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DISPERSION ESTIMATES FOR THE BOUNDARY INTEGRAL
OPERATOR ASSOCIATED WITH THE FOURTH ORDER
SCHRODINGER EQUATION POSED ON THE HALF LINE

TURKER OZSARI* , KIVILCIM ALKAN AND KONSTANTINOS KALIMERIS

(Communicated by J. Pecari¢)

Abstract. In this paper, we prove dispersion estimates for the boundary integral operator associ-
ated with the fourth order Schrodinger equation posed on the half line. Proofs of such estimates
for domains with boundaries are rare and generally require highly technical approaches, as op-
posed to our simple treatment which is based on constructing a boundary integral operator of
oscillatory nature via the Fokas method. Our method is uniform and can be extended to other
higher order partial differential equations where the main equation possibly involves more than
one spatial derivatives.

1. Introduction

A boundary integral operator (BdInt0Op) associated with an initial-boundary value
problem (IBVP) is a mapping in the form of an integral formula that takes functions
defined on the boundary of the space-time cylinder to solutions of the given IBVP, say
with zero initial datum and interior source. Regularity analysis of such operators plays
a crucial role in establishing local wellposedness for (nonlinear) IBVPs. A BdIntOp
can be written in abstract or explicit form. An abstract formula is generally based on
the semigroup theory. However, in order to place an IBVP within the context of semi-
group theory, one needs to somehow homogenize the given boundary condition so that
the domain of the generator becomes a time independent linear space. This is generally
done by first extending the given boundary input as a solution of a relevant stationary
problem and then subtracting it from the original problem. From the regularity point of
view, this approach costs loss of derivatives in wellposedness analysis, and one needs
to employ rather advanced techniques to retrieve desired smoothness properties. On the
other hand, there are methods to obtain explicit formulas for BdIntOps directly with-
out using an extension-homogenization approach. One of the most effective choices of
such direct methods is the unified transform method (UTM), also known as the Fokas
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method, see e.g., [9] and [10]. This method was recently used to construct BdIntOp for
establishing local wellposedness of nonlinear initial boundary value problems, see for
instance [1 1], [13] and [16]. This method is realised in three main steps: (i) the con-
struction of a global relation, which is an identity that relates some particular integral
transforms of known and unknown boundary values and the sought after solution, (ii)
the derivation of an integral representation of the solution which involves the integral
transforms of both the known and the unknown boundary values, (iii) the evaluation of
the contribution of the unknown values in the integral representation, with the utilisa-
tion of the global relation. This last step requires (a) at the level of the global relation,
the identification of the invariance maps which keep spectral inputs of the transforms
of boundary values unchanged, and (b) at the level of the integral representation, a sub-
tle contour deformation based on delicate complex analytic arguments. The space-time
structure of BdInt0Ops constructed via the UTM allows one to use the tools of Fourier and
harmonic analysis, in particular the theory of oscillatory integrals, for proving Strichartz
type estimates. These estimates are essential for establishing the low regularity theory
in function spaces.

This paper aims to (i) construct a BdIntOp corresponding to the fourth order
Schrodinger equation subject to Dirichlet-Neumann boundary conditions via the UTM
and (ii) prove dispersion estimates (that imply Strichartz type estimates) for this BdIntOp
with respect to boundary data. More precisely, we consider the following partial differ-
ential equation (PDE):

yi+Py=0, (xt)eRyx(0,T), (1)
y(x,0) =0, (2)

where P, B, j=0,1 are (differential) operators given by P = —i(dy +d2), Bo =Y
(Dirichlet trace operator), and B; = ¥, (Neumann trace operator). We assume for sim-
plicity that g; have compact support in (0,7) for j =0, 1. Note that this in particular
implies compatibility at the space time corner point. We will write y(r) = Wp[g0,81](?)
for the solution of the above PDE, where W;, denotes the BdIntOp that we will con-
struct by using the UTM.

A representation formula for solution of an easier problem, where P = —id? (with-
out the Laplacian) was recently obtained in a recent work of first author [16]. In that
work, the BdIntOp was found via the UTM in the form

Wolso.s1l(e0) = [ (k)G T)dk 4)
where ,
20— 1) ¢m
DT = @tz tx
{ke(C|argk€€L=JI< ) ,2>},

1 o 4

E—=—— ikx—+ik™t

¢ ’

G(kyt) = =2ik(k+ v (k)@ (—ik*,1) — 2kv (k) (k+ v (k))go(—ik*,1)
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with . o
v ={ %, mereiyih
and .
gjlk,t) = /O g i(s)ds. (5)
There is another study (see [5]) in which a BdIntQOp corresponding to the bihar-
monic case P = —id? is constructed. In their paper authors use a Riemann-Liouville

fractional integral. This method is well known and was previously used for the Korteweg-
de Vries (KdV) equation by Colliander and Kenig [6] and later for the Schrodinger
equation by Holmer [14]. To the best of our knowledge Riemann-Liouville fractional
integral method was used for PDEs that involved only a single spatial derivative term. It
is also possible to use the Laplace transform in time to construct a BdInt0Op, a method
which was nicely applied both for the Schrodinger equation [4] and the KdV equation
[3] by Bona, et. al. Laplace transform method is an effective method in general but the
technical analysis of solutions gets more difficult if the order of PDE is high and there
are multiple spatial derivative terms. This is because one has to deal with higher order
characteristic equations to be able solve an infinite family of higher order ODEs, an
algebraic difficulty. In addition, inverting the associated Bromwich integral is another
challenge for such PDEs because a subtle singularity analysis must be performed.

An alternative which bypasses issues of the approaches mentioned in the above
paragraph is the Fokas method [1, 16]. It is worth mentioning that even with this method
there are some difficulties for the current problem. The challenge here is that in this
more general setting, where P = —i(d{ + d?2), certain analyticity issues arise related
with the third step of the UTM. Observe that, in the case P = —id:, the spectral input of
boundary terms is w(k) = —ik*. Therefore, there are nontrivial entire (analytic on C)
maps such as k — Fik, k — —k, which keep the spectral input invariant. Existence
of such nice maps play an important role in the contour deformation and elimination of
unknowns from the formula of the BdIntOp. On the other hand, the spectral input of
boundary terms turn out to be w(k) = —i(k* — &%) if P = —i(d + 92). Itis not clear
whether there exists a map k — v(k) which satisfies the invariance property w(v(k)) =
w(k), namely —i(v*(k) — v2(k)) = —i(k* — k) and is also analytic on a union of simply
connected open sets, each of which contains the region whose boundary is part of the
standard (deformed) contour of integration used in the UTM.

The above technical issue may arise in most higher order PDEs where the main
differential operator is a linear combination of more than one term. An example is the
Korteweg-de Vries (KdV) equation [8]. Another context for observing this analyticity
issue is higher dimensional PDEs which involve mixed derivatives [1]. It can even
happen in second order PDEs with a second order time derivative such as the wave
equation [7]. This analyticity issue stems from the use of complex root functions, which
are typically discontinuous, to construct invariance maps. Recently, [1] recommended
rotating the branch cut for the square root function to a suitable degree and proved
that this moves the domain of nonanaliticity of the invariance maps away from the
desired contour of integration, except at a single branch point which does not affect
the relevant analysis. In this work, we follow a similar approach for constructing the
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BdInt0Op associated with (1)—(3). In the last section, we present the BdIntOp for the
class of fourth order Schrodinger operators given in the form P = —i(ad? + Bd?),
where 0 # a € R and 3 € R.

The main result of the paper is given in Theorem 2. In this direction, we utilized the
nice space-time dependence, i.e., oscillatory nature of the BdIntOp (21) for proving the
desired dispersion estimates; results on the whole space proved in [2] were also used.

2. Construction of the boundary integral operator

In this section, we construct the BdIntOp associated with (1)—(3). To this end, we
will first assume that u is sufficiently smoothin Qr =Ry x (0,7) up to the boundary of
Qr, and also that u decays sufficiently fast as x — oo. Once the BdIntOp is constructed,
then the smoothness condition can be given up as the integral will still make sense under
much weaker assumptions on data. In particular, the integral formula will serve as the
definition of a weak solution. In order to obtain a global relation (the first ingredient of
the UTM), we introduce the half line Fourier transform:

Pk,t) = /0 we_ikxy(x,t)dx, Ik <0. (6)

Note that the condition Sk < 0 is essential for the convergence of the above integral.
We also introduce the functions g; defined by the formula (5) for 0 < j <2, so called
t—transforms of boundary traces, some of which are unknown such as t— transforms
of g;(t) := dly(0,¢), j=2,3. Taking the half line Fourier transform of (1)—(3) and
integrating the resulting ordinary differential equation in time, we obtain the global
relation

N5k, 1) = —ig3(w(k),1) + kg2 (w(k),1)
—i(1=k)g (w(k),1) + k(1 —K)go(w(k),1), Fk<0, (7)

with
w(k) = —i(k* —k%). (8)
Taking the inverse Fourier transform, we find that « must satisfy
y(x,1) = / E(k:x,t)g(w(k),t)dk, x€R., t>0, )
where |
E(k;x,t) = ——ekewikr 10
(x.t) = —5—e (10)

and § = igs — kg> + (1 —k*)(ig1 — kgo). Since only the Dirichlet and Neumann bound-
ary values are known, the values g, and g3 are unknowns in the above formulation. In
order to eliminate these unknown boundary terms from (9), the first step is deforming
the integral on the real line to a more suitable contour in the upper half complex plane.
To this end, we first define the following regions:

D={keC|R(w(k)) <0}, D"=DNC,,D" =DNC-_. (11)
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Note that in C \D+, the exponential e =) is bounded. Therefore, the term Eg is
analytic and decays as k — o for k € C\ D". Thus, by using Cauchy’s theorem and
Jordan’s lemma, we can rewrite (9) in the form

yor) = [ E(x0gw(.dk, xe Ry, 1>0, (12)

where the orientation is so that DT stays at the left of dD™ as the contour is traversed.

The second step for eliminating unknowns is the use of invariance maps, i.e., maps
that keep the spectral input w(k) unchanged. By definition, such a map must satisfy
v4(k) — v*(k) = k* — k*, which is equivalent to

(v(k) = k) (v(k) + k) (V2 (k) + k> — 1) = 0.

It follows that one nontrivial invariance map is k — —k. Using this transformation,
we can rewrite the global relation (7) as

"Wy (—k,t) = —ig3(w(k) 1) — kg2 (w(k). 1)
—i(1=k)g1(w(k),1) = k(1 = k)go(w(k),1), Sk=>0. (13)
Furthermore, changing k by an invariance map v (k) satisfying
vik)=1—k (14)
in (13), we can rewrite the global relation in the form
"W 5(—v(k),1) = —igs(w(k),1) — (k)22 (w(k),1)
—ik*g1(w(k),1) = v()K Go(w(k),1), Sv(k)=0. (15)

Using (13) and (15), we have

—kgz(W(k),l) _ _kew(k)t (ﬁ(—k’t‘)/(—kf(__k‘/(k),t))

— ik(v(k) +k)g1(w(k),t) — K>V (k)Go(w(k),t) (16)

)
— i (K + V2 (k) + kv (k) g1 (w(k),1) = kv (&) (k+ v (k) go(w(k),1)  (17)

provided Sk >0 and Sv(k) > 0.
Now, we can rewrite (12) in the form

1 .
)= E(k;x,t)G(k;t)dk + — R (kst)dk, Ry, >0, (18
yon)= [ ElrnGandit 3= [ FHEdk xeRe >0, (18)
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where
Gllks) = ~2ik{k-+ V(k)) 09(R).0) ~ 2KV (D (k + VR)B WK, (19)
and
Hlir) = L5 = LSV,

Observe that H becomes singular at k € C if v(k) = k. This can only be true if k =
F % due to the invariance property (14). In either case, this would be only a removable
singularity if we knew v were analytic. In that case, we could easily conclude that the
second integral in (18) is zero. However, there is no map which both satisfies the
invariance property (14) and is for instance analytic in the neighborhood of k = —1 €
D+ . This can be proven by using arguments similar to those in the proof of [ 1, Lemma
4.2]. In order to deal with this analyticity issue, we introduce a square root function
whose branch cut is slightly rotated compared to the standard square root function.

We set /7 1= \z|%ei£2g_z with argz € [e,2m + ¢) for some fixed and sufficiently small

€ > 0, and choose .
vik)=v1—k%. (20)

Then, v satisfies the invariance property (14) and is analytic on D\ {—1} (See Figure
D).

Moreover, 3v(k) > 0 for all k € D. The discontinuity point k = —1 can be
taken care of by using the same complex analytic arguments given in [, Section 4, pg.
13]. In more details, we remove a small half ball B, from D™ around the branch point
k = —1 and show via Cauchy’s theorem and Jordan’s lemma that the integral around the
boundary of D"\ B, vanishes as H is analytic and bounded in this region. Moreover,
the integral around dB, vanishes as r — 0 since H is bounded on B, (even if it is not
analytic). In conclusion, we justify that the second integral in (18) is zero.

v
4
N\ /
D+ /
N\ /'
D+\BT \ 1 /
\ /
\ /
\ o®
B’!‘ ““_L .oo'....
O |_oeet
2 et } 0 \ 2
..oo". /“' \
/
\
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//"v N\ D7
/ D7 \\
\

*

Figure 1: Dotted path denotes the branch cut of v(k) =1 —k?
Hence, the BdInt0p associated with (1)—(3) is given by

Whlg0,81](x,1) = /8D+E(k;x7t)G(k;t)dk7 1)
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where Vv is defined in (20), E is defined in (10) and G is defined in (19). One can of
course replace G(k;7) at the right hand side of (21) with G(k;T') by using the standard
arguments in the Fokas method. Therefore, we have the formula given in the theorem
below:

THEOREM 1. (Integral representation) Suppose y solves (1)—(3) in Qr = Ry X
(0,7), is sufficiently smooth up to the boundary of Qr and decays sufficiently fast as
X — oo, uniformly in t € [0,T]. Then, the associated BaInt0p is defined by

Wolgo.g1l(er) = [ (k)G T)dk (22)

where E and G are given by (10) and (19), respectively and dD™ is the boundary of
the region DT defined in (11) with orientation that D remains at the left of 0D as
the boundary is traversed.

The advantage of the above form with 7 in (22) relative to the formulation in (21) is
that differentiation with respect to space and time is very straightforward since it only
affects the exponential term E(k;x,z). This is important for interpolation arguments
because an estimate at the base level can then be extended to higher regularity levels
via differentiating in x and applying the base level estimate again.

The main result concerning the spatial norms associated with the BdInt0Op is be-
low:

THEOREM 2. (Dispersion estimates) Let W), be the BdIntOp defined by (22). Then,
it satisfies the following estimate

1 L
Ws[80,81] ) S 1% EII‘PHU 0<r<1, (23)

Sor r € [2,00], where ¥}, i = 1,5 are defined in (32), (43), (62), (73), (54), respectively
in terms of given Dirichlet-Neumann data (go,g1)-

The dispersion estimates found above imply LZLL;(RJr) type Strichartz estimates
with respect to L2 norm of ¥;, i =1,2,3,4 for suitable, i.e., biharmonic admissible,
(A,r), ie., 8 4r + ;L, A,r € [2,00]. Observe that the representation formula is very
favorable for dlfferentlatmg with respect to x and each derivative merely brings a factor
of k into the integrand. Therefore, one can differentiate and obtain L}W;" (R, ) type
estimates with respect to H® norms of ‘P; at first for integer s and then by interpolation
for fractional s. Finally, it is not difficult to show by using the Fourier characterization

2543

of Sobolev norms that H* norms of ¥; are controlled by H, ® (0,T) and H (0 T)
norms of boundary data gy and g;, respectively. See for instance [15] for such argu-
ments in the case of the Schrodinger equation. Therefore, we have the corollary below
whose proof can be done by using the dispersion estimate in Theorem 2 and modifying
the arguments given in [15] for the classical Schrodinger equation.
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2543 2541
COROLLARY 1. (Strichartz estimates) Let s >0, T <1, go€H, % , g1 €H,*?

with suppgo,suppgi C (0,T) and (A,r) be biharmonic admissible and W), be the
BdInt0Op defined by (22). Then, Wp(go,81] defines an element of C([0,T];H*(R4))
that satisfies the following inhomogeneous Strichartz estimate:

s.r < 5. s
|Wb[g0,g1”th(0:T;WJ}' (Ry)) ~ ‘gO|HL8ﬁ(R) + ‘gl‘Hngﬂ (R)’ (24)

1

where the constant of the inequality depends on s.

Further implications

e The dispersion estimate and the Strichartz estimate in this paper also hold in the
easier case where the pde only involves the biharmonic operator and does not
involve the Laplacian. Moreover, in the purely biharmonic case the restriction
t < 1 in (23) and the condition on T in Corollary 1 can both be removed. This is
because the analog of the oscillatory estimate in Theorem 3 does not require the
restriction 0 <7 < 1 when the oscillatory term in the integral does not involve
the exponent s> associated with the Laplacian, see [2].

e The results of Theorem 2 and Corollary 1 are also useful for treating the corre-
sponding nonlinear problems. Recently, [12] studied the local wellposedness for
the nonlinear fourth order Schrédinger equation posed on the half line with inho-
mogeneous Dirichlet-Neumann boundary conditions. The authors obtained local
wellposedness in the high regularity setting, namely for s > 1/2. The problem
remains open in the low regularity setting 0 < s < 1/2 which is a more difficult
problem even for power type nonlinearities such as u +— |u|Pu, p > 0. This is
because the space H*(IR) is no longer a Banach algebra for s > 1/2. The clas-
sical tool for treating this difficulty is using Strichartz estimates. Therefore, the
Strichartz estimate in Corollary (1) can be considered as a first step towards estab-
lishing local wellposedness in the low regularity setting for the associated nonlin-
ear models. Of course, in addition to the boundary type Strichartz estimates es-
tablished here, one also needs to prove time trace estimates in fractional Sobolev
spaces for the homogeneous and nonhomogeneous linear Cauchy problems to
be able to fully treat the nonlinear problem. Proving Strichartz estimates for the
homogeneous and nonhomogeneous Cauchy problems is not difficult and can
be done by modifying the well known arguments for the classical Schrodinger
equation. However, the time trace analysis of solutions of the nonhomogeneous
Cauchy problem is a challenging problem at the low regularity setting. We leave
this problem as well as the full treatment of the nonlinear model as a future work.

e The results of this section extend to more general type of fourth order differential
operators in the form P = —i(ad? + Bd?), where 0 # o € R and B € R. We
show in the last section that DT and the correct choice of a branch cut for the
square root function in the definition of invariance maps change depending on
the signs and values of o and f3.
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3. Dispersion estimates — Proof of Theorem 2

559

In this section, we prove that dispersion estimates for the fourth order Schrodinger
equation posed on the whole line (see e.g., [2]) can be extended to the case of half
line and in particular one can obtain boundary smoothing properties associated with
BdIntOp (21) . To this end, we first observe that the integral on dD™ is equivalent to

the sum of integrals over the union of paths given by

(25)
(26)

27)
(28)
(29)

We first split the representation formula in five pieces according to the above paths:

Wy lg0,81]( Z E (kix,t)G(k:T)dk =: Wy [go,81] (x.).

We will find estimates for each of the terms at the right hand side of (30).
For ¢/ =1, we have

Wy [g0.81](x,1) = | E(kix,t)G(k:T)dk
n

= é/o e*“'”"(-‘/‘*-"z)’G(iS,T)ds'

Let ¥, is defined to be the inverse Fourier transform of ‘i’l , Where

~

W, (s) = G(is,T) for s > 0 and ¥ (s) = 0 for s < 0.

Then,
1 [ : S
Whl [g07gl]()€,l) _ _/ e—Sx+l(s4+52)t/ e—zsy\Pl (y)dyds.
21 Jo oo
By changing the order of integration, we can represent Wb1 [g0,81](x,7) as
1 1 oo - —sxi(s* 521 —is
Wil =5 [ | [ e ds | 1 (0)dy
21 J-w | Jo
1 oo
= — Ki(y;x,t)¥(y)dy,
2n/; 15 x,0) Wi (v)dy
where K (y;x,t) is called the kernel of W,! and given by

=

K, (y;x,t) _ /O e—sx+i(54+52)t—isyds _ /O eid)(s;y,t)p(s’x)ds

(30)

€1V

(32)

(33)

(34)

(35)
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with the amplitude function p(s,x) = e™** and the phase function
O(s3y1) = (s*+ 7)1 —sy.
We have the following lemma.

LEMMA 1. Let s
I(s;y,t)E/ G E—iy g
0

Then,

[1(s:y,1)| < et ™%,

where ¢ > 0 is independent of y € R and t,s > 0.

Proof. See Appendix A. [

REMARK 1. Note that in the above lemma the interval of integration is finite but
the constant of the inequality is independent of the upper limit s which is a crucial
ingredient for the next lemma below. The unbounded case where the interval of inte-
gration is the whole line is given below in Theorem 3 and due to Ben-Artzi, Koch, Saut
[2]. The unbounded case is critical in the analysis of sz.

LEMMA 2. The kernel of Wb1 defined by (35) satisfies the following dispersive
estimate:

K (ys0,0)] S, (36)
where x,t € Ry and y € R.

Proof. We first set ®(s;y,7) = I(s;y,¢). Then write the kernel

=|d
ki) = [ | St psjas @7
o |ds
Integrating by parts at the RHS of (37) and using

lim ®(s;y,7)p(s;x) =0

§—r00

we find
ds. (38)

= d
Kiixn)| < [ (i) | Zop(s)
0 K

oo

By Lemma (1), we have |®(s;y,7)| <~ /4. Therefore,
IK; (y;x,1)| < ct_1/4/

ds=ct™ /4 (x/ e‘”ds)
0 0 (39)

= H1—e<a V4 O

%p(s,x)
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The following estimate is deduced from Lemma 2:
_1
Wy lg0.811ll o, ) S 17 IM¥1llpe, £ > 0. (40)

On the other hand, using (31) and the boundedness of Laplace transform, we have

2
dx

/N e—sx+i(s4+s2)tG(l-s7 T)dS
0

2 1 ”
Wy (80 81] [ 2(s, ) = W/o

2 (5]
N/ (/ e *|G(is T)|ds> dxfj/ |G(iS,T)|2ds (41)
0
— [ 1Fis)Pas =1

Interpolating between (40) and (41), we obtain

1_1

<G|y, (42)

W5 50,8114z

for r € [2,09].
Regarding the case ¢ =2, we first define ¥, to be the inverse Fourier transform
of ¥, , where

N 1 A
Yo (s) = G(s,T) for 7 > s > 0and W;(s) =0, otherwise. (43)

Now, we can extend our limits of integral to the whole real line:

1 % ti(sh 2V
sz[gmgl](x’t):_ﬁ/(; Zetsx-'rt(s S)t\PQ(S)dS

1 [~ P S A
_ / q;z(y)/ emerl(547.\2)1713ydsdy (44)

2
=: /:O‘I’g(y)Kz(y;x,t)dy.
To estimate the kernel we use [2, Theorem 1]:
THEOREM 3. ([2]) Let t < 1 or |x| >t and consider the oscillatory integral

) = [ Mg (43)
R

Then,

wl—

1(x,0)] < et (1+t'li/'4>_ . (46)

By using Theorem 3, we find the decay estimate for kernel K (x,y,?):

~13
1 x—
K (x,y,0)| S 173 (1 + |t1/4}’|> : (47
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S\ 13 . .
Since the term (1 + |f1 /f ‘ ) < 1, we get the desired estimate for the kernel:

Ko yt)| S 175, (48)
The above estimate implies
1
W5 (80 81]l| o) St 412111 (49)

On the other hand extending (44) to x € R, we obtain that

ZWlg0.81])(5,1) = = = s), (50)
which gives
W7 lg0,811ll 2 s, ) < [Welg0,81]| 2 gy = P22 1)
Interpolating between (49) and (51), we obtain
W3 (80811l y e S|y | (52)

for r € [2,09].
For ¢/ =5, we have

W, [g0,81](x,1) = | E(k;x,t)G(k;T)dk

&
1 - 4_2 (53)
_ _%‘/_mﬁ etsx-‘rt(s —s )tG(S,T)dS.
We set W5 to be the inverse Fourier transform of ¥s(s), where
. 1 . 1
Ws(s) :=G(s,T) fors < ——— and Ws(s) =0 fors > ——. (54)
5(s) :=G(s,T) 7 5(s) 7
So we can rewrite the fifth component of the BdIntOp in the following form:
1 - 7% isxti(s*—s2)t—is
Wlsogil(en) = =5 [ Ws(y) [T eIy
T.J—oo —oo
oo (55)
= [ WsO)Ks(n)dy.
By similar calculations that we used for W2, we have
Ks(xp)] S174. (56)
Using (56) in (55), we have
1
AP H <1 57
[Wileo1)] ., S HI¥SI (57)
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On the other hand extending (55) to x € R, we get:

F(Wilgo.81])(5.1) =~/ 505 s), (58)
which gives
W20, <HW5 , — s,
[Wleo.e]| ) < [[W5le0.c] |, g = 1512 (59)
Interpolating between (59) and (57), we obtain
Wiloail]|, SR 60
Wil s, (60)

for r € [2,00].
For ¢ =3, we have

W7 lg0.81) (x.1) = /)@ E(kix,1)G(k: T)dk

o L (61)
=5 [ e et DG i~ 1) (14— ).
27 % (sz_%)z
Let W3 be defined as the inverse Fourier transform of
A G(s—|—i(52—l)%,T)<1—|—i—s>,s>L
Y (s) = 2 (.s‘zf%)% \? (62)
0 s < %

By changing the order of the integration we can rewrite WIS’ in the following form:

1 [ © 2 E a2 Lo
Wf[go,gl}(xvf)z—ﬂl ‘Ps(y)/l el BT ) gy

. V2 (63)
= [ K(en¥a()a.

where K;(y;x,t) is the kernel of W. Now, we can show that K3 decays as 1~/ by
using a similar analysis that was given for Wb1 . Indeed, we can write

Ks(y;x,1) = / T )it 22 () ey

\f (64)
_ ‘/1 ei¢3 (s3x. ) D3 (s,x)ds
7

where @3(s;x,y,7) = 0(s)t +s(x —y) with 0(s) = —(4s> — 25> + 1) and p3(s,x,t) =

1.1
ef(szfi)Zx'
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LEMMA 3. Let

I(S;(D,l) = /S1 6i€w7i(4§47252+%)tdé.

V2

Then,

[ (s;0,0)] < ct™ V4,

where ¢ > 0 is independent of ® € R, t >0, and s > 1/\5

Proof. The proof of the above lemma is similar to the proof of Lemma 1, therefore
we only mention a few details here. Let us note that in the above integral we set

bo(§) =48 2674 7 +£2.
Then,
60(8) =96 > 1,070(8) = 96£.6[0(8) = 4882 —4,9/)(8) = 1687 — 4 + 2.

Again, we set § =7~'/4. We can assume without loss of generality that s > & /96 +
1/4/2 because otherwise the lemma is immediate.

If §/96 < 1//2, then |93) (&)| = & forall & € [1//2,5]. Also

10

2
482 0

PAGIEEE

and Van der Corput arguments apply.
On the other hand, if §/96 > 1/v/2, then \(Z)t(z,)(é)\ < & for & € [1/v/2,8/96)
and [¢4) (&)] = 6 for & € [8/96,s]. Also,
V28/48 >2=28%/48% > 4 = —4 < —287 /482

Therefore,
162)(8)| = 4882 — 4 > §2/192 — 262 /48% = 357 /48

for & € [5/96,s]. Hence, we can split the given integral over two regions as [1/v/2,8/96)
U[6/96,s] and finally use Van der Corput arguments in the second interval. [J

Now, we have the following result by combining the above lemma and the behavior
of exponentially decaying term.

LEMMA 4. The kernel Ks defined in (64) satisfies
K3 (vix1)| < etV (65)

where t >0, x € Ry, and y € R.
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Proof. First set ®(s;m,1) =I(s;®,1). Then as in the proof of Lemma 2, integrat-
ing by parts and using
lim [®(s; @,1) p3(s;x)| = 0,

we obtain

ip3 (s3x,1)|ds. (66)

Kbl < [ 1@Gon)]|5

V2
We change variables by setting m> = s> — 1/2, m > 0. Then the result follows by
Lemma 3 with @ = x —y and the following uniform estimate

/L $p3(s;x,t) ds:/o xe ™Mdm <1, x>0. O (67)
V2
The above lemma gives
1
W3 10811 oy < 0 41511 (68)

On the other hand, using (63) we have

2
’Wh3 [go,gd(x,t) |L§(R )

2
T RPN [ S|
= 2/ /1 emx*(‘@*2)2)“”(2“272)2’(?(54—i(s2—%)%,T)<1+ T l>ds dx.
(2m)% Jo 7 (s2=7)2
. 2
1 2 2
N/ /1 e ‘Z*E) |G(s—|—i(s2—%)%,T)| 252 2| ds| dx
T s—5

(69)

After change of variables and using the boundedness of Laplace transform, we have

2
|ng[g0agl}(x’t)|[1)2€(ﬂg )

2
1
©° 2m? Ly2
5/0 / G2+ D) b im T | S dm | dx q0)
S [ [BaPds = i)
Interpolating between (70) and (68), we obtain
(o1
W5 g0,81] [ ) S 147150 (71)

for r € [2,00].
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The case ¢ = 4 is similar to that of Wb3 . We have

Wylg0.81](x.t) = | E(kix,t)G(k:T)dk
Y4

1o~ o2 L0 1 .
_ __/1 eimx?(sz*2)2)671(2'8272)%6’(—54-i(52 _ %)%,T)<— 1+ tsl . )dS
2 7 (s2=75)2
(72)
Let W, be the inverse Fourier transform of
. Gl—s+i(s>— Iy —14+—8 |, s> L
"114(5) _ ( ( 2) ) (52_%)% V2 (73)
1
07 s < ﬁ
Then, W,f takes the following form:
71&‘)67(\'27l)%xfi(%‘zfl)ztfiv
Wilsosil(nn) = =5 [ W) [ e DB gy
V2 (74)

=: [ _Ka(nx,1)¥a(y)dy.

where Ky(x,y,7) is the kernel of W;}. We can deduce that K4 decays as r~'/* by
arguing as in the case of sz because we can write

K4(y;x,t) _ “ efi.s'(x+y)fi(4s272s2+%)te—(sz—%)%xds
1/V2 (75)

_ i04(s3x,y.0) ‘X)d
= e s;x)ds
1/V2 pa(s;x)

where ¢>4(s x,3,t) = 0(s)t —s(x+y) with 6(s) = —(4s> — 25+ 1) and p(s;x) =

1
e —(s? —§)7x

Therefore, we have
Ka(yix,0)| < ct™V/4, (76)

where 1 # 0, x € R, and y € R. This implies
W3 20 11| o ) S H Il (77)
Again, from the boundedness of the Laplace transform we have
W3 (80,81l 2. ) S IW¥all 2 (78)
Interpolating between (78) and (77), we obtain

l L
N (3-2 ||\P4||U, (79)

Wslso:81lll5ce.) S

for r € [2,00].
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4. Towards the general case

In what follows we present a general form of the integral boundary operator (21),
namely the BdIntOp for the problem (1)—(3), with the linear operator P be defined by
the general form

P=—i(ad?+B3?), PBeR, acR, o#0.

We note that the case o« = 8 = 1 was discussed earlier in this paper and the case
o =1, B =0 was analysed in [16].
For the general problem the global relation (7) takes the form
" Wig(k,1) = —iogs (w(k).1) + atkga(w(k).1)
—i(B — ok®)31 (w(k).1) + k(B — ak®)go(w(k).1), Sk<O, (80)
with
w(k) = —i(ok* — Bk?). (81)

Furthermore, the integral representation of the solution takes the form (9) with ¢ being
defined as

g =iogs — okgr + (B — ok®)(ig1 — kgo).

Following the same arguments as in section 2 we are able to derive the general
boundary integral operator

Wileo.gil(vr) = o [ E(kixa)Glkndk, (82)

where E is defined in (10), G is defined in (19). Therein w(k) given by (81) and v(k)
is defined follows

—k (83)

where we set /7" :=|z|Z¢' 2 and for some fixed and sufficiently small &€ > 0 we
choose:

e argz € [-m+em+e), for o >0, B>0. Then v(k) is analytic on DT\

{ — \/g} (See Figure 2).

e argz € [e,2n+¢), for o >0, B < 0. Then v(k) is analytic on D+ \ {i —%}
(See Figure 3).

e argze[—nm—e,m—e¢), for a <0, B <0. Then v(k) is analytic on F\{\/g}
(See Figure 4).
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i

Figure 2: Dotted path denotes the branch cut of v(k) = B_j2 for a>0, 8 >0.

i

N s r s
RN
N . 7
. s 4

D+ > '-J.‘/jr/}/ oD+

Figure 3: Dotted path denotes the branch cut of v(k) = g —k* for oo>0, B <0.

\D+ /‘
b oD+,”
lk // £
oD+, /}- b
oo, \\ \/gll
RS

Figure 4: Dotted path denotes the branch cut of v(k) = B_x fora<o, B <o0.

B_
e argz€ [—¢&,2m—¢), for a <0, B>0. Then v(k) is analytic on D\ {i —g}
(See Figure 5).

For the case that o« = 1 and 8 =0 the BdIntOp (82) simplifies to (4), since (83)
takes the form

vk = ik, keDf:{k:argke(%,%)}'
—ik, keDy = {k:argke (3£,7)}
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U .‘: /
N N s 8Dj"/
aD+" § e
N y

N L 4

~

,\/;j' D+

Figure 5: Dotted path denotes the branch cut of v(k) =1/ & B k2 Sfor o0 <0, B>0.

A. Proof of Lemma 1

Proof. We can write
s . s . 3
I(s;y.1) E/ & iy g :/ e”(é%gk%)dé-
0 0

Set ¢y (§) =E44+E2— % Then, (Z),(;)(’g') =24 > 1. We can use the steps of the proof
of Van der Corput lemma and prove that

[(s;y,0)| 714 >0,

where the constant of the inequality is independent of ¢;,, y, ¢, and s. For com-
pleteness we give the details because we refer to the content of this lemma for other
oscillatory integrals later.

Indeed, we first set § =7 '/4. Then, we have q)t(;)(é) =24£ < §if £€[0,5/24).
Therefore, we can write

/24
I(S;yJ):/O e ’5vd§+/8/24 (E+En-ibrge = A+ B.

Clearly, |A| < 24 22/4. We are assuming without loss of generality that s > /24,
otherwise the result of the lemma is immediate.

Now, we will estimate B. First observe that ¢/,(§) = 1262 +2 > 48 > +2 on
[6/24,s]. In particular, ¢/, is monotone on [5/24 ,s]. Now, we define m, be such
that

/ o . /
)l =, _int 10/, (&)1

There is only one such point in [6/24,s] due to monotonicity of ¢,’7y. Note that
¢, (&) = 4E3 +2& — 2. Only three cases are possible:
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(i) The first case is m, , € [6/24,s] and ¢/ (m;y) = 0. If & & (myy — &,my y+9),
we have

19/,(&)] =

53
/m¢t’jy dé' ( +2>|§ miy| > 55 +28.

We write,

my. mey+6 s 3
U S BT RS
5/24 5/24 My y—8 mw+5 i=1

Clearly, |By| <28 =2:~/*. Let us estimate B;. We integrate by parts, use the
monotonicity of ¢, Fundamental Theorem of Calculus and obtain

my .y -5 .
/ T it (6) g
5/24

£i10ry(8) ey )

Miy=0 | o 1
X |- 7 /e d
NITER 5/24+/6/24 €<lt¢ty(§)>’ :
2 /83 Lo s g 1
?<Z§+26) <+;Lém4 35<@y >d4

5 - 1/4
2 <192t /7.
(48_% 6) 92t

|B1| =

|B3| is estimated in the same manner and we can find the same bound for it.

(ii) Consider the case ¢y, () # 0 and m; , = 6/24. In this case, we decompose as

m/\+5
—/ / / =040,
5/24 5/24 ey +5

where |C)| < 8 and |C,| < 192:~'/# by the same arguments in (i).

(iii) Consider the case (pt”y(mt’y) # 0 and m; y, = s. In this case, we decompose as

m,)—é
B = / / / - =D+ D»,
§5/24 §/24 m;y—6

where |Dy| < 192~ 1/4 and |D>| < 8 by the same arguments in (i) and (ii). By
the three cases above, the lemma follows. [
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