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Abstract. In this paper, we mainly study the average sampling and reconstruction for signals in
a shift-invariant subspace of mixed Lebesgue space Lp,q(Rd+1) with the generator belonging
to a mixed Wiener amalgam space. First, the sampling stability for two kinds of average sam-
pling functionals are considered. Second, two kinds of iterative approximation projection recon-
struction algorithms with exponential convergence are utilized for recovering the corresponding
signals. Finally, error estimations are also considered under three different conditions.

1. Introduction

Mixed Lebesgue space arose from considering some functions which depended on
independent quantities with different properties. It was first described in [3] and was
further studied in [4, 5, 6, 7]. Compared with the classical Lebesgue space which makes
it compulsory for all variables to have the same properties, the mixed Lebesgue space
which could realize the separate integrability of each variable has a greater advantage
in modelling and measuring some time-varying signals, especially for the time-spatial
signals. And this advantage also provides some flexibility for the study of time-based
partial differential equations [8].

The mixed Lebesgue space Lp,q(Rd+1) consists of all measurable functions f =
f (x,y) defined on R×R

d such that

‖ f‖Lp,q =
[∫

R

(
∫

Rd
| f (x,y)|qdy)p/qdx

]1/p
< ∞, 1 � p,q < ∞. (1)

The corresponding sequence space is defined by

�p,q(Zd+1) =
{

c : ‖c‖p
�p,q = ∑

k1∈Z

(
∑

k2∈Zd

|c(k1,k2)|q
)p/q

< ∞
}

, 1 � p,q < ∞. (2)

The case for p = ∞ or q = ∞ obeys the usual adjustment. Obviously, Lp,p(Rd+1) =
Lp(Rd+1) , �p,p(Zd+1) = �p(Zd+1) .
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As a fundamental problem in signal processing, the sampling problem in mixed
Lebesgue space has already attracted a lot of researchers’ attention and many mar-
velous sampling findings of the signals in various subspaces of mixed Lebesgue space
have already been presented such as the bandlimited space [13] and the shift-invariant
space [8]. However, as we have learned from the previous sampling results of the sig-
nals in the classical Lebesgue space [1, 2, 11, 12], we need to overcome a number
of shortcomings about the existing results in order to meet the realistic requirements.
For example, the well-known Shannon sampling theorem once told us that signals f
belonging to the band-limited subspaces of L2 could be recovered from the uniform
samples { f (nδ )}n∈Z if the sampling gap δ was sufficient small [10, 14]. Neverthe-
less, the existence of the non-bandlimited signals and the fact that some sampling data
will be lost during the transmission which finally leads to the obtained sampling set is
nonuniform, make it impractical in reality. Taking these two factors into account, the
researchers prefer to study the nonuniform sampling problems for signals in more gen-
eral subspaces of Lebesgue space such that the corresponding sampling results could
be suitable for more signals in practice. Inspired by this thought, the investigation of
the nonuniform ideal sampling problem in shift-invariant subspaces of mixed Lebesgue
space has already been considered in [8] under the assumption that the generator is
subject to a strong constraint condition.

In this paper, we mainly study the sampling and reconstruction in shift-invariant
subspace

Vp,q(ϕ) =
{

∑
k1∈Z

∑
k2∈Zd

c(k1,k2)ϕ(x− k1,y− k2) : {c(k1,k2)}k1∈Z,k2∈Zd ∈ �p,q(Zd+1)
}
(3)

with the generator ϕ satisfying

(A1) The generator ϕ belongs to a mixed Wiener amalgam space W (L1,1)(Rd+1) ,
whose general forms are defined as

‖ f‖W(Lp,q) :=
(

∑
n∈Z

sup
x∈[0,1]

[
∑

l∈Zd

sup
y∈[0,1]d

| f (x+n,y+ l)|q
]p/q)1/p

< ∞;

(A2) lim
δ→0

‖ωδ (ϕ)‖W (L1,1) = 0, where the modulus of continuity is defined by

ωδ (ϕ)(x,y) = sup
|s|�δ ,|t|�δ

|ϕ(x+ s,y+ t)−ϕ(x,y)|;

(A3) ∑
k∈Zd+1

|ϕ̂(ξ +2kπ)|2 > 0, ξ ∈ R
d+1 ;

(A4) There exits δ0 > 0, such that ωδ (ϕ) ∈W (L1,1) , for any δ � δ0 .

In fact, if the continuous function ϕ is in the classical Wiener amalgam space
W (L1)(Rd+1) , which means that

‖ϕ‖W(L1) = ∑
k1∈Z

∑
k2∈Zd

sup
(x,y)∈[0,1]d+1

|ϕ(x+ k1,y+ k2)| < ∞,
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then the assumption (A2) holds due to

lim
δ→0

‖ωδ (ϕ)‖W (L1,1) � lim
δ→0

‖ωδ (ϕ)‖W(L1) = 0.

In this paper, the sampling set Γ = {γ j,k = (x j,yk) : x j ∈ R,yk ∈ R
d , j,k ∈ J } ⊂

R
d+1 is assumed to be relatively-separated for both variables, that is,

BΓ,x(δ1) := sup
x∈R

∑
j∈J

χB(x j ,δ1)(x) < ∞

and
BΓ,y(δ2) := sup

y∈Rd
∑

k∈J

χB(yk,δ2)(y) < ∞

for some δ1 > 0 and δ2 > 0. Furthermore, δ1 > 0 and δ2 > 0 are said to be gaps of Γ
if

AΓ,x(δ1) := inf
x∈R

∑
j∈J

χB(x j ,δ1)(x) � 1

and
AΓ,y(δ2) := inf

y∈Rd
∑

k∈J

χB(yk,δ2)(y) � 1.

Here, J is a countable index set, B(x,δ ) and B(y,δ ) are balls in R and R
d , respec-

tively.
Moreover, due to the limitation of the sampling devices, the obtained sampling

value in reality is not the exact value of signal at each sampling point but is the local
average value near the corresponding sampling location. Thus, for a given relatively-
separated sampling set Γ , we will consider two kinds of average sampling schemes for
obtaining the corresponding sampling values. The first average sampling scheme is

〈 f ,ψ j,k〉 =
∫

R

∫
Rd

f (x,y)ψ j,k(x,y)dxdy, j,k ∈ J ,

where the average sampling functionals {ψ j,k : j,k ∈ J } satisfy

(i)
∫
R

∫
Rd ψ j,k(x,y)dxdy = 1 for all j,k ∈ J ;

(ii) There exists a constant M > 0 such that
∫
R

∫
Rd |ψ j,k(x,y)|dxdy � M for all j,k ∈

J ;

(iii) suppψ j,k ⊂ B(γ j,k,a) for some a > 0.

Note that the first sampling scheme requires that the sampling functionals are compact
support. Here, we also consider the second average scheme which is defined as

〈 f ,ψa(·− γ j,k)〉 = f ∗ψ∗
a (γ j,k), j,k ∈ J ,

where ψ ∈ L1(Rd+1) satisfies
∫
R

∫
Rd ψ(x,y)dxdy = 1, ψa(·) = 1

ad+1 ψ( ·
a) and ψ∗

a (·) =
ψa(−·) .
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This paper is organized as follows. In section 2, some lemmas are given. In section
3, the sampling stability for two kinds of average sampling functionals are established.
In section 4, two kinds of iterative approximation projection reconstruction algorithms
are considered for recovering the signals in Vp,q(ϕ) from the corresponding average
samples. In section 5, three kinds of error estimations under different conditions are
also provided.

2. Some lemmas

In this section, we will give some lemmas which are the basis of the subsequent
sections.

LEMMA 1. [9] Let ϕ ∈W (L1,1)(Rd+1) . Then ϕ satisfies

∑
k∈Zd+1

|ϕ̂(ξ +2kπ)|2 > 0, ξ ∈ R
d+1

if and only if there exists a function

g(x,y) = ∑
k1∈Z

∑
k2∈Zd

d(k1,k2)ϕ(x− k1,y− k2) (4)

such that

〈ϕ(·−α),g〉= δ0,α ,

where d = {d(k1,k2) : k1 ∈ Z,k2 ∈ Z
d} ∈ �1(Zd+1) .

It has been proved in [8] that g ∈W (L1,1)(Rd+1) .

LEMMA 2. [8] Let 1 � p,q � ∞ . Suppose that ϕ satisfies the assumptions (A1)
and (A3) , then any signal f (x,y) = ∑

k1∈Z

∑
k2∈Zd

c(k1,k2)ϕ(x− k1,y− k2) ∈ Vp,q(ϕ) be-

longs to Lp,q(Rd+1) . Moreover, there is the following norm equivalent

‖g‖−1
W(L1,1)‖c‖�p,q := Cϕ‖c‖�p,q � ‖ f‖Lp,q � ‖ϕ‖W(L1,1)‖c‖�p,q. (5)

In fact, [8] only established the lower bound of (5) for 1 < p,q < ∞ . However,
the above result still holds for p,q = 1 or ∞ , which contain eight cases needed to be
verified. In the following, we only give the proof of four cases, the remained can be
proved similarly.

Proof. According to Lemma 1, we know

c(k1,k2) =
∫

R

∫
Rd

f (x,y)g(x− k1,y− k2)dxdy, k1 ∈ Z, k2 ∈ Z
d .
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(i) p = 1, q = 1

‖c‖�1,1 �
∫

R

∫
Rd

| f (x,y)| ∑
k1∈Z

∑
k2∈Zd

|g(x− k1,y− k2)|dxdy

�
(

sup
x∈[0,1]

sup
y∈[0,1]d

∑
k1∈Z

∑
k2∈Zd

|g(x− k1,y− k2)|
)∫

R

∫
Rd

| f (x,y)|dxdy

� ‖g‖W(L1,1)‖ f‖L1,1 .

(ii) p = 1, 1 < q < ∞
For the fixed k1 ∈Z , let bk1(k2) :=

∫
R

∫
Rd | f (x,y)||g(x−k1,y−k2)|dxdy , k2 ∈Z

d .
Taking α = {α(k2)}k2∈Zd ∈ �q′(Zd) , 1

q + 1
q′ = 1, then

|〈α,bk1〉| =
∣∣∣ ∑
k2∈Zd

α(k2)
∫

R

∫
Rd

| f (x,y)||g(x− k1,y− k2)|dxdy
∣∣∣

�
∫

R

‖ f (x, ·)‖Lq

∥∥∥ ∑
k2∈Zd

α(k2)|g(x− k1, ·− k2)|
∥∥∥

Lq′dx. (6)

Furthermore, we have

∥∥∥ ∑
k2∈Zd

α(k2)|g(x− k1, ·− k2)|
∥∥∥q′

Lq′

�
∫

Rd

(
∑

k2∈Zd

|α(k2)||g(x− k1,y− k2)|
)q′

dy

�
∫

Rd

(
∑

k2∈Zd

|α(k2)|q′ |g(x− k1,y− k2)|
)(

∑
k2∈Zd

|g(x− k1,y− k2)|
)q′/q

dy

�
(

sup
y∈[0,1]d

∑
k2∈Zd

|g(x− k1,y− k2)|
)q′/q

∑
k2∈Zd

|α(k2)|q′
∫

Rd
|g(x− k1,y− k2)|dy

� ‖α‖q′
�q′

(
sup

y∈[0,1]d
∑

k2∈Zd

|g(x− k1,y− k2)|
)1+ q′

q
.

This together with (6) gives

|〈α,bk1〉| � ‖α‖
�q′

∫
R

‖ f (x, ·)‖Lq

(
sup

y∈[0,1]d
∑

k2∈Zd

|g(x− k1,y− k2)|
)
dx.

Therefore,

‖bk1‖�q �
∫

R

‖ f (x, ·)‖Lq

(
sup

y∈[0,1]d
∑

k2∈Zd

|g(x− k1,y− k2)|
)
dx
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and

‖c‖�1,q = ∑
k1∈Z

‖bk1‖�q

�
∫

R

‖ f (x, ·)‖Lq ∑
k1∈Z

(
sup

y∈[0,1]d
∑

k2∈Zd

|g(x− k1,y− k2)|
)
dx

� ‖g‖W(L1,1)‖ f‖L1,q .

(iii) p = 1, q = ∞

‖c‖�1,∞ � ∑
k1∈Z

sup
k2∈Zd

∫
R

∫
Rd

| f (x,y)||g(x− k1,y− k2)|dxdy

� ∑
k1∈Z

∫
R

(
sup
y∈Rd

| f (x,y)|
)(∫

[0,1]d
∑

l∈Zd

|g(x− k1,y− l)|dy
)
dx

�
∫

R

(
sup
y∈Rd

| f (x,y)|
)(

∑
k1∈Z

∑
l∈Zd

sup
y∈[0,1]d

|g(x− k1,y− l)|
)
dx

= ∑
l′∈Z

∫
[0,1]

(
sup
y∈Rd

| f (x+ l′,y)|
)(

∑
k1∈Z

∑
l∈Zd

sup
y∈[0,1]d

|g(x+ l′ − k1,y− l)|
)
dx

�
∫

[0,1]

(
∑
l′∈Z

sup
y∈Rd

| f (x+ l′,y)|
)(

∑
l′∈Z

∑
k1∈Z

∑
l∈Zd

sup
y∈[0,1]d

|g(x+ l′ − k1,y− l)|
)
dx

�
(

∑
k1∈Z

sup
x∈[0,1]

∑
l∈Zd

sup
y∈[0,1]d

|g(x− k1,y− l)|
)

∑
l′∈Z

∫
[0,1]

sup
y∈Rd

| f (x+ l′,y)|dx

= ‖g‖W(L1,1)‖ f‖L1,∞ .

(iv) p = ∞ , q = ∞

‖c‖�∞,∞ � sup
k1∈Z

sup
k2∈Zd

∫
R

∫
Rd

| f (x,y)||g(x− k1,y− k2)|dxdy

� sup
k1∈Z

sup
k2∈Zd

∫
R

(
sup
y∈Rd

| f (x,y)|
)(

∑
l∈Zd

∫
[0,1]d

|g(x− k1,y− k2 + l)|dy
)
dx

� sup
k1∈Z

∫
R

(
sup
y∈Rd

| f (x,y)|
)(

∑
l∈Zd

sup
y∈[0,1]d

|g(x− k1,y− l)|
)
dx

� ‖ f‖L∞,∞ ∑
l′∈Z

∫
[0,1]

(
∑

l∈Zd

sup
y∈[0,1]d

|g(x− l′,y− l)|
)
dx

� ‖ f‖L∞,∞ ∑
l′∈Z

sup
x∈[0,1]

∑
l∈Zd

sup
y∈[0,1]d

|g(x− l′,y− l)|

= ‖ f‖L∞,∞‖g‖W(L1,1). �

LEMMA 3. Suppose that ϕ satisfies the assumptions (A1) , (A2) and (A4) . If
ψ ∈ L1(Rd+1) satisfies ∫

R

∫
Rd

ψ(x,y)dxdy = 1,
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then lim
a→0

‖ϕa‖W(L1,1) = 0 , where ϕa(x,y) := ϕ(x,y)−ϕ ∗ψ∗
a (x,y) .

Proof. Since lim
δ→0

‖ωδ (ϕ)‖W(L1,1) = 0, then for any ε > 0, there exists a δ ′ > 0

(δ ′ < δ0) , such that
‖ωδ (ϕ)‖W (L1,1) < ε, ∀ δ � δ

′
.

Note that

‖ϕa‖W(L1,1)

� ∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

∫
R

∫
Rd

|ϕ(x+k1,y+k2)−ϕ(x+k1+s,y+k2+t)||ψa(s,t)|dsdt

�
(∫∫

√
s2+|t|2�δ ′ +

∫∫
δ ′�

√
s2+|t|2�δ0

+
∫∫
√

s2+|t|2�δ0

)
× ∑

k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

|ϕ(x+ k1,y+ k2)−ϕ(x+ k1 + s,y+ k2 + t)||ψa(s,t)|dsdt

:= I + II + III. (7)

Now we respectively estimate I, II and III .

I =
∫∫

√
s2+|t|2�δ ′

∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

|ϕ(x+ k1,y+ k2)−ϕ(x+ k1 + s,y+ k2 + t)|

× |ψa(s, t)|dsdt

�
∫∫

√
s2+|t|2�δ ′

∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

ωδ ′ (ϕ)(x+ k1,y+ k2)|ψa(s,t)|dsdt

=
∫∫

√
s2+|t|2�δ ′

‖ωδ ′ (ϕ)‖W (L1,1)|ψa(s,t)|dsdt

� ε
∫∫

√
s2+|t|2�δ ′

|ψa(s,t)|dsdt � ε
∫

R

∫
Rd

|ψ(s,t)|dsdt � ε‖ψ‖L1 . (8)

II =
∫∫

δ ′�
√

s2+|t|2�δ0

∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

|ϕ(x+ k1,y+ k2)−ϕ(x+ k1 + s,y+ k2 + t)|

× |ψa(s, t)|dsdt

�
∫∫

δ ′�
√

s2+|t|2�δ0

∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

ωδ0
(ϕ)(x+ k1,y+ k2)|ψa(s,t)|dsdt

�
∫∫

δ ′�
√

s2+|t|2
‖ωδ0

(ϕ)‖W(L1,1)|ψa(s,t)|dsdt → 0 as a → 0. (9)
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Let

Z d+1
0 :=

{
(�1, �2) ∈ Z×Z

d :√
(�1 + s)2 + |�2 + t|2 � δ0, for all s ∈ [0,1] and t ∈ [0,1]d

}
.

III =
∫∫

√
s2+|t|2�δ0

∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

|ϕ(x+ k1,y+ k2)−ϕ(x+ k1 + s,y+ k2 + t)|

× |ψa(s, t)|dsdt

�
∫∫

√
s2+|t|2�δ0

∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

|ϕ(x+ k1,y+ k2)||ψa(s,t)|dsdt

+ ∑
(�1,�2)∈Z d+1

0

∫
[0,1]

∫
[0,1]d

(
∑

k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

|ϕ(x+k1+�1+s,y+k2+�2+t)|
)

×|ψa(s+ �1, t + �2)|dsdt

� ‖ϕ‖W(L1,1)

∫∫
√

s2+|t|2�δ0

|ψa(s,t)|dsdt

+ ∑
(�1,�2)∈Z d+1

0

(
∑

k1∈Z

sup
x∈[0,1]

sup
s∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

sup
t∈[0,1]d

|ϕ(x+ k1 + s,y+ k2 + t)|
)

×
∫

[0,1]

∫
[0,1]d

|ψa(s+ �1,t + �2)|dsdt

� (1+2d+1)‖ϕ‖W(L1,1)

∫∫
√

s2+|t|2�δ0/a

|ψ(s,t)|dsdt → 0 as a → 0. (10)

Combining (8), (9) and (10), we could obtain lim
a→0

‖ϕa‖W (L1,1) = 0. �

LEMMA 4. Let ϕ and ψ be as in Lemma 3. Then

lim
δ→0

‖ωδ (ϕa)‖W (L1,1) = 0.

Proof. Direct computation gives

ωδ (ϕa)(x,y)

�ωδ (ϕ)(x,y)+
∫

R

∫
Rd

sup
|s|�δ ,|t|�δ

∣∣ϕ(x+s−u,y+t−v)−ϕ(x−u,y−v)
∣∣∣∣ψ∗

a (u,v)
∣∣dudv

�ωδ (ϕ)(x,y)+
∫

R

∫
Rd

ωδ (ϕ)(x−u,y− v)
∣∣ψ∗

a (u,v)
∣∣dudv

=ωδ (ϕ)(x,y)+ ωδ (ϕ)∗ |ψ∗
a (·, ·)|(x,y).
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Now, it is enough to prove lim
δ→0

‖ωδ (ϕ)∗ |ψ∗
a |‖W(L1,1) = 0. In fact, one has

‖ωδ (ϕ)∗ |ψ∗
a |‖W(L1,1)

� ∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

∫
R

∫
Rd

ωδ (ϕ)(x+ k1− s,y+ k2− t)
∣∣ψ∗

a (s,t)
∣∣dsdt

� ∑
�1∈Z

∑
�2∈Zd

∫
[0,1]

∫
[0,1]d

∑
k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

ωδ (ϕ)(x+ k1− s− �1,y+ k2− t− �2)

× ∣∣ψ∗
a (s+ �1, t + �2)

∣∣dsdt

� ∑
�1∈Z

∑
�2∈Zd

sup
s∈[0,1]

sup
t∈[0,1]d

(
∑

k1∈Z

sup
x∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

ωδ (ϕ)(x+ k1− s− �1,y+ k2− t− �2)
)

×
∫

[0,1]

∫
[0,1]d

|ψ∗
a (s+ �1,t + �2)|dsdt

� ∑
�1∈Z

∑
�2∈Zd

(
∑

k1∈Z

sup
x∈[0,1]

sup
s∈[0,1]

∑
k2∈Zd

sup
y∈[0,1]d

sup
t∈[0,1]d

ωδ (ϕ)(x+ k1− s,y+ k2− t)
)

×
∫

[0,1]

∫
[0,1]d

|ψ∗
a (s+ �1,t + �2)|dsdt

� 2d+1‖ωδ (ϕ)‖W(L1,1)‖ψ‖L1 → 0 as δ → 0. �

3. Sampling stability

In this section, we will establish the results of sampling stability for two kinds of
average sampling functionals.

THEOREM 1. Let 1 � p,q � ∞ and ϕ satisfy the assumptions (A1)–(A4) . Sup-
pose that Γ = {γ j,k = (x j,yk) : x j ∈ R,yk ∈ R

d , j,k ∈ J } is a relatively-separated set
with gaps δ1 and δ2 for both variables and {ψ j,k : j,k ∈ J } is the first average sam-
pling functional with support radius a. If ρ1 = max{δ1,δ2} and a are chosen such
that

r1 := MC−1
ϕ ‖ωa+ρ1(ϕ)‖W(L1,1) < 1, (11)

then signals f ∈ Vp,q(ϕ) can be stably reconstructed from the average samples
{〈 f ,ψ j,k〉} j,k∈J . Furthermore,

( 2δ1

AΓ,x(δ1)

)−1/p( Vdδ d
2

AΓ,y(δ2)

)−1/q
(1− r1)‖ f‖Lp,q �

∥∥{〈 f ,ψ j,k〉} j,k∈J

∥∥
�p,q

�
( 2δ1

BΓ,x(δ1)

)−1/p( Vdδ d
2

BΓ,y(δ2)

)−1/q
(1+ r1)‖ f‖Lp,q , (12)

where Vd = πd/2

Γ(d/2+1) is the volume of d-dimensional unit sphere.
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Proof. For any x ∈ B(x j,δ1) and y ∈ B(yk,δ2) , one has

|〈 f ,ψ j,k〉− f (x,y)| �
∫∫

B(γ j,k,a)
| f (t,s)− f (x,y)||ψ j,k(t,s)|dtds

� Mωa+ρ1( f )(x,y) := F1(x,y). (13)

Furthermore, for any f (x,y) = ∑
k1∈Z

∑
k2∈Zd

c(k1,k2)ϕ(x− k1,y− k2) ∈Vp,q(ϕ) ,

‖F1‖Lp,q � M‖ ∑
k1∈Z

∑
k2∈Zd

|c(k1,k2)|ωa+ρ1(ϕ)(x− k1,y− k2)‖Lp,q

� M‖c‖�p,q‖ωa+ρ1(ϕ)‖W(L1,1)

� MC−1
ϕ ‖ωa+ρ1(ϕ)‖W (L1,1)‖ f‖Lp,q

= r1‖ f‖Lp,q . (14)

Define

u j,k(x,y) := α j(x)βk(y) =
χB(x j ,δ1)(x)

∑
j′∈J

χB(x j′ ,δ1)(x)
· χB(yk,δ2)(y)

∑
k′∈J

χB(yk′ ,δ2)(y)
. (15)

In the following, we just consider 1 � p,q < ∞ , the cases for p = ∞ or q = ∞ can be
proved similarly. It follows from (13) that

|〈 f ,ψ j,k〉|α1/p
j (x)β 1/q

k (y) � | f (x,y)|α1/p
j (x)β 1/q

k (y)+ |F1(x,y)|α1/p
j (x)β 1/q

k (y). (16)

Taking �q -norm for variable k ∈ J on both sides of (16) and then taking Lq -norm for
variable y ∈ R

d , one has(
∑

k∈J

|〈 f ,ψ j,k〉|q‖βk‖L1

)1/q
α1/p

j (x) � α1/p
j (x)‖ f (x, ·)‖Lq + α1/p

j (x)‖F1(x, ·)‖Lq .

(17)
Taking �p -norm for variable j ∈ J on both sides of (17) and then taking Lp -norm for
variable x , we can obtain[

∑
j∈J

(
∑

k∈J

|〈 f ,ψ j,k〉|q‖βk‖L1

)p/q‖α j‖L1

]1/p
� ‖ f‖Lp,q +‖F1‖Lp,q � (1+ r1)‖ f‖Lp,q .

(18)
It is easy to verify

2δ1B
−1
Γ,x(δ1) � ‖α j‖L1 � 2δ1A

−1
Γ,x(δ1)

and
Vdδ d

2 B−1
Γ,y(δ2) � ‖βk‖L1 � Vdδ d

2 A−1
Γ,y(δ2).

Then the right hand side of (12) follows from (18). The left side can be obtained by the
same method from

| f (x,y)|α1/p
j (x)β 1/q

k (y) � |〈 f ,ψ j,k〉|α1/p
j (x)β 1/q

k (y)+ |F1(x,y)|α1/p
j (x)β 1/q

k (y). �
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THEOREM 2. Let 1 � p,q � ∞ , ϕ satisfy the assumptions (A1)–(A4) . Suppose
that Γ = {γ j,k = (x j,yk) : x j ∈ R,yk ∈ R

d , j,k ∈ J } is a relatively-separated set with
gaps δ3 and δ4 for both variables and ψ ∈ L1(Rd+1) satisfies

∫
R

∫
Rd ψ(x,y)dxdy = 1 .

If ρ2 = max{δ3,δ4} and a are chosen such that

r2 := C−1
ϕ

(‖ωρ2(ϕ)‖W(L1,1) +‖ωρ2(ϕ
a)‖W (L1,1) +‖ϕa‖W(L1,1)

)
< 1, (19)

then any signals f ∈ Vp,q(ϕ) can be stably reconstructed from the average samples
{〈 f ,ψa(·− γ j,k)〉} j,k∈J , and

( 2δ3

AΓ,x(δ3)

)−1/p( Vdδ d
4

AΓ,y(δ4)

)−1/q
(1− r2)‖ f‖Lp,q �

∥∥{〈 f ,ψa(·− γ j,k)〉} j,k∈J

∥∥
�p,q

�
( 2δ3

BΓ,x(δ3)

)−1/p( Vdδ d
4

BΓ,y(δ4)

)−1/q
(1+ r2)‖ f‖Lp,q , (20)

where Vd = πd/2

Γ(d/2+1) is the volume of d-dimensional unit sphere.

Proof. For any x ∈ B(x j,δ3) and y ∈ B(yk,δ4) , if f (x,y) = ∑
k1∈Z

∑
k2∈Zd

c(k1,k2)

ϕ(x− k1,y− k2) ∈Vp,q(ϕ) , then we can obtain

|〈 f ,ψa(·− γ j,k)〉− f (x,y)|
� ∑

k1∈Z

∑
k2∈Zd

|c(k1,k2)|
∣∣ϕ(x− k1,y− k2)−ϕ ∗ψ∗

a (x j − k1,yk − k2)
∣∣

� ∑
k1∈Z

∑
k2∈Zd

|c(k1,k2)|
(

ωρ2(ϕ)(x− k1,y− k2)

+ ωρ2(ϕ
a)(x− k1,y− k2)+ ϕa(x− k1,y− k2)

)
:= F2(x,y).

Furthermore, one has

‖F2‖Lp,q � ‖c‖�p,q
(‖ωρ2(ϕ)‖W (L1,1) +‖ωρ2(ϕ

a)‖W (L1,1) +‖ϕa‖W(L1,1)
)

� C−1
ϕ

(‖ωρ2(ϕ)‖W(L1,1) +‖ωρ2(ϕ
a)‖W(L1,1) +‖ϕa‖W(L1,1)

)‖ f‖Lp,q

= r2‖ f‖Lp,q .

The remained proof is similar to that of Theorem 1. �

4. Iterative approximation projection reconstruction algorithms

In this section, we will give the iterative approximation projection reconstruction
algorithms for recovering the signals in Vp,q(ϕ) from two kinds of average samples. For
two kinds of average sampling functionals, we define the pre-reconstruction operators

AΓ f := ∑
j,k∈J

〈 f ,ψ j,k〉u j,k
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and
AΓ,a f := ∑

j,k∈J

〈 f ,ψa(·− γ j,k)〉u j,k,

where u j,k is defined in (15). Let P be a bounded projection from Lp,q(Rd+1) onto
Vp,q(ϕ) . Then the corresponding iterative approximation projection reconstruction al-
gorithms are given as ⎧⎪⎨

⎪⎩
f0 = P

(
∑

j,k∈J

c0( j,k)u j,k

)
fn = f0 + fn−1−PAΓ fn−1, n � 1

(21)

and ⎧⎪⎨
⎪⎩

f0 = P
(

∑
j,k∈J

c0( j,k)u j,k

)
fn = f0 + fn−1−PAΓ,a fn−1, n � 1.

(22)

LEMMA 5. Let 1 � p,q � ∞ , and ϕ satisfy (A1) and (A3) . Define

P f (x,y) := ∑
k1∈Z

∑
k2∈Zd

〈 f ,g(·− k1, ·− k2)〉ϕ(x− k1,y− k2), (23)

where g(x,y) is given in (4). Then P is a bounded projection from Lp,q(Rd+1) onto
Vp,q(ϕ) .

Proof. Let b(k1,k2) = 〈 f ,g(· − k1, · − k2)〉 . Then it follows from the proof of
Lemma 2 that

‖b‖�p,q � ‖g‖W(L1,1)‖ f‖Lp,q ,

which means that P f ∈Vp,q(ϕ) . Moreover, one has

‖P f‖Lp,q � ‖ϕ‖W(L1,1)‖b‖�p,q

� ‖ϕ‖W(L1,1)‖g‖W(L1,1)‖ f‖Lp,q .

Therefore, P is a bounded projection from Lp,q(Rd+1) onto Vp,q(ϕ) . �

THEOREM 3. Let p, q , ϕ and {ψ j,k : j,k ∈ J } be as in Theorem 1. Suppose
that Γ = {γ j,k = (x j,yk) : x j ∈ R,yk ∈ R

d , j,k ∈ J } is a relatively-separated set with
gaps δ5 and δ6 for both variables. If ρ3 = max{δ5,δ6} and a are chosen such that

r3 := C−1
ϕ ‖P‖op

[
2M‖ωa(ϕ)‖W(L1,1) + (1+M)‖ωρ3(ϕ)‖W (L1,1)

+M‖ωa+ρ3(ϕ)‖W (L1,1)

]
< 1, (24)

then the algorithm (21) exponentially converges to some f∞ ∈Vp,q(ϕ) , and

‖ fn− f∞‖Lp,q � rn+1
3

1− r3
‖ f0‖Lp,q . (25)

If c0( j,k) = 〈 f ,ψ j,k〉 , j,k ∈ J for f ∈Vp,q(ϕ) , then f∞ = f .
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Proof. Note that fn+1 − fn = (I − PAΓ)( fn − fn−1), n � 1. For any f (x,y) ∈
Vp,q(ϕ),

‖ f −PAΓ f‖Lp,q � ‖P‖op‖ f −AΓ f‖Lp,q

� ‖P‖op
(‖ f −QΓ f‖Lp,q +‖QΓ f −AΓ f‖Lp,q

)
, (26)

where QΓ f (x,y) := ∑
j,k∈J

f (x j,yk)u j,k(x,y) . Furthermore,

| f (x,y)−QΓ f (x,y)| � ∑
j,k∈J

| f (x,y)− f (x j,yk)|u j,k(x,y)

� ωρ3( f )(x,y)

� ∑
k1∈Z

∑
k2∈Zd

|c(k1,k2)|ωρ3(ϕ)(x− k1,y− k2).

By Lemma 2, we can obtain

‖ f −QΓ f‖Lp,q � C−1
ϕ ‖ωρ3(ϕ)‖W(L1,1)‖ f‖Lp,q . (27)

On the other hand, we have

|QΓ f (x,y)−AΓ f (x,y)|
� ∑

j,k∈J

∫
R

∫
Rd

| f (x j,yk)− f (s,t)||ψ j,k(s,t)|u j,k(x,y)dsdt

� M ∑
j,k∈J

ωa( f )(x j,yk)u j,k(x,y)

� M ∑
j,k∈J

(
∑

k1∈Z

∑
k2∈Zd

|c(k1,k2)|ωa(ϕ)(x j − k1,yk − k2)
)
u j,k(x,y)

= MQΓ

(
∑

k1∈Z

∑
k2∈Zd

|c(k1,k2)|ωa(ϕ)(·− k1, ·− k2)
)
(x,y)

� M
∣∣∣ ∑
k1∈Z

∑
k2∈Zd

|c(k1,k2)|ωa(ϕ)(x− k1,y− k2)

−QΓ

(
∑

k1∈Z

∑
k2∈Zd

|c(k1,k2)|ωa(ϕ)(·− k1, ·− k2)
)
(x,y)

∣∣∣
+M

∣∣∣ ∑
k1∈Z

∑
k2∈Zd

|c(k1,k2)|ωa(ϕ)(x− k1,y− k2)
∣∣∣.

By the same method as (27), we obtain

‖QΓ f −AΓ f‖Lp,q � MC−1
ϕ

(∥∥ωρ3(ωa(ϕ))
∥∥

W (L1,1) +‖ωa(ϕ)‖W(L1,1)

)
‖ f‖Lp,q

� MC−1
ϕ

(∥∥ωa+ρ3(ϕ)
∥∥

W (L1,1) +‖ωρ3(ϕ)
∥∥

W (L1,1)

+2‖ωa(ϕ)‖W(L1,1)

)
‖ f‖Lp,q .
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This together with (26) and (27) gives

‖ f −PAΓ f‖Lp,q � r3‖ f‖Lp,q . (28)

Therefore, (25) is proved. Define

RΓ := I +
∞

∑
n=1

(I−PAΓ)n.

Then RΓPAΓ = PAΓRΓ = I on Vp,q(ϕ) . If c0( j,k) = 〈 f ,ψ j,k〉 for f ∈Vp,q(ϕ) , then

f∞ = RΓ f0 = RΓPAΓ f = I f = f . � (29)

THEOREM 4. Let p, q , ϕ and ψ be as in Theorem 2. Suppose that Γ = {γ j,k =
(x j,yk) : x j ∈ R,yk ∈ R

d , j,k ∈ J } is a relatively-separated set with gaps δ7 and δ8

for both variables. If ρ4 = max{δ7,δ8} and a are chosen such that

r4 := C−1
ϕ ‖P‖op

[
‖ωρ4(ϕ)‖W(L1,1) +‖ωρ4(ϕ

a)‖W (L1,1) +‖ϕa‖W (L1,1)

]
< 1, (30)

then the algorithm (22) exponentially converges to some f∞ ∈Vp,q(ϕ) , and

‖ fn− f∞‖Lp,q � rn+1
4

1− r4
‖ f0‖Lp,q . (31)

If c0( j,k) = 〈 f ,ψa(·− γ j,k)〉 , j,k ∈ J for f ∈Vp,q(ϕ) , then f∞ = f .

Proof. For any f (x,y) = ∑
k1∈Z

∑
k2∈Zd

c(k1,k2)ϕ(x− k1,y− k2) ∈Vp,q(ϕ) , one has

‖ f −PAΓ,a f‖Lp,q � ‖P‖op
(‖ f −QΓ f‖Lp,q +‖QΓ f −QΓ( f ∗ψ∗

a )‖Lp,q
)
. (32)

By (27), we know

‖ f −QΓ f‖Lp,q � C−1
ϕ ‖ωρ4(ϕ)‖W(L1,1)‖ f‖Lp,q . (33)

Since QΓ f (x,y)−QΓ( f ∗ψ∗
a )(x,y) = QΓ

(
∑

k1∈Z

∑
k2∈Zd

c(k1,k2)ϕa(· − k1, · − k2)
)
(x,y) ,

then

‖QΓ f −QΓ( f ∗ψ∗
a )‖Lp,q �

∥∥ ∑
k1∈Z

∑
k2∈Zd

c(k1,k2)ϕa(x− k1,y− k2)
∥∥

Lp,q

+
∥∥ ∑

k1∈Z

∑
k2∈Zd

c(k1,k2)ϕa(x− k1,y− k2)

−QΓ
(

∑
k1∈Z

∑
k2∈Zd

c(k1,k2)ϕa(·− k1, ·− k2)
)
(x,y)

∥∥
Lp,q

� C−1
ϕ

(
‖ϕa‖W(L1,1) +‖ωρ4(ϕ

a)‖W(L1,1)

)
‖ f‖Lp,q .
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This together with (32) and (33) obtains

‖ f −PAΓ,a f‖Lp,q � r4‖ f‖Lp,q .

Therefore, (31) is proved. Define

RΓ,a := I +
∞

∑
n=1

(I−PAΓ,a)n.

Then RΓ,aPAΓ,a = PAΓ,aRΓ,a = I on Vp,q(ϕ) . If c0( j,k) = 〈 f ,ψa(· − γ j,k)〉 for f ∈
Vp,q(ϕ) , then

f∞ = RΓ,a f0 = RΓ,aPAΓ,a f = I f = f . (34)

�

5. Error estimations

Generally, the perfect recovering of the signal is difficult to come true, since there
are many factors which will contribute to the error. In this section, we will provide
error estimations under three kinds of conditions. For brevity, the constants r3,r4 are
assumed to satisfy the specific definitions in Theorem 3 and Theorem 4 in the following
section.

THEOREM 5. If the average sampling values in Theorem 3 and Theorem 4 are of
the form {〈 f ,ψ j,k〉+ε j,k} j,k∈J and {〈 f ,ψa(·−γ j,k)〉+ε j,k} j,k∈J , where {ε j,k} j,k∈J ∈
�p,q , then for Theorem 3,

‖ f∞− f‖Lp,q � 1
1− r3

‖P‖op

∥∥∥{ε j,k} j,k∈J

∥∥∥
�p,q

(
sup
k∈J

∥∥∥(
sup
j∈J

‖u j,k‖L1
y

)1/q∥∥∥
L1

x

)1/p
(35)

and for Theorem 4,

‖ f∞ − f‖Lp,q � 1
1− r4

‖P‖op

∥∥∥{ε j,k} j,k∈J

∥∥∥
�p,q

(
sup
k∈J

∥∥∥(
sup
j∈J

‖u j,k‖L1
y

)1/q∥∥∥
L1

x

)1/p
.

(36)

Proof. Write h0(x,y) := ∑
j∈J

∑
k∈J

ε j,kPu j,k(x,y) . Then for Theorem 3,

‖ f∞ − f‖Lp,q = ‖RΓh0‖Lp,q � ‖I +
∞

∑
n=1

(I−PAΓ)n‖‖h0‖Lp,q

� 1
1− r3

‖h0‖Lp,q � 1
1− r3

‖P‖op‖ ∑
j∈J

∑
k∈J

ε j,ku j,k‖Lp,q

� 1
1− r3

‖P‖op

∥∥∥{ε j,k} j,k∈J

∥∥∥
�p,q

(
sup
k∈J

∥∥∥(
sup
j∈J

‖u j,k‖L1
y

)1/q∥∥∥
L1

x

)1/p
.

The inequality (36) could also be obtained by the similar way, we will omit it. �
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THEOREM 6. If the average sampling values in the Theorem 3 and Theorem 4 are
of the form {〈 f ,ψ j,k〉+ε j,k} j,k∈J and {〈 f ,ψa(·−γ j,k)〉+ε j,k} j,k∈J , where {ε j,k} j,k∈J

are bounded and independent identically distributed random variables with zeros mean
and variance σ2 , that is

ε j,k ∈ [−B,B], E(ε j,k) = 0, Var(ε j,k) = σ2. (37)

Furthermore, if there exists constants M1 > 0 and M2 > 0 such that

∑
j∈J

∑
k∈J

∣∣∣RΓPu j,k(x,y)
∣∣∣2 � M1, ∀(x,y) ∈ R

d+1 (38)

and

∑
j∈J

∑
k∈J

∣∣∣RΓ,aPu j,k(x,y)
∣∣∣2 � M2, ∀(x,y) ∈ R

d+1, (39)

then for Theorem 3,
E( f∞(x,y)− f (x,y)) = 0 (40)

and
Var( f∞(x,y)− f (x,y)) � σ2M1. (41)

For Theorem 4,
E( f∞(x,y)− f (x,y)) = 0 (42)

and
Var( f∞(x,y)− f (x,y)) � σ2M2. (43)

Proof. For Theorem 3,

E

(
f∞(x,y)− f (x,y)

)
= E

(
RΓP ∑

j∈J
∑

k∈J

ε j,ku j,k(x,y)
)

= 0. (44)

and by the independence of random variables of {ε j,k} j,k∈J

Var( f∞(x,y)− f (x,y)) = E

(
RΓP ∑

j∈J
∑

k∈J

ε j,ku j,k(x,y)
)2

� ∑
j∈J

∑
k∈J

E(ε j,k)2
(
RΓPu j,k(x,y)

)2

� σ2M1. (45)

The inequalities (42) and (43) could be obtained by the similar way, we will omit it. �

THEOREM 7. If the numerical error in the ith iterative step of the algorithm (21)
and (22) is εi ∈Vp,q(ϕ) , i � 0 , i.e.⎧⎪⎨

⎪⎩
f̃0 = P

(
∑

j,k∈J

c0( j,k)u j,k

)
+ ε0

f̃n = f̃0 + f̃n−1−PAΓ f̃n−1 + εn, n � 1

(46)
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and ⎧⎪⎨
⎪⎩

f̃0 = P
(

∑
j,k∈J

c0( j,k)u j,k

)
+ ε0

f̃n = f̃0 + f̃n−1−PAΓ,a f̃n−1 + εn, n � 1,

(47)

with c0( j,k) = 〈 f ,ψ j,k〉 in the (46) and c0( j,k) = 〈 f ,ψa(·− γ j,k)〉 in the (47). Then
for the algorithm (46),

‖ f̃n− f‖Lp,q � rn+1
3 (1+ r3)‖ f‖Lp,q

1− r3
+

2
1− r3

[
n‖ε0‖Lp,q +

n

∑
i=0

‖εi‖Lp,q

]
(48)

and for the algorithm (47),

‖ f̃n − f‖Lp,q � rn+1
4 (1+ r4)‖ f‖Lp,q

1− r4
+

2
1− r4

[
n‖ε0‖Lp,q +

n

∑
i=0

‖εi‖Lp,q

]
. (49)

Proof. For the algorithm (46),

f̃0 − f0 = ε̃0 (50)

and

f̃n − fn = −
n−1

∑
k=0

(I−PAΓ)n−1−kPAΓε̃k + ε̃n, n � 1, (51)

where ε̃0 = ε0 and ε̃k = (k+1)ε0 +
k
∑
i=1

εi , k � 1. Thus,

‖ f̃0 − f‖Lp,q � ‖ f̃0 − f0‖Lp,q +‖ f0− f‖Lp,q � ‖ε̃0‖Lp,q + r3‖ f‖Lp,q (52)

and for n � 1,

‖ f̃n − f‖Lp,q � ‖ f − fn‖Lp,q +‖ fn− f̃n‖Lp,q

� ‖
∞

∑
k=n+1

(I−PAΓ)k f0‖Lp,q +‖
n−1

∑
k=0

(I−PAΓ)n−1−kPAΓε̃k‖Lp,q +‖ε̃n‖Lp,q

� rn+1
3 ‖ f0‖Lp,q

1− r3
+

n−1

∑
k=0

rn−1−k
3 ‖PAΓε̃k‖Lp,q +‖ε̃n‖Lp,q

� rn+1
3 (1+ r3)‖ f‖Lp,q

1− r3
+

n−1

∑
k=0

rn−1−k
3 (1+ r3)‖ε̃k‖Lp,q +‖ε̃n‖Lp,q

� rn+1
3 (1+ r3)‖ f‖Lp,q

1− r3
+(1+ r3)

n−1

∑
k=0

rn−1−k
3 ‖kε0 +

k

∑
i=0

εi‖Lp,q +‖nε0 +
n

∑
i=0

εi‖Lp,q

� rn+1
3 (1+ r3)‖ f‖Lp,q

1− r3
+

2
1− r3

[
n‖ε0‖Lp,q +

n

∑
i=0

‖εi‖Lp,q

]
. (53)
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Combining the inequalities (52) and (53), the result (48) is proved. The inequality (49)
is followed by the similar way, we will omit it. �
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