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AVERAGE SAMPLING AND RECONSTRUCTION IN SHIFT-INVARIANT
SUBSPACES OF MIXED LEBESGUE SPACE L74(R+!)

SUPING WANG

(Communicated by M. Praljak)

Abstract. In this paper, we mainly study the average sampling and reconstruction for signals in
a shift-invariant subspace of mixed Lebesgue space LP4(R?+1) with the generator belonging
to a mixed Wiener amalgam space. First, the sampling stability for two kinds of average sam-
pling functionals are considered. Second, two kinds of iterative approximation projection recon-
struction algorithms with exponential convergence are utilized for recovering the corresponding
signals. Finally, error estimations are also considered under three different conditions.

1. Introduction

Mixed Lebesgue space arose from considering some functions which depended on
independent quantities with different properties. It was first described in [3] and was
further studied in [4, 5, 6, 7]. Compared with the classical Lebesgue space which makes
it compulsory for all variables to have the same properties, the mixed Lebesgue space
which could realize the separate integrability of each variable has a greater advantage
in modelling and measuring some time-varying signals, especially for the time-spatial
signals. And this advantage also provides some flexibility for the study of time-based
partial differential equations [8].

The mixed Lebesgue space LP4(R%*1) consists of all measurable functions f =
f(x,y) defined on R x R? such that

1/
s = [ [ ([ reempay/iae] ¥ <, 1<pg<e @

The corresponding sequence space is defined by

oAzt = {c: lellfpq = 2 ( 2 \c(kl,k2)|q)p/q<°°}, I<p,g<e. (2
ki€Z kyezd

The case for p = o or g = o obeys the usual adjustment. Obviously, LP?(RI*1) =
Lp(RdJrl)’ gp,p(ZdJrl) _ gp(ZdJrl)_
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As a fundamental problem in signal processing, the sampling problem in mixed
Lebesgue space has already attracted a lot of researchers’ attention and many mar-
velous sampling findings of the signals in various subspaces of mixed Lebesgue space
have already been presented such as the bandlimited space [13] and the shift-invariant
space [8]. However, as we have learned from the previous sampling results of the sig-
nals in the classical Lebesgue space [1, 2, 11, 12], we need to overcome a number
of shortcomings about the existing results in order to meet the realistic requirements.
For example, the well-known Shannon sampling theorem once told us that signals f
belonging to the band-limited subspaces of L? could be recovered from the uniform
samples {f(nd)},ez if the sampling gap 6 was sufficient small [10, 14]. Neverthe-
less, the existence of the non-bandlimited signals and the fact that some sampling data
will be lost during the transmission which finally leads to the obtained sampling set is
nonuniform, make it impractical in reality. Taking these two factors into account, the
researchers prefer to study the nonuniform sampling problems for signals in more gen-
eral subspaces of Lebesgue space such that the corresponding sampling results could
be suitable for more signals in practice. Inspired by this thought, the investigation of
the nonuniform ideal sampling problem in shift-invariant subspaces of mixed Lebesgue
space has already been considered in [8] under the assumption that the generator is
subject to a strong constraint condition.

In this paper, we mainly study the sampling and reconstruction in shift-invariant
subspace

Vpg(@) = {kZZ ch(khkz)(l’(x—kl,y—kz) etk k) b czppend € EM(ZdH)}
1€L Ky €7
3)

with the generator ¢ satisfying

(A1) The generator ¢ belongs to a mixed Wiener amalgam space W (L!'!)(R4*+1),
whose general forms are defined as

Ja\ 1/
Hf||W(Lp,q) ::(Z sup Z sup |f(x+n,y+l)\q]1”1> p<oo;

neZxe(0,1] = jezd ye[0,1)4

(A2) éinz) @5 (@)|lw 1.1y = 0, where the modulus of continuity is defined by

o5(@)(x,y) = sup  [@(x+s,y+1) = @(x,y)l;

[s|<8,]|<6
(A3) ¥ [@(E+2km)] >0, E e R,
kezd+1
(A4) There exits & > 0, such that ws(p) € W(L'!), forany § < &.

In fact, if the continuous function ¢ is in the classical Wiener amalgam space
W (L") (R4*1Y, which means that

lollweny =2 2. sup  [@(x+ki,y+ka)| < oo,
k| €Z kye7d (x.y)€[0,1]4+!
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then the assumption (A2) holds due to
tim [l (9) 1) < lim [[05(6) ey =0

In this paper, the sampling set T' = {y;x = (xj,y¢) :x; E R,y  €RY, jike 7} C
R4t1 i assumed to be relatively-separated for both variables, that is,

Br(81) :=sup Y, Xp(x; 6)(x) <o
xeRJgj

and

Bry (&)= sup D Xp(y.s) () <

yeR ke g
for some 6; > 0 and &, > 0. Furthermore, 8, > 0 and &, > 0 are said to be gaps of T’
if
Ar.(81): 1nf 2 Ab(x5) (%) > 1

and

Ary(8) ;= inf 2 XB (35 ( ) > 1.

yeRd

Here, ¢ is a countable index set, B(x,5) and B(y,§) are balls in R and R?, respec-
tively.

Moreover, due to the limitation of the sampling devices, the obtained sampling
value in reality is not the exact value of signal at each sampling point but is the local
average value near the corresponding sampling location. Thus, for a given relatively-
separated sampling set I", we will consider two kinds of average sampling schemes for
obtaining the corresponding sampling values. The first average sampling scheme is

Govied = [ [ S wieleydsdy, jke 7,

where the average sampling functionals {y/;; : j,k € ¢} satisfy

() Jr Jre Wjk(x,y)dxdy =1 forall j ke 7;
(ii) There exists a constant M > 0 such that [ [pa | i (x,y)|dxdy <M forall j.k €
I
(iii) suppy;i C B(yjk,a) for some a > 0.

Note that the first sampling scheme requires that the sampling functionals are compact
support. Here, we also consider the second average scheme which is defined as

<f7l//1/l(_Y/,k)> :f*l//;(yj,k)7 Jake ja
1

where y € L' (RM!) satisfies [ [pa W(x,y)dxdy =1, wu(-) = =t w(5) and () =
V/u(_')'
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This paper is organized as follows. In section 2, some lemmas are given. In section
3, the sampling stability for two kinds of average sampling functionals are established.
In section 4, two kinds of iterative approximation projection reconstruction algorithms
are considered for recovering the signals in V), ,(¢) from the corresponding average
samples. In section 5, three kinds of error estimations under different conditions are
also provided.

2. Some lemmas

In this section, we will give some lemmas which are the basis of the subsequent
sections.

LEMMA 1. [9] Let ¢ € W(L"')(RYTY). Then ¢ satisfies

S 19(&+2km))* >0, & e RIH!

kezd+1

if and only if there exists a function

gy) = Y dkik)o(x—ki,y—k) (4)
k\EZkye7d
such that
<(p('_a)78>:60,0£7

where d = {d(ky,kp) : ki € Z,ky € 7} € £1(Z9H).
It has been proved in [8] that g € W(LL!)(RIH1),

LEMMA 2. [8] Let 1 < p,q < . Suppose that @ satisfies the assumptions (Al)

and (A3), then any signal f(x,y) Y Y clkik)o(x—ki,y—ky) € Vyq(@) be-
k| EZjye7d

longs to LP4(RY*Y). Moreover; there is the following norm equivalent
I&lgLyun,ellna = Collclima < fllura < I@lygeasyclna- s)

In fact, [8] only established the lower bound of (5) for 1 < p,q < e. However,
the above result still holds for p,g =1 or oo, which contain eight cases needed to be
verified. In the following, we only give the proof of four cases, the remained can be
proved similarly.

Proof. According to Lemma 1, we know

ki) = [ [ Fy)gb—kry—kdsdy, ki €Z, ko € .
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Op=1.q=1

lellns < [ [ G T3, [ge— iy —ko)dady

ki EZ kyc7d

<(swp s B lelr—kiy—ko)l) [ [ 17(c)ldxdy
XE[Ovl]ye[Ovl]dklezkzeZd RJR

< lgllwern 1 fllpa-

() p=1,1<g<o

For the fixed ki € Z, let by, (k2) := [ Jga |f(x,9)||lg(x—ki,y—k2)|dxdy, ky € Z°.
Taking o = {0t(k2)}g,cp0 € 09 (Z0), 4 2 =1, then

ot =| X athe) [ [ 17G)llste—kiy—kldxdy]

ky€Z4

< [l B atels—k. ©)
ky Zd
Furthermore, we have
H Y o(ky)|gx—ki,- ~k)| ,
La
koeZd
q/
<[ (3 jotellgtr—ty-k)]) dy
R4 kocZd
q'/q
<[ (2 1ot gt-ky-k)) (X le—kiy—k)l)" ay
REN e koezd
q'/q
<(sw 3 k)" Y et [ ey —kldy
yG[O,l]d]QeZd szZd

’ +=
<llod, ( sup ¥ lgr—kiy—ko)l) "
' y€[071}‘1k262d
This together with (6) gives
[obi ) < el [ NG (sup 3 [gle—kay k)l a.
R y€[0,1)9 jy e 724
Therefore,

bl < [ 17 sup 3, Jgle— ki y— ko) v

ye[0,1]4 kyezd
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and

lellera =3 NItk lles

k\€Z

/Hf ||Lq ( sup Z |g(x_k1,y—k2)|>dx

€z “yel0.1)d kyezd
<|lgllw@r iyl fllzra-

(i) p=1, g = oo

lella=< 3, sup [ [ 17(e)llgte— i,y — ko) dxdy
kIEZ/QEZd
<3 [ (sw b)) ([ 3 lete—kiy=Didy)ax
ez’ Nyerd 011 ) ez4
</(sup|fxy (2 3 sup [glr—kiy—0))dx
R M yerd K €Z 1e7d ye[0,1)4

/ sup lf(x+1y) )( 2 2 sup |g(x+l’—k1,y—l)|)dx
ez’ 01]

ki€Z 174 ye[0,1)¢

</[071]<Z sup [f(x+1,y)| )(Z Z Z sup |g(x+1' —ki,y —l)|)d

I'eZyeRd I'eZ ki €Z1c7d ye[0,1]4
< ( Y, sup Y, sup |g(x—ki,y—1)| Z/ sup | f(x+1',y)|dx
ki ezx€[0,1] jezd y[0,1)4 ez’ 01 yer
= llgllwernllfll g1

lellee < sup sup [ [ 7(ey)le— i,y —ko)lddy

kIEZ]QGZd
< sup sup (sup |fxy Z/ glx— kl,y—k2+l)|dy)dx
ki €Zkyezd /R NyeRd 1e7d
<sup [ (sup fry)) (X sup le(v—kiy—1)])dx
ki €ZI/R N yeRrd 1e74 ye[0,1)4
<l 3 [0 (8 sup sty —n)ax
ez 1e74 y€[0,1]¢

< lleme 3, sup 3 sup fe(x—1',y—1)|

1'ez.x€[0,1]jc7d ye[0,1)4
= | Fle==llglwyy. O

LEMMA 3. Suppose that ¢ satisfies the assumptions (Al), (A2) and (A4). If

v € LY (R satisfies
/ / y(x,y)dxdy =1,
R JRY
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then lim 9%y z11) =0, where ¢“(x,y) := @(x,y) — @+ Y5 (x,y).

Proof. Since éim |@5(¢)[w(z11) = 0, then for any & > 0, there exists a 6’ >0
—0

(6’ < &), such that
Hwa((P)HW(LH) <g,V8Lo.

Note that

H(PaHW(LM)

<Y sup Y, // |@(x+ki,y+ko)—@(x+ki+s, y+ko+1 ) || Wu(s,1) |dsdt
kyezx€0, 1]k2ezdye 0 1

U s My emmmn* M e
// s i2<8 8 <2 4+1P<8 s2+|z|2>60>

X Z sup Z sup |@(x+ky,y+hk)—@x+ki+s,y+ka+1)||wa(s,t)|dsde
ki €ZXE[0,1] , e 74 ye[0,1]4

=1+11+111. %)
Now we respectively estimate 1,1/ and I11.
I= // D sup > sup |@(xtky+ke) = @kt syt kot 1)

k €Zx€[0,1] , ez ye[0,1)4
VEE<s 2

X |Wa(s,)|dsdt

< // 2 sup 2 sup CO5/((p)(x+k1,y—|—k2)|ll/a(s’t)|dsdt
\/W@’klezxe[o’l]kZEZdYE[QHd

| 10s @)l lvatsnldsar
Vi<

// |, (s,1)|dsdr < / /Rd |w(s,t)|dsdt < ||yl (8)

NS

1l = // 2 sup 2 sup |@(x+ki,y+k)—@x+ki+s,y+k+1)|
ky ez x€[0,1] kpezd ye[0,1]4
V2 +H2<8

\l//u(s,t) |dsdt

2 5 0,1 d 0.114
5/< 5 +| |2< klEZXE[ s ]szZ ye[ 71]

I Nos (@l lvats.nidsat =0 as a0, ©)
8 <242
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Let

2= {(61,62) eZx7:

\/(61 +5)2+ |ty +1|?> = &, forall s€0,1] and 7 € [0, l]d}.

111 = // E sup E sup |@(x+ki,y+ky)—@(x+ki+s,y+k+1)]
ky €2 x€[0,1] k, 74 ye[0,1]¢
V2 H2>8

X |Wa(s,1)|dsdt

< // Y sup Y, sup |@(x+ki,y+ko)||Wa(s,t)|dsdt
kler€[0=1}k2eZdy6[0~,l]"

+ 2 / / sup 2 sup |(p(x+k1+€1+s,y+k2+€2+t)|>
(tnbp)eza+1 /OO0 g erG[O U yezd yelo,1)4

X | Wa(s + L1t 4 £p)|dsdt

< llollwy // |Wu(s,1)|dsdt
VP28

+ 2 (2 sup sup 2 sup  sup |(p(x+k1+s,y+k2+t)|>
(/fl,éz)G.%dJrl klerE[(),l]SG[O,l]kzezdyE[OJ]dtG[O,l]d

></ / Wals+ 01,1+ 62)|dsdt
0,1] J[0,1]4
< (1429 ellwn // y(s,t)|dsdt -0 as a— 0. (10)

V228 /a
Combining (8), (9) and (10), we could obtain lin(l) H(p“||W(L1A,1) =0. O
a—

LEMMA 4. Let ¢ and y be as in Lemma 3. Then

‘%ILI(I) Hwa((l’u) HW(L1.1) =0.

Proof. Direct computation gives

@5 (9)(x,y)
)(x,y) //d sup | @(x+s—u,y+1—v)—@(x—u,y—v)| |y (u,v) |dudy
R

Is| <81 <8
)+ [ [ 0s()x=1y =)y ) | dudy

=05(9)(x,y) + 05(9) * [y ()| (x,y)-
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Now, it is enough to prove gim |05 (@) * W5 llw 11y = 0. In fact, one has
—0

los (@) * [Walllwi)

< Z sup Z // 0s(Q)(x+ky —s,y+ky—1) |l1/a s,t |dsdt
ki €Zx€0, 1]kzezdye[0 14

<2 Z/ / p Y sup o5(@)(x+ki—s—Liyt+k—t—1{)
HEL pye7d [0,1]4 kler»EOI kyezd ye[0,1)
x| (s+ 01,1 + ) |dsdt

<Y Y sup sup (Y sup Y, sup @s(@)(x+k—s—Ly+ky—1—12))
(€7 0,74 €10 1]1€[0,1]7 &y €Zx€[0,1] ky 74 y€[0,1)4

x// W (s 4 00,1 + £2) |dsdr
[0,1] J[0,1]4

<2 2 (2 sup sup 3 sup sup @5(@)(x+ki—sytk—1))
0EL(yezd ki €ZXE[0,1]5€[0,1] e 74 ye[0,1]7 1€[0,1)¢

x// W (s 4 01,1 + £2) |dsd
[0,1] J[0,1]4

<2 @5 (@)l lwll —0 as 8§ —0. O

3. Sampling stability

In this section, we will establish the results of sampling stability for two kinds of
average sampling functionals.

THEOREM 1. Let 1 < p,q < oo and @ satisfy the assumptions (Al)—(A4). Sup-
pose that T = {yjr = (xj,yx) : x; € R,y € RY j ke 7'} is a relatively-separated set
with gaps 8 and &, for both variables and {y;y : j,k € ¢} is the first average sam-
pling functional with support radius a. If py = max{d,8} and a are chosen such
that

ry = MC(;IH(DL,JFPI((P)”W(LI,I) < 1, (11)

then signals f € V,,(@) can be stably reconstructed from the average samples
{{f, l//j7k>}j7k€j. Furthermore,

286, \-Vr; V8¢ \-1/a
<Ar,x(61)> (Ar,y(fSZ)> (l - rl)Hf”L”"q < H{<f7 Wj,k>}j,k6f H[P‘q

28, \“Upy Va8 \-1/a
< <Br’x(61)> (Bny(&)) (l +r1)Hf||L”"q7 (12)

d/2 . . . .
where Vj = #2@1) is the volume of d-dimensional unit sphere.
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Proof. For any x € B(xj,6;) and y € B(yx,02), one has

(w30 = PO < [ 1008) =S el )dids
(Vi)

SMogip, (f)(x,y) == Fi(x,y). (13)
Furthermore, for any f(x,y) = ¥ Y c(ki,k)o(x—ki,y—k2) € Vp4(0),
k1 EZ kyc7d
[Fillra <MY, Y, Jelhi ko) |@atp, (@) (x—ki,y —ka)||Lra
kIEZ]QGZd

SMlelleral|@atp, (@)llwprr)
<MC | @atpy (@)l 1) £1lra

=ri[lfllzra. (14)
Define
uja(x,y) = 0 () B(y) = ZXB(X" W B0
T oo T Zan0)

In the following, we just consider 1 < p,q < o, the cases for p = e or ¢ = can be
proved similarly. It follows from (13) that

v lod P @B 0) < If eap)le P (B (0) + 11 (xy) et P () B (9). (16)

Taking ¢7-norm for variable k € _# on both sides of (16) and then taking L?-norm for
variable y € R?, one has

1
(X 1w 1Bl ) 0 (x) < P @)L e + P ) G,
ke
a7)
Taking ¢7 -norm for variable j € _# on both sides of (17) and then taking L -norm for
variable x, we can obtain

/ 1/
(3 (3 w8 ) Nesl] " < Uflra+ 1Fillra < (1 )l fllra:
jeF Sker
(18)

It is easy to verify
28181, (81) < oyl < 281Ar(81)
and
Va5 Br L (8) < || Bellyr < Vad§ALL(8).
Then the right hand side of (12) follows from (18). The left side can be obtained by the
same method from

£ @BI0) < I wilen P (B 0) + 1R (ey)lel P (0B (). O
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THEOREM 2. Let 1 < p,g< o0, @ sansﬁ/ the assumptions (Al)—(A4). Suppose
that T = {¥jx = (xj,yx) : x; € R,y € Re j ke 7'} is a relatively-separated set with
gaps 8 and & for both variables and y € L' (R4 satisfies [ [pa W(x,y)dxdy = 1.
If p» = max{03,84} and a are chosen such that

r2:= Cy' (lp, (@) w1y + |0y (@) lwpry + 107 lwan) <1, (19)

then any signals f €V, 4(¢) can be stably reconstructed from the average samples

{(f, Wal-— 7/j,k)>}j,k€/, and

_ d _
(o) Gs) ™ =)o < = 100

Ar,y(64) ¢ra
285 \“Upy Va8 \-V/a
s <an(53)) (Biny(&)) (L4 r)[|fllzra, (20)

d/2 . . . .
where Vg = #éﬂ) is the volume of d-dimensional unit sphere.

Proof. For any x € B(xj,83) and y € B(y,8), if f(x,y)= ¥ ¥ c(ki,k2)
k1 €EZ kye7d
O(x—ki,y—k2) €V, 4(@), then we can obtain

[ Wal- = Yja)) = f(x,p)]
<D Y lelkik)l|olx—ki,y —ka) — @y (xj — ki, vk — ko) |

k| EZjyc7d
<Y T felhiko)l (@ps(@)x—kiy—ko)

k| EZkyezd

+ 0 () (¥ — ki, —ka) + 9" (x—ki,y ko)
= F(x,y).

Furthermore, one has

1Fallzra < llellera (ll@p, (@) lw ety + llpy (@) lw ity + 10 lwzrry)
< Cy' (|lwp, (9 O)lwzry + 110p, (@)l zry + 19wy 1 £ e
= V2||fHLP~q~

The remained proof is similar to that of Theorem 1. [

4. Tterative approximation projection reconstruction algorithms

In this section, we will give the iterative approximation projection reconstruction
algorithms for recovering the signals in V,, ;(¢) from two kinds of average samples. For
two kinds of average sampling functionals, we define the pre-reconstruction operators

Arf = Y (f Wik
jke s
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and

Al",uf:: Z <f»‘lfa('_7’j7k)>”j.,k7
jke f

where u; is defined in (15). Let P be a bounded projection from LP*4 (Rd“) onto
Vp4(@). Then the corresponding iterative approximation projection reconstruction al-
gorithms are given as

fo =P< D Co(j7k)uj,k>
jkes 1)
fn :fO +fn71 _PAl"fnfh n=1

and

fo= P( Y CO(j7k)uj,k>
jie.s (22)

fn :f0+fn71 _PAF,ufnfh nzl.
LEMMA 5. Let 1 < p,q < o0, and @ satisfy (Al) and (A3). Define
Pf(xy):= 3, X (fig(-—ki, —ka))p(x—ki,y —ka), (23)

ky EZszZd
where g(x,y) is given in (4). Then P is a bounded projection from LP1(R1) onto
Voa(®).

Proof. Let b(ky,ky) = (f,g(- —ki,- — kp)). Then it follows from the proof of

Lemma 2 that
1Bllera < g llwayllfllLra,
which means that Pf € V), ,(¢). Moreover, one has
1Pfllzra < [1@llw(pin)llbllera
< lellwenllglhweinllfllzea.

Therefore, P is a bounded projection from LP4(R4*!) onto V,, 4(¢). O

THEOREM 3. Let p, q, ¢ and {y d/k :j,k € Z} be asin Theorem 1. Suppose

that T = {¥jx = (xj,yx) : x; E R,y € R, j,k € 7'} is a relatively-separated set with
gaps Os and & for both variables. If p3 = max{ds, 8} and a are chosen such that

13 1= Co 1Pl 2M1|0u(9) 111y + (1) |02 () 021
M@y (D] <1 @

then the algorithm (21) exponentially converges to some fo €V, 4(@), and

+1
3|l follzpa- (25)
T

| fo = foollLra < {

If co(j, k) = (f s Wjk), Jik € 7 for [ €Vyq(@), then f=f.
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PVOOf. Note that fl’l+1 _fn = (I_PAF)(fn _fn71)7 n 2= 1. For any f(x7y) €

Vpa(®),
|f = PArfllzra < ||Plopll f — Arf|Lra
<Pllop (Ilf = Orfllra + |Orf — Arfllra),

where Orf(x,y) := X f(xj,yx)u;jx(x,y). Furthermore,
j?ke(/

|f(x,y) = Orf(xy)] < 2/ |f (e, y) = f O,y [uj i (x,y)
jke g
< wP3 (f)(X,y)
<

> le(ky,ka)|@p, (@) (x —ki,y — ko).

k| EZkye7d

By Lemma 2, we can obtain

If = Crfllzra < Cq'l|@p; (@) lwzn) £ llzra.

On the other hand, we have
|Orf(x,y) —Arf(x,y)|

J/gf// |f xj7yk S Z)Hllljk(s t)'”jk(x y)del
<M Z (Da(f)(xj',yk)uj’k(x,y)
jke g7

<M 3 (3D lelhik) 0u(9) o — ki — k) Jujalx.y)

JkEF “hELkyerd

=MOr( X T felhi ko)l @u(9)(- ki, k) ) (v.y)

k1 E€Zkye7d
M| T T felhi ko) 0u(9)(x—kiy— ko)
kIEZ]QGZd
~0r(T T lelhiko)laa(p)-— ki, — k) ()]
kIGZ]QGZd

+M‘ Z Z |c(k1,k2)|@a (@ )(X—kl,y—kz)‘.
k| EZkyezd

By the same method as (27), we obtain

lrf —Arflra < MCy" ([[0ps (@a(@)) [y 1)+ 10a(@) e ) Fllna

< MC;I (H(Ua+p3((P) HW(LM) + pr3((p) HW(LM)

+ 2 @u(@) e ) 1 ra:

(26)

27)
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This together with (26) and (27) gives
|f = PArfl|Lra < 13| fllzra- (28)
Therefore, (25) is proved. Define

Rr:=1+ (I—PAp)".

n=1

Then RrPAr = PArRr =1 on V), ,(@). If co(j,k) = (f,yjx) for f €V, 4(¢), then
fo=Rrfo=RrPArf=I1f=f U (29)

THEOREM 4. Let p, q, ¢ and y be as in Theorem 2. Suppose that T = {yj; =
(xj,y) i x; E R,y €RY j.k € _F} is a relatively-separated set with gaps &; and S
for both variables. If py = max{87,03} and a are chosen such that

7= C 1Pl 1000 () ) + 105 (0 Inny + 197wy <1, G30)

then the algorithm (22) exponentially converges to some fo €V, 4(@), and

+1

rl’l
o = Fellira < TN follura. (31)
_—

If co(j, k) = (f s Wa(- = Vjk)), ik € 7 for [ €V q(0), then fo=f.

Proof. Forany f(x,y)= ¥ ¥ c(ki,k2)@(x—ki,y—ka) €V, 4(®), one has
ki EZkyezd

If = PAraf e <|IPllop(If = Orfllzra + [|Orf = Or(f * w;)|[1ra).- (32)
By (27), we know

1 = 0rflira < Co 1 pe (0) s |l (33
Since Qrf(x7Y) - Qr(f* V/;)(xu))) = QF( 2 2 C(khkz)(pu(' - k17' - kz))(xay)’
k1 E€Zkye7d

then

1Orf = Or(f*wy)llra < || D, Y, clki k)@ (x—ki,y — k)|

L4

k\EZkye7d

+H X X clki k) (x—kiy ko)
k\E€Z kyeZd

-or( Y, 2 (ki,k2) —k1,~—k2))(x,y)’|L,,,q
kEZkyezd

<G (19 hwiery +1lop, (@) lhwizrn) ) £ lna-
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This together with (32) and (33) obtains

|\f = PArof||lLra < ral|fllLra.

Therefore, (31) is proved. Define

Rrgq:=1+ Y (I—PAr,)".

n=1
Then Rr PAr, = PAr Rr. =1 on V,,(0). If co(j,k) = (f,Wa(- — ¥jx)) for f €
Vpq(@), then
Jfo =Rrafo=Rr PArf =1f = f. (34)
O

5. Error estimations

Generally, the perfect recovering of the signal is difficult to come true, since there
are many factors which will contribute to the error. In this section, we will provide
error estimations under three kinds of conditions. For brevity, the constants r3,r4 are
assumed to satisfy the specific definitions in Theorem 3 and Theorem 4 in the following
section.

THEOREM 5. Ifthe average sampling values in Theorem 3 and Theorem 4 are of
the form {(f, y/j7k>+£j7k}j7ke/ and {{f, Wa('—7/j7k)>+8j7k}j,ke/, where {Sj.’k}ﬁke/ €

£P4 then for Theorem 3,
1/q
300 [ Csop ety ) |
’ es

1 1/p
0 — 4 T——
1= Flira < 1Py L) 6

and for Theorem 4,
1/q 1/p
1= Fllers < 7= Pllop {143 0 5 (g0 | (s sy )™
(36)
Proof. Write ho(x,y):= ¥ Y &;Puji(x,y). Then for Theorem 3,
jeE ke g7
| fo = fllra = |Rrhol|ra < (|14, (I = PAr)"|[[|Rol|Lra
n=1
1 1
< 1_—r3||h0||uw < T},}HPHWH > Y gaujllora
je ke 7
1/q 1/p
< (eradiae [, (0 || (s sty ) ], )™

The inequality (36) could also be obtained by the similar way, we will omitit. [J



824 S. WANG

THEOREM 6. [fthe average sampling values in the Theorem 3 and Theorem 4 are
of the form {(f, W k) +&jx}jke s and {{f, Wa(-—Vix)) + €k} jke s, where {€ji}jre 5
are bounded and independent identically distributed random variables with zeros mean
and variance o2, that is

gix €[-B,B], E(g) =0, Var(ej)=oc" (37)
Furthermore, if there exists constants My > 0 and My > 0 such that
2
Y 3 [RePusuen| <M, Viey) e R (38)
jef ke g
and )
Y 3 |RraPusten)| <M W) eRT (39)
je ke 7
then for Theorem 3,
E(foo(x7y)—f(x7y))20 (40)
and
Var(fu(x,y) = f(x,y)) < M. (41)
For Theorem 4,
E(foo(x7y)—f(x7y))20 (42)
and
Var(fu(x,y) = f(x,y)) < 0*Mp. (43)
Proof. For Theorem 3,
B(fuloy) = £(e3)) =E(ReP Y, T ja(x,3)) =0. (44)
JES ke J

and by the independence of random variables of {g;} ;e #

Var(u) ~ ) =E(ReP 3, 3 ejaaaley)
jefke g

2
< Y Y E(gp)? (RFPMj,k(x»y)>
jeELke g
< G2M1. (45)

The inequalities (42) and (43) could be obtained by the similar way, we will omitit. [J

THEOREM 7. Ifthe numerical error in the ith iterative step of the algorithm (21)
and (22)is & € Vp4(@), i 20, ie.

fo=P( 3 clikuje)+eo
jke 7 (46)

fo=Jo+fu1—PArfy 1+, n>1
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and N
fo=P< Y CO(J.ak)uj,k>+80
ikes A7)
fa=Jfo+fact —PArafu—1+&,n>1,

with co(j,k) = (f,Wjx) in the (46) and co(j.k) = (f,Wa(- — Yjx)) in the (47). Then
for the algorithm (46),

~ rn+1 1+r ‘ 5
lfn — fllLra < 3 ( 3) | flLra n

n
[nHSoHan—FZ H&”LI’#] (48)

1—7’3 1—7’3 i—0

and for the algorithm (47),

AU ) lara |2

fu— fllira <
1o = Fllens — -

[nlleollra+ Y, leillora]. 49)
i=0

Proof. For the algorithm (46),

fo—fo=48 (50)
and
_ n—1
fa—fo=— Y. (I—PAR)" " *PAr& + &, n>1, (51)
k=0

k
where gy =& and & = (k+1)gy+ Y &, k> 1. Thus,
=1

=

fo = Fllra < I fo— follra + 1fo = flles < l1€llra+ rall fllzrs (52)

andforn>1,

1f = fllra <IUf = fallra + 1 fa = Fallzra

oo

n—1
< X (=PAD follera + || Y (1 — PAr)" ™~ PAré | ra + || &l

k=n+1 k=0
rﬂ+l ] n—1 . ~
< M—F 2 r"il*kHPAFSkHLm—F HSnHLM
1—r 3
3 k=0
T L+7r3)| fllrra nl 1 ~ ~
< 3 ( A1 +Zr§' 1 k(l+r3)H8k||Lhﬂ+||£n||LI’~,q
N k=0
rﬂ+l 1+7‘3 f 1pa n—1 L k n
< 2 ( 1—}’)3” H —|—(1—|—r3)2r§ ! kaSo—FES,‘HLM—F||n80—|—28iHLp>q
k=0 i=0 i=0

AR+ r) | fllre 2

< X i\|Lpa |- 53
1—rs +1_r3[n”é‘()Hqu-l—ZéH&HLIq} (53)
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Combining the inequalities (52) and (53), the result (48) is proved. The inequality (49)
is followed by the similar way, we will omitit. [J
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