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ON ¢g-MONOTONICITY OF o-BERNSTEIN OPERATORS

BOGDAN GAVREA, IOAN GAVREA AND DANIEL [ANOSI*

(Communicated by J. Jaksetic)

Abstract. In this paper we show that ¢ -Bernstein operators preserve g-monotonicity of all or-
ders. We investigate the tensor product of two such operators and show that it preserves (g,s)-
box convexity. Some Rasa type inequalities for the ¢ -Bernstein operators are also derived.

1. Introduction

In [4], the following generalization of the Bernstein operators depending on a non-
negative real parameter was derived. Given a function f(x) on [0, 1], for each positive
integer n and any fixed real a, the so called o -Bernstein operator for f(x) is defined
as

Ta(f33) = 27 () (i) : (1)

where p%) (x)=1-—x, pg(ﬁ) (x) =x and

P\ (x) = [(”:2) (1—a)x+ (’::;) (1—a)(1—x)+ (’:) ox(1 —x)}

% xi—l(l _x)n—i—l7
for n > 2, x € [0, 1]. Here the binomial coefficients (’l‘) are given by

k!

_ 2 ifo<i<

(’;) _ ) = TOSIsK
0, else.

When o = 1, the az-Bernstein operator reduces to the classical Bernstein operator

Tafin) =By(f) = 3 bnitr (1) mer
i=0
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where by i(x) = (7)x'(1—x)"", i, neN.

In this paper we will consider only o -Bernstein operators with a € [0, 1]. Under
this assumption, the operators 7y, o are linear positive operators.

The rate of convergence and a Voronovskaja type theorem are given in [4]. The
operators T, , preserve monotonicity and convexity ([4], Theorem 3.3 and Theorem
4.1.).

We observe that p(a)

.7 (*) can be written in terms of the Bernstein basis as

A?@Fﬂl_mu—ﬂ%4ﬂﬂ+a—ak%4¢ﬂﬂ+a%AWimGN.(%

It follows from (2) that the «-Bernstein operator 7, o can be written in terms of the
Bernstein operators

Tualfi) == a1 -08,2 (1 (20 )x) ®
(1= agapy o (7 (22 ) ) a7 02,

where By (f(at +b);x) is the Bernstein polynomial of degree k, corresponding to the
function g(r) = f(at + b) evaluated at x.

We will use identity (3) to prove some new properties of the o -Bernstein operators
Tha,n€N, ae(0,1).

In [10], J. Mrowiec, T. Rajba and S. Wasowicz solved for the first time the follow-
ing problem, raised by I. Rasa ([12], Problem 2, p.164), related to the preservation of
convexity by the Bernstein-Schnabl operators. In [8], Rasa’s conjecture was studied for
the case of Baskakov-Mastroianni operators.

PROBLEM. Prove or disprove that

3 (i) 3) + bni9)n ) — 2 s s ) £ (ﬂ) >0 @

i,j=0 2n

for each convex function f € C[0,1] and for all x,y € [0,1].

A simple proof of (4) was given by U. Abel in [1]. In [3], [6] and [7], inequality
(4) was proved in a more general context.
Given f € C[0,1], we define

fx+h)—f(x), x,x+he]0,1]
0, otherwise

ALF() 1= Auf(2) = {

and for g > 1
AT F(x) i= AL (A (x)) -

A function f defined on [0, 1] is called g-monotone if AZ (x) >0, forall A >0. In par-
ticular a 1-monotone function is non-decreasing and a 2—monotone one is convex. It is
known (see, [9] for example) that the Bernstein polynomials preserve g-monotonicity
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for all orders g > 1. This property follows from the following identity, which will be
used later in this paper:

(DB, f) (x) = (")i’gbnq,j<x> [i,j 1 it )

q
q) n? = nn n

Here, by [xo,... 2 Xgs f], we have denoted the divided difference of the function f on
the distinct points x,...,x, € [0,1], defined by the formulas

[xo05.f] = f(x0)

(X0, Xg—15f] = X1, xgs f]
X0 — Xq

[x07x17 s 7xq717xq;f:| =

for g > 1. Given the divided difference [x,x+h,...,x+gh; f] and A] f(x), the follow-
ing identity is well-known:

11
[X,x+h,....x+qh;f] = EEAZ (x) (6)

U. Abel and D. Leviatan in [2] proved an analogous inequality of (4) for g-
monotone functions. More precisely, they proved the following theorem.

THEOREM A. Let g,n € N. If f € C[0,1] is a g-monotone function, then for all
x,y€10,1],

sgn(x—y)? i i(—l)q_j<;l,> (_ljbmv,-(x)) ( ﬁ bn.,v,-()’))

i=j+1

1 t

X/ f<w>dt>o,
0 gn—+ o

where o € [0,1].

The aim of this paper is to show that the o -Bernstein operator, 7, o, preserves
g-monotonicity of all orders, ¢ > 1 and to extend Theorem A. Our main results are
listed below, with the corresponding proofs given in Section 2.

THEOREM 1. The o-Bernstein operator, T, ¢, preserves q-monotonicity of all
orders q, g € N.

Before giving the next result, we recall the definition of box-convexity. A function
f€C([0,1] x[0,1]) is called box-convex of order (g,s), [5], if for any distinct points
X0,X1,-..,% € [0,1] and any distinct points yg,y1,...,ys € [0,1]

X0,X1, ...,xq.f S0
)’07)’17---,)’x’ -
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where

|)@7 . a';t\] f‘| [x07”‘xq§[)’0»~~~7ys;f(x,-)}] - [y07'~~7y5;[)€(),...7xq;f(-7y)H .

0,1] be two fixed numbers and n,m be two natural

THEOREM 2. Let o,f3 € |
] x10,1]) — C([0,1] x [0,1]) is the tensorial product of

numbers. If Ty 0. p :C( 0,1
Tho and Ty g, ie.

7;1,111,05[3 EEP}’ZL pm,j f(i’i> ) (7)

55 n’'m
then T, o preserves (q,s)—box convexity, for all q,s € N.

THEOREM 3. Let f € C([0,1] x[0,1]) be a (1,1)-box convex function and x;,
t1, y1, z1 €[0,1]. Then

sgn(xi —11)(y1 — 21 EE(pn, )~ )) (ﬁf}(m)—ﬁf}(m)) (8)

i=0j=0

L]
n>m

where A, i(f):folfolf<‘jfg,f;fg>dudv, i=0,1,....n, j=0,1,....m, a and b

being two fixed positive numbers.
COROLLARY 4. Let f € C[0,1] be a convex function and 8 be a fixed positive
number. Then

n m

sen(n =)0 =20 X 3 (i ) =l @) (p0)00) = ) ©)

i=0j=0

1 . .
x/ ( <i+i+5t))dt>0.
0 n om

REMARK 5. Foroo=03=1,6=0,x; =y, =xand t =71 =y, m=n, we get
inequality (4).

~

2. Proofs

Proof of Theorem 1. Using Leibniz’s rule in (3) we get

DT, o(f3x) =(1 - a) [XDan—z (f (m_iﬁ) ;x) (10)
(1 - DB, (f ((" ;2)’) )} T aDIB, ((1):)
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+q [Dqan2 (f (W) ;x)
(21

The first three terms in (10) are positive since Bernstein operators preserves g-monotonicity.
For the last two terms, by (5) we have

DB, (f (W) ;x> DB, (f <(” ;2”) ;x> (11)

n—2\ (g—1)1"&!
- ( >(q qfl) jga bn—q-1,j(x)

qg—1) n
j+2 j+3 jtq+1 Jj j+1 jtqg—1
x{[ , ey SO ==, e IO
n n n n' n n
Using the recursive formula for divided differences, we obtain
j+2 j+3 jtqg+1 jj+1 jtqg—1
|: ) IR sf(t) I ) JERRE ,f(t) (12)
n n n nn n
j+2 j+3 Jjt+tqg+1 j+1 j+2 jt+q
:[ b 000 ;f(t)_ b AR ;f(t)
n n n n n n
j+1 j+2 j+tq Jj j+1 jtq—1
+|: ’ [EER) ’f(t):|_|:_7 PEER) ’f(t)
n n n n o n n
nlj+1 j+2 jtq+1 Jj j+1 j+tq
B B (R
q n n n n' n n

From (12), it follows that the last two terms are positive. This implies that DYT;, o (f;x) >
0 and the proof is complete. [

For the proof of Theorem 2, we will use the following result due to T. Popoviciu,

[11].

LEMMA 1. ([11], pp. 78, T. Popoviciu) If f € C775([0,1] x [0,1]) and the mixed
aq+Sf

derivative T exists and is continuous, then f is (q,s)-box convex if and only if
3q+.\'f
—>0. 13
Txidy > (13)

Proof of Theorem 2. We first note that the following indentity

Ty (F) (53) = (1= ) (1= BILY, 5 (F)(ey) + (1= @) BLLY,  (f)(x.)
+a(1=B)LY) () (x.y) + @BBu(f)(x.7),
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where
n m i ]
LSII—)Z,m—Z(f)(x?y) = Z Z un72,i um 2]( )f (; Z)
i=0j=0
) L J
Ln— m Up— 21 <_ —>
2 ,20,20 i
3 n m i ]
L,S’,L_z(f)(x,y) = 2 2 bn,i Ump—2, / <— —>
i=0 j=0 n'm
and

ur,k(t) = (1 —I)bnk(l‘) +tbr7k,2(t),

holds. We further have

8q+sLn7) 2,m— 2(f)

Ixidy (x,y)
= > 2 [(1=x)Diby2,i(x) +xDiby 2 (x)]
i=0j=0
<[ D}b210) +3050m2-200] £ (1.2
+gs Y, ZDq N (bp—2,i—2(x) = by2,i(x)) D! (bzn—Z,j—Z(Y)_bm—2,j(}’))f(%ai)
i=0j=0
= X7 +gsZy,

where

OTHB, s a(f1) 1 Byam—2(f2)

%= (1= 0)(1 ) T2 )y ) T rzesal)
aq+SBn72,m72(f3) 8q+an72,m72(f4)
W(M)’H‘x}’ Iy (x,3),

= i i DY (by-2,i-2(x) = bu2,i(x)) Dy (bm—2,j-2(y) = bm—2,;(v)) f (%v i) '

i=0j=0

+y(l—x)

and f1, f2, f3, f4 are given by

ity = (P2 2D gy - p (22 (2,

n m n m

f3(x,y):f<(n—2)x7(m—2)y+2)7 f4(x,y):f<(n_2)x+2 (m—2)y+2>.

n m n ’ m

Since the functions f;,i = 1,4 are (g,s)—box convex it follows that ¥; > 0. From
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equations (11) and (12) we get successively

X = _<m 2) S—l EDq l by 2,i— 2() bn—2,i(x))

s\s—2) m!
m—s—1 . . .
j+1 j+2 j+s+1
b ; ; ,
X Z m—s l/(y){ |:m_27m_27 ) m—2 fl(xy)
Jj=0 y
jj+1 ]+s
+[m—2’m—2" T m— 2 1) }
nm(n—2\ (m—=2\ (g—1)! (s— 1)1 mg!
— 5?<q—1><s—1) S - 1 Z(,) Za bu—g-1,i(X)bm—s—1,(y)
L il i+l i+q+1 i i+tq
W =R T RS ol I R T el 2 S S R
m m m’ ’ m m ’ m
Qo i
A )
ey

This leads to X;; > 0. In a similar way one can prove that

3q+.vL}(127)27m (f)

>
Txigy W) 20
and
8q+.\'L(3)
P Lunalf) (x,y) > 0.

dx49dys

Therefore inequaltity (13) of Lemma 1 is satisfied by T, ,, o 5(f) for any (g,s)-box
convex function. This concludes our proof. [l

Proof of Theorem 3. Since for any continuous function g : [0,1] x [0,1] — [0,]
we have

X1 V1
sen(x — 1) (i —21) / g(x,y)dxdy >0
1 21

it is sufficient to prove the theorem for the case x; > #; and y; > z;.
We have

)y 2 (Pm x1) Pﬁf’?(tl)) (pﬁf}(yl) —p,(f,}(m))g (ié) (14)

i=0j=0

Xy oy 2L / i j
:/ / Zanl P, g | —,= | dudv
f 1 = 0,=0 n m

- RS 6 Tmm,a,ﬁ(g)
_/ / Tgy(u,v)dudv,
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forany g € C([0,1] x [0,1]). If g is (1,1)-box convex function, by virtue of Theorem
2, we obtain

52Tnmaﬁ(g)
ZmmeBel s . 15
dxdy (13)
If fisa (1,1)-box convex function, then
Ul (nx4au mx+by
= dud 16
g(x,y) /()/()f<n+a’m+b)uv (16)

is also a (1,1)-box convex function. Now, Theorem 3 follows from (15) with g given
by (16). O

Proof of Corollary 4. If f is a convex function, then the function /, defined by

h(x,y) :/()1f<2+%(x+y+5t))dt

isa (1,1)-box convex function on [0,1] x [0,1] for any & > 0. Now, (9) follows from
(15) with g:=h. O

We conclude this section by raising the following question.

PROBLEM. Let q,s be two natural numbers, q,s > 2 and let x,t; € [0,1],k =
1,...,q such that x; # t; and yi,zi € [0,1],i = 1,...,s be such that y; # z;i. If g €
C(]0,1] x [0,1]) is a (g,s)—box convex function, prove or disprove that

sgn (ﬁ(xk—tk)> (f[(y,-—z») (17)

i=1

n m q K
.3 % (n (P60 -p,s?;zm)) (n( 5 ) -pfﬁz,m))
iyeesik =0 ji,eenjs=0 \k=1 r=1
g<i1+...+iq,j1+...+j_y) >0.
mq ns

REMARK 6. For o= 3 =1 the assertion is true, [6]. For o= =1,5s=0,m=n

and g(x,y) = fol f (’;’;ﬁ%’) dt, (17) is equivalent to the inequality from Theorem A, [2].

3. Conclusions and future work

In this paper we prove that the o -Bernstein operators preserve g-monotonicity of
all orders. We have also extended the result obtained by U. Abel and D. Leviatan in
[2]. In the end of Section 2, we proposed an open problem related to (g,s)-box convex
functions, that further extends the results from [2].
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