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SHARP NONLINEAR ESTIMATES FOR MULTIPLYING

DERIVATIVES OF POSITIVE DEFINITE TENSOR FIELDS

MICHAL BATHORY

Abstract. The simple product formulae for derivatives of scalar functions raised to different
powers are generalized for functions which take values in the set of symmetric positive definite
matrices. These formulae are fundamental in derivation of various non-linear estimates, espe-
cially in the PDE theory. To get around the non-commutativity of the matrix and its derivative,
we apply some well-known integral representation formulas and then we make an observation
that the derivative of a matrix power is a logarithmically convex function with respect to the
exponent. This is directly related to the validity of a seemingly simple inequality combining the
integral averages and the inner product on matrices. The optimality of our results is illustrated
on numerous examples.
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