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MULTIDIMENSIONAL WEIGHTED PÓLYA–KNOPP

INEQUALITIES WITH SHARP CONSTANTS

MARKOS FISSEHA YIMER

(Communicated by L. E. Persson)

Abstract. Some new Pólya-Knopp inequalities in two and higher dimensions with sharp con-
stants are stated and proved. Furthermore, some new general weighted Pólya-Knopp type in-
equalities in n -dimension are proved and applied.

1. Introduction

G. H. Hardy stated and proved in his 1925 paper [2] the following inequality:

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p∫ ∞

0
f p(x)dx, (1)

for p > 1 and where f is a positive measurable function on (0,∞) . The inequality is
usually called the classical Hardy inequality. Later, in 1928, he proved the following
generalization of (1):

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

xαdx �
(

p
p−1−α

)p ∫ ∞

0
f p(x)xαdx, (2)

whenever p � 1 and α < p−1. Moreover, the constant

(
p

p−1−α

)p

is sharp (see

[3]). After this, a lot of generalizations and complementary results have been pub-
lished see e.g. the book [7] and the references therein. Next we note that by replacing
f (x) with ( f (x))1/p and letting p → ∞ in (2), we obtain the following Pólya-Knopp’s
weighted inequality

∫ ∞

0
exp

(
1
x

∫ x

0
log f (t)dt

)
xα dx � e(1+α)

∫ ∞

0
f (x)xα dx, (3)

for α > −1 and f is a positive measurable function on (0,∞) . Moreover, the constant
e(1+α) is sharp. Concerning the name Pólya-Knopp’s inequality see our Remark 7.
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Also this inequality has been generalized, complemented and discussed in several pub-
lications, see e.g. [1], [5], [8], [9], [11] and the references given there. Such remarkable
results motivate mathematician to continue the study of this type of inequalities in the
higher dimensions.

In particular, the following two dimensional characterization for the general weight
functions u and v was proved in [10] (see also [11]):

THEOREM 1. (See [10, Theorem 4.1]) Let 0 < p � q < ∞ , and let u,v and f be
positive functions on R

2
+ . If 0 < b1,b2 � ∞ , then(∫ b1

0

∫ b2

0

[
exp

(
1

x1x2

∫ x1

0

∫ x2

0
ln f (y1,y2)dy1dy2

)]q

u(x1,x2)dx1dx2

) 1
q

� C

(∫ b1

0

∫ b2

0
f p(x1,x2)v(x1,x2)dx1dx2

) 1
p

(4)

if and only if

DW (s1,s2, p,q) := sup
y1∈(0,b1)
y2∈(0,b2)

y
s1−1

p
1 y

s2−1
p

2

(∫ b1

y1

∫ b2

y2

x
− s1q

p
1 x

− s2q
p

2 w(x1,x2)dx1dx2

) 1
q

< ∞,

(5)

where s1,s2 > 1 and

w(x1,x2) =
[
exp

(
1

x1x2

∫ x1

0

∫ x2

0
lnv−1(t1,t2)dt1dt2

)] q
p

u(x1,x2),

and the best possible constant C in (4) can be estimated in the following way:

sup
s1,s2>1

(
es1(s1 −1)

es1(s1 −1)+1

) 1
p
(

es2(s2−1)
es2(s2 −1)+1

) 1
p

DW (s1,s2, p,q)

� C � inf
s1,s2>1

e
s1+s2−2

p DW (s1,s2, p,q).

(6)

A simple calculation shows that Theorem 1 implies the following:

EXAMPLE 1. Let βi,γi > −1 ( i = 1,2). Then, the inequality∫ ∞

0

∫ ∞

0
exp

(
1

x1x2

∫ x1

0

∫ x2

0
ln f (y1,y2)dy1dy2

)
xβ1
1 xβ2

2 dx1dx2

� C
∫ ∞

0

∫ ∞

0
f (x1,x2)x

γ1
1 xγ2

2 dx1dx2

holds if and only if βi = γi ( i = 1,2). This fact is obvious since in this case (5) is of the
form

DW (s1,s2,1,1) = e(γ1+γ2) sup
y1,y2>0

yβ1−γ1
1 yβ2−γ2

2

(s1 + γ1−β1−1)(s2 + γ2−β2−1)
,

provided that si > 1+ βi− γi ( i = 1,2).
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REMARK 1. A similar characterization of (4) for the case b1 = b2 = ∞ and p =
q = 1, but without explicit estimates of the best constant like in (6), was earlier proved
in [5].

REMARK 2. The first paper where the sharp constant in a multidimensional Pólya-
Knopp inequality was discussed seems to be [8]. In particular, in [8, Theorem 2.2], the
authors stated that the inequality∫ ∞

0

∫ ∞

0
exp

(
1

x1x2

∫ x1

0

∫ x2

0
ln f (y1,y2)dy1dy2

)
xa
1x

a
2 dx1dx2

� e2(1+a)
∫ ∞

0

∫ ∞

0
f (x1,x2)xa

1x
a
2 dx1dx2

holds and that the constant is sharp. Here a∈ (0,∞) and f is a positive and measurable
function. This result is correct but the proof contains a minor gap, a gap which is
corrected in this paper (see the proof of the more general Theorem 2).

In this paper we prove some new higher dimensional Pólya-Knopp type inequal-
ities with sharp constants. The paper is organized as follows: In Section 2 we state
and prove our two dimensional main result (see Theorem 2). In Section 3 we state and
prove the corresponding general main results for dimension n , n = 3,4, . . . (see Theo-
rem 4). An important step for this proof is to first characterize a new multidimensional
Pólya-Knopp type inequality with general weights even for the case 0 < p � q < ∞
(see Theorem 3). Finally, Section 4 is reserved for some concluding remarks.

Convention. Throughout this paper we assume that f is a positive and measurable
function defined on R

n
+ := (0,∞)n .

2. The two dimensional main results

Our first main result reads:

THEOREM 2. Let a,b > −1 and f be a positive measurable function defined on
R

2
+ . Then the inequality∫ ∞

0

∫ ∞

0
exp

(
1

x1x2

∫ x1

0

∫ x2

0
ln f (y1,y2)dy1dy2

)
xa
1x

b
2 dx1dx2

� e2+a+b
∫ ∞

0

∫ ∞

0
f (x1,x2)xa

1x
b
2 dx1dx2

(7)

holds and the constant is sharp.

Proof. As a result of Example 1, the inequality (7) holds for some finite C . Now,
we need to prove that the constant C = e2+a+b is sharp. From Theorem 1, it follows
that the best constant C satisfies

C � ea+b inf
s1,s2>0

e(s1+s2)

s1s2
.
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The infimum in the above inequality is attained at si = 1 ( i = 1,2). This implies that

C � e2+a+b. (8)

It only remains to prove that the inequality (8) also holds in the reversed direction.
Consider the function

f (x1,x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−α
1 x−β

2 : x1 > e, x2 > e,

x−α
1 : x1 > e, x2 � e,

x−β
2 : x1 � e, x2 > e,

1 : x1 � e, x2 � e

,

where α > a+1 and β > b+1. By writing the integral
∫ ∞
0

∫ ∞
0 in the form∫ ∞

0

∫ ∞

0
=
∫ e

0

∫ e

0
+
∫ ∞

e

∫ e

0
+
∫ e

0

∫ ∞

e
+
∫ ∞

e

∫ ∞

e
,

we find that the left hand side of (7) becomes

e2+a+b

(a+1)(b+1)
+

e2+a+b

(α −a−1)(b+1)
+

e2+a+b

(β −b−1)(a+1)
+

e2+a+b

(α −a−1)(β −b−1)

and the right hand side becomes

e2+a+b

(a+1)(b+1)
+

e2+a+b−α

(α −a−1)(b+1)
+

e2+a+b−β

(β −b−1)(a+1)
+

e2+a+b−α−β

(α −a−1)(β −b−1)
.

Consequently, the inequality (7) has the form

eα+β[
(a+1)

α +
(
1− a+1

α
)
eα
][

(b+1)
β +

(
1− b+1

β

)
eβ
] � C.

By letting α → (a+1)+ and β → (b+1)+ , we find that

e2+a+b � C. (9)

The sharpness of the constant in (7) follows from (8) and (9). The proof is com-
plete. �

As a particular case of Theorem 2 with a = b , we have the following result (c.f.
[8, Theorem 2.2], but there a ∈ (0,∞) instead of a ∈ (−1,∞)):

COROLLARY 1. Let a > −1 and f be a positive measurable function defined on
R

2
+ . Then the inequality∫ ∞

0

∫ ∞

0
exp

(
1

x1x2

∫ x1

0

∫ x2

0
ln f (y1,y2)dy1dy2

)
xa
1x

a
2 dx1dx2

� e2(1+a)
∫ ∞

0

∫ ∞

0
f (x1,x2)xa

1x
a
2 dx1dx2

holds and the constant is sharp.
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3. The n -dimensional main results

Throughout the paper, we use the following notations in the respective variables
and parameters: For n � 2,

Jn = {1, . . . ,n}, x = (x1, . . . ,xn), xt = (x1t1, . . . ,xntn), In = [0,b1)×·· ·× [0,bn),

dx = dx1 · · ·dxn, |ααααα| =
n

∑
i=1

αi, N0 = N∪{0}, y � x ⇔ yi � xi (i = 1, . . . ,n),

and ∫
Rn

+

=
∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
n times

,

∫ 1

0
=
∫ 1

0
· · ·
∫ 1

0︸ ︷︷ ︸
n times

,

∫ x

0
=
∫ x1

0
· · ·
∫ xn

0
,

∫ b

y
=
∫ b1

y1

· · ·
∫ bn

yn

,

where 0 � yi < bi � ∞ (i = 1, . . . ,n) .
Theorem 1 can be generalized to a n -dimensional setting as follows:

THEOREM 3. Let 0 < p � q < ∞ , and let u,v and f be positive functions on In .
Then, for n = 2,3, . . . ,(∫ b

0

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)]q

u(x)dx

) 1
q

� C

(∫ b

0
f p(x)v(x)dx

) 1
p

(10)

holds for some finite C if and only if for any αi > 0 (i = 1, . . . ,n) ,

A(ααααα) := sup
0<yi<bi

i∈Jn

n

∏
i=1

y
αi
p

i

(∫ b

y

n

∏
i=1

x
−(1+αi)

q
p

i w(x)dx

) 1
q

< ∞, (11)

where

w(x) = u(x)

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
lnv−1(y)dy

)] q
p

.

Moreover, the best constant C satisfies

sup
αi>0
i∈Jn

A(ααααα)
n

∏
i=1

(
αie1+αi

1+ αie1+αi

) 1
p

� C � inf
αi>0
i∈Jn

A(ααααα)exp

( |ααααα|
p

)
. (12)

Proof. Sufficiency. Let g(x) = f p(x)v(x) . Then the inequality (10) is equivalent
to ⎛

⎝∫ b

0

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
lng(y)dy

)] q
p

w(x)dx

⎞
⎠

1
q

� C

(∫ b

0
g(x)dx

) 1
p

, (13)
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where

w(x) = u(x)

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
lnv−1(y)dy

)] q
p

.

Let yi = xiti (i = 1, . . . ,n) . Then the inequality (13) becomes

(∫ b

0

[
exp

(∫ 1

0
lng(xt)dt

)] q
p

w(x)dx

) 1
q

� C

(∫ b

0
g(x)dx

) 1
p

. (14)

For αi > 0 ( i = 1, . . . ,n ), we trivially have that

exp(|ααααα|)exp

(∫ 1

0
ln

n

∏
i=1

tαi
i dt

)
= 1. (15)

Apply the identity (15) and then, by Jensen’s inequality, the left hand side of (14)
becomes

exp

( |ααααα|
p

)⎛⎝∫ b

0

[
exp

(∫ 1

0
ln

(
g(xt)

n

∏
i=1

tαi
i

)
dt

)] q
p

w(x)dx

⎞
⎠

1
q

� exp

( |ααααα|
p

)⎛⎝∫ b

0

(∫ 1

0
g(xt)

n

∏
i=1

tαi
i dt

) q
p

w(x)dx

⎞
⎠

1
q

= exp

( |ααααα|
p

)⎛⎝∫ b

0

(∫ x

0
g(y)

n

∏
i=1

yαi
i dy

) q
p n

∏
i=1

x
−(1+αi)

q
p

i w(x)dx

⎞
⎠

1
q

.

Therefore, by using Minkowski’s integral inequality for n -dimension when p < q and
Fubini’s theorem when p = q (see [10, Remark 5.2]), the later expression is less than
or equal to

exp

( |ααααα|
p

)⎛⎝∫ b

0
g(y)

n

∏
i=1

yαi
i

(∫ b

y

n

∏
i=1

x
−(1+αi)

q
p

i w(x)dx

) p
q

dy

⎞
⎠

1
p

� exp

( |ααααα|
p

)
A(ααααα)

(∫ b

0
g(y)dy

) 1
p

, (16)

so that (13) follows from (11) and (16). Since (10) is equivalent to (13), we conclude
that (10) holds and the best constant C satisfies

C � inf
αi>0
i∈Jn

exp

( |ααααα|
p

)
A(ααααα).
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Necessity. To prove that (10), or equivalently (13), implies (11), we define the test
function g by

g(x) =
n

∏
i=1

(
y−1
i χ[0,yi](xi)+

yαi
i e−(αi+1)

xαi+1
i

χ(yi,bi)(xi)

)
,

for fixed yi,0 < yi < bi (i = 1, . . . ,n) . Then, the right hand side of (13) becomes

C

(∫ b

0
g(x)dx

) 1
p

= C
n

∏
i=1

[∫ bi

0

(
y−1
i χ[0,yi](xi)+

yαi
i e−(αi+1)

xαi+1
i

χ(yi,bi)(xi)

)
dxi

] 1
p

= C
n

∏
i=1

[
1+

e−(1+αi)

αi

(
1−
(

yi

bi

)αi
)] 1

p

� C
n

∏
i=1

(
1+

e−(1+αi)

αi

) 1
p

= C
n

∏
i=1

(
1+ αie1+αi

αie1+αi

) 1
p

. (17)

On the other hand, for 0 � y < b , we have that⎛
⎝∫ b

y

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
lng(t)dt

)] q
p

w(x)dx

⎞
⎠

1
q

�

⎛
⎝∫ b

0

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
lng(t)dt

)] q
p

w(x)dx

⎞
⎠

1
q

(18)

Moreover, for y � x < b ,

∫ x

0
lng(t)dt =

n

∑
i=1

n

∏
j=1
j �=i

x j

∫ xi

0
ln

(
y−1
i χ[0,yi](ti)+

yαi
i e−(αi+1)

tαi+1
i

χ(yi,bi)(ti)

)
dti

=

(
n

∏
j=1

x j

)
n

∑
i=1

ln
yαi
i

x(αi+1)
i

. (19)

It follows from (13) and (17)–(19) that

n

∏
i=1

y
αi
p

i

(∫ b

y

n

∏
i=1

x
−(1+αi)

q
p

i w(x)dx

) 1
q

� C
n

∏
i=1

(
1+ αie1+αi

αie1+αi

) 1
p

.

Therefore,

A(ααααα) = sup
0<yi<bi

i∈Jn

n

∏
i=1

y
αi
p

i

(∫ b

y

n

∏
i=1

x
−(1+αi)

q
p

i w(x)dx

) 1
q

� C
n

∏
i=1

(
1+ αie1+αi

αie1+αi

) 1
p

< ∞.
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We conclude that (10) and (11) hold and that the sharp constant C satisfies (12). The
proof is complete. �

Theorem 3 implies the following inequality for homogeneous power weights:

EXAMPLE 2. Let 0 < p � q < ∞ , let βi,γi > −1 (i = 1, . . . ,n) . Then, the in-
equality

(∫ b

0

[
exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)]q n

∏
i=1

xβi
i dx

) 1
q

� C

(∫ b

0
f p(x)

n

∏
i=1

xγi
i dx

) 1
p

(20)

holds if and only if

1+ βi

q
=

1+ γi

p
, (21)

for all i = 1, . . . ,n . This fact is obvious since in this case (11) is of the form

A(ααααα) = exp

( |γγγγγ|
p

)
sup

yi∈(0,bi)
i∈Jn

n

∏
i=1

y
1+βi

q − 1+γi
p

i[
(1+ αi + γi) q

p −1−βi

] 1
q

[
1−
(

yi

bi

)(1+αi+γi)
q
p−1−βi

] 1
q

� exp

( |γγγγγ|
p

)
sup

yi∈(0,bi)
i∈Jn

n

∏
i=1

y
1+βi

q − 1+γi
p

i(
(1+ αi + γi) q

p − (1+ βi)
) 1

q

,

provided that αi > p
q (1+ βi)− (1+ γi) (i = 1, . . . ,n) .

Moreover, we state and prove the following n -dimensional version of Theorem 2:

THEOREM 4. Let n = 2,3, . . . , let γi > −1 (i = 1, . . . ,n) , and let f be a positive
measurable function defined on R

n
+ . Then the inequality

∫
R

n
+

exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)
n

∏
i=1

xγi
i dx � exp(n+ |γγγγγ|)

∫
R

n
+

f (x)
n

∏
i=1

xγi
i dx (22)

holds and the constant is sharp.

Proof. In view of Example 2, the inequality (22) holds. Now, we prove that the
best constant C = exp(n+ |γγγγγ|) . From Theorem 3, it follows that the best constant C
satisfies

C � exp(|γγγγγ|) inf
αi>0
i∈Jn

(
n

∏
i=1

eαi

αi

)
.
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The infimum in the above inequality is attained at αi = 1 ( i = 1, . . . ,n ). Hence,

C � exp(n+ |γγγγγ|). (23)

It only remains to prove that the inequality (23) also holds in the reversed direction.
Consider the function

f (x) =
n

∏
i=1

(
χ[0,e](xi)+ x−βi

i χ(e,∞)(xi)
)
,

where βi > γi + 1 (i = 1, . . . ,n) . Then, the integral part of the right hand side of (22)
becomes ∫

R
n
+

f (x)
n

∏
i=1

xγi
i dx =

∫
R

n
+

n

∏
i=1

xγi
i

(
χ[0,e](xi)+ x−βi

i χ(e,∞)(xi)
)
dx

=
n

∏
i=1

∫
R+

xγi
i

(
χ[0,e](xi)+ x−βi

i χ(e,∞)(xi)
)
dxi

=
n

∏
i=1

e(γi+1)

(
1

γi +1
+

e−βi

βi− γi−1

)
(24)

and the left hand side of (22) becomes∫
R

n
+

exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)
n

∏
i=1

xγi
i dx

=
∫

R
n
+

exp

(
n

∏
j=1

x−1
j

∫ x

0
ln

n

∏
i=1

(
χ[0,e](yi)+ y−βi

i χ(e,∞)(yi)
)
dy

)
n

∏
i=1

xγi
i dx

=
∫

R
n
+

n

∏
i=1

xγi
i exp

(
x−1
i

∫ xi

0
ln
(

χ[0,e](yi)+ y−βi
i χ(e,∞)(yi)

)
dyi

)
dx

=
n

∏
i=1

∫
R+

xγi
i exp

(
x−1
i

∫ xi

0
ln
(

χ[0,e](yi)+ y−βi
i χ(e,∞)(yi)

)
dyi

)
dxi

=
n

∏
i=1

e(γi+1)
(

1
γi +1

+
1

βi− γi−1

)
. (25)

It follows from (22), (24) and (25) that

n

∏
i=1

eβi(
γi+1

βi
+
(
1− γi+1

βi

)
eβi

) � C.

By letting βi → (γi +1)+ (i = 1, . . . ,n) , we find that

exp

(
n+

n

∑
i=1

γi

)
� C. (26)

Therefore, the sharpness of the constant in (22) follows by combining (23) and (26).
The proof is complete. �
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REMARK 3. Note that for n = 2 Theorem 4 coincides with Theorem 2. In fact,
just put n = 2, γ1 = a and γ2 = b in Theorem 4 to confirm this fact.

As a particular case of Theorem 4 with γi = a ( i = 1, . . . ,n ), we have the following
result:

COROLLARY 2. Let n = 2,3, . . . , let a > −1 and let f be a positive measurable
function defined on R

n
+ . Then the inequality

∫
Rn

+

exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)
n

∏
i=1

xa
i dx � en(1+a)

∫
Rn

+

f (x)
n

∏
i=1

xa
i dx

holds and the constant is sharp.

Finally, we state the following consequence of Theorem 4 for another type of
homogeneous weight.

COROLLARY 3. Let k ∈ N and a ∈ R such that ak > −1 , and let f be a positive
function defined on R

n
+ (n = 2,3, . . .). Then the inequality

∫
R

n
+

exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)(
n

∑
i=1

xa
i

)k

dx � e(n+ak)
∫

R
n
+

f (x)

(
n

∑
i=1

xa
i

)k

dx (27)

holds and the constant is sharp.

Proof. Let k ∈ N and a ∈ R such that ak > −1. Then, by applying the multino-
mial theorem and Theorem 4, we obtain that

∫
Rn

+

exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)(
n

∑
i=1

xa
i

)k

dx

= ∑
m1+···+mn=k

mi∈N0

(
k

m1, . . . ,mn

)∫
R

n
+

exp

(
n

∏
i=1

x−1
i

∫ x

0
ln f (y)dy

)
n

∏
i=1

xami
i dx,

� ∑
m1+···+mn=k

mi∈N0

(
k

m1, . . . ,mn

)
exp

(
n+a

n

∑
i=1

mi

)∫
R

n
+

f (x)
n

∏
i=1

xami
i dx

= e(n+ak)
∫

R
n
+

f (x)

(
n

∑
i=1

xa
i

)k

dx,

where (
k

m1, . . . ,mn

)
=

k!
m1! · · ·mn!

is a multinomial coefficient. Since the constant in Theorem 4 is sharp, then the sharp-
ness of the constant e(n+ak) in (27) is guaranteed so the proof is complete. �
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4. Concluding remarks

REMARK 4. The application pointed out in Corollary 3 is not unique. In fact,
Theorem 4 can be used to derive sharp inequalities of Pólya-Knopp type also for other
homogeneous weights.

REMARK 5. By using a similar approach as that in Theorems 2 and 4, we can
prove the sharpness of the constant eα+1 in the inequality (3).

REMARK 6. Let 0 < p � q < ∞ . If the condition (21) in Example 2 holds, then
the best constant C satisfies

C � exp

(
n
q

+
|γγγγγ|
p

)
.

In particular, if p = q and bi = ∞ ( i = 1, . . . ,n ), then by replacing f (x) by f p(x) in
Theorem 4, we obtain that the best constant

C = exp

(
n+ |γγγγγ|

p

)
.

OPEN QUESTION 1. To find the best constant for the case 0 < p < q < ∞ is an
open question, which seems to be open even for n = 1.

REMARK 7. Concerning the name Pólya-Knopp’s inequality for inequality (3)
with α = 0: some author’s referred to this inequality as ‘Knopp’s inequality’ with
reference to his 1928 paper [6]. It was later on discovered that Hardy in his famous
1925 paper [2] pointed out the inequality as a limit inequality of his inequality but that
it was his friend Pólya which informed him about this fact. In this connection we also
refer to the first really important book [4] with main focus on inequalities.

OPEN QUESTION 2. In view of Remark 7 and the limit argument pointed out in
our introduction it seems of interest to try to characterize (10) as a limit inequality of a
corresponding n -dimensional Hardy inequality (which exists). For the case n = 1 this
problem was solved in [9].
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[4] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, Inequalities, University Press, Cambridge, 1964.
[5] H. P. HEINIG, R. KERMAN AND M. KRBEC, Weighted exponential inequalities, Georgian Math. J.,

8 (2001), no. 1, 69–86.
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