeo
A3(Qo) := sup A3[(4,2);0%0,,WxQ |, A3(Qe):= sup Asz|(u,2);0,w].
(u,2)€Q (1,2)EQun
Let
J(Qo) ZZAl(QQ) and J(Qw) = Al(gw) (23)

inthe case 1 < p < g < oo; for p =g we set
3 3
J(Qo) ==Y Ai(Q) and J(Q.):=) A;i(Q..). (24)
i=1 i=1
Denote

Jo:= lim J(Q d J.:= lim J(Q.),
0:= lim (Qo) an Q}ﬁl@( )

where the above limits exist on the strength of monotonicity (23)—(24) with respect to
vanishing of the sets  and Q... Recall that RZ = QyUQUQ.. (see §2).

By taking into account notations on the right hand side of (10), we can formulate
the following statement, which is the result of reasoning in §§ 1-2 and Theorems 1, 2.

COROLLARY 1. Let 1 < p < g <eoo. Then (i) Po,hPa, : LY (R%) — LL(R%) is
bounded if and only if J(Qq) < e, moreover,

[Pagl2Pay || ~ J(Q0);
(ii) Pa.bPo. : LY (R%) — LY,(R?%) is bounded if and only if J(Q) < o, and
1P, Pa.|| = J(Q).
The following estimate is also true:
Py, L (Py, + Py,) + P, b Py, SA1(Qe).

The required estimate on @(I,) is established in the next Theorem 6.
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THEOREM 6. Let 1 < p < g <eco. Then
a(h) ~Jy+ Je.
Proof. The upper estimate on @(l,) follows from (10) and Corollary 1.

To prove the lower estimate we choose A > a(l>). Then there exists an operator
F: LY (R%) — LY(R?%) of finite rank such that the inequality

1LF = Ffllgw < AUflpy

is valid for all f € LY (Ri) . On the strength of [4, Lemma 2.2], for a given € > O there
are Fy: LY(R%) — LY,(R%) of finite rank and a compact subset K of R% such that
|F — Fy|| < & and suppFof C K forall f € Ly(R?%). Therefore,

|f = Fofllgw < A+€)llflpo  forall f € LE(RZ).
Choose D K and let f > 0 be such that suppf C {QoUQ.}. Then

A+e)fllpy = 11|

g = ||bPoys+hPa. | = ||Po,2Po,f + Pa.hPa.. f|

q,w-

From this
A+ fllpy = [[PaglaPay fllgmw

for all 0 < f € L (R%) having supports in Qg, and

A+ fllpy = [|Pa.2Pa.. f|

q.w

forall 0< fe Ll (Ri) with supports in Q... The two last evaluations and Corollary 1
imply the required lower estimate, since € can be chosen arbitrarily small. [J
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