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ON THE EQUIVALENCE OF STATISTICAL

DISTANCES FOR ISOTROPIC CONVEX MEASURES
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(Communicated by M. Praljak)

Abstract. We establish quantitative comparisons between classical distances for probability dis-
tributions belonging to the class of convex probability measures. Distances include total variation
distance, Wasserstein distance, Kullback-Leibler distance and more general Rényi divergences.
This extends a result of Meckes and Meckes (2014).

1. Introduction

In convex geometry and its probabilistic aspects, many fundamental inequalities
are shown to be reversed up to universal constants in the presence of geometric prop-
erties, such as convexity. Examples include reverse Hölder and Jensen type inequali-
ties (see, e.g., [29], [25], [8], [34], [37], [14], [32]), reverse isoperimetric inequalities
(see, e.g., [4], [6], [17]), and reverse Brunn-Minkowski inequalities (see, e.g., [41],
[42], [45], [12]). Long-standing conjectures, such as the Mahler conjecture [38] and
Bourgain’s hyperplane conjecture [18] also are related to the reversal of fundamental
inequalities.

Another important example is the equivalence of distances between probability
distributions established by Meckes and Meckes [40] (see also [21]), who showed that
under a log-concavity assumption, many classical distances are comparable. The goal
of this article is to extend their results to a broader class of probability measures, called
convex measures.

The class of convex measures contains fundamental distributions in probability
and statistics. Examples include Gaussian distributions, uniform distributions on a con-
vex set and more general log-concave distributions, as well as heavy tailed distributions
such as Cauchy type of the form

f (x) =
C

(1+ |x|2) n+β
2

, x ∈ R
n,

where β > 0 is a parameter, C > 0 is the normalizing constant, and | · | denotes the
Euclidean norm on R

n , n � 1.
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The classical distances between probability distributions we consider are the boun-
ded Lipschitz distance, the total variation distance, the Wasserstain distance, the relative
entropy and more general Rényi and Tsallis divergences. More precisely, given proba-
bility measures μ and ν on R

n , the bounded Lipschitz distance between μ and ν is
defined as

dBL(μ ,ν) = sup
‖g‖BL�1

∣∣∣∣
∫

gdμ −
∫

gdν
∣∣∣∣ ,

where for a function g : R
n → R ,

‖g‖BL = max

{
‖g‖∞, sup

x�=y

|g(x)−g(y)|
|x− y|

}
.

The total variation distance between μ and ν is defined as

dTV (μ ,ν) = 2 sup
A⊂Rn

|μ(A)−ν(A)|.

The p -th Wasserstein distance, p � 1, between μ and ν is defined as

Wp(μ ,ν) = inf
(X ,Y ) :X∼μ,Y∼ν

E[|X −Y |p] 1
p ,

where the infimum is taken over all joint random variables (X ,Y ) with marginal X
(resp. Y ) distributed according to μ (resp. ν ). The Rényi divergence of order p > 0
between a measure μ with density f (with respect to Lebesgue measure on R

n ) and ν
with density g is defined as

Dp(μ ||ν) =
1

p−1
log

(∫ (
f (x)
g(x)

)p

g(x)dx

)
.

This family of distances includes the relative entropy (or Kullback-Leibler distance)

D1(μ ||ν) = D(μ ||ν) =
∫

f (x) log

(
f (x)
g(x)

)
dx,

and is related to the family of Tsallis entropies

Tp(μ ||ν) =
1

p−1
(e(p−1)Dp(μ||ν)−1).

There are known relationships between these distances. For example,

dBL(μ ,ν) � min{dTV (μ ,ν),W1(μ ,ν)},

which follows from a dual representation of the total variation distance and Wasserstein
distance (see, e.g., [47], [40]), and

Wp(μ ,ν) � Wq(μ ,ν)
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for all p � q , by Hölder’s inequality. As for the entropic quantities, Gilardoni [30]
proved that for all p ∈ (0,1] ,

p
2

dTV (μ ,ν)2 � Dp(μ ||ν),

which extends a result of Pinsker [44] and Csiszár [20]. When ν = γn , the standard
Gaussian measure in R

n , Talagrand [46] proved that

W 2
2 (μ ,γn) � 2D(μ ||γn).

It turns out that Rényi divergences are comparable in the range (0,1) . For all 0 < p <
q < 1,

p(1−q)
(1− p)2 Dq(μ ||ν) � Dp(μ ||ν) � Dq(μ ||ν),

see, e.g., [22], [10]. The case p > 1 is more intricate. For example, consider a one-
dimensional exponential distribution μ , then, for any p > 1,

Dp(μ ,γ1) = +∞,

while D(μ ,γ1) < +∞ . Hence, even among log-concave distributions, there may not be
an absolute comparison between Rényi entropies of order p � 1. Additional assump-
tions are thus necessary. Nevertheless, for all 0 < p � q ,

Dp(μ ||ν) � Dq(μ ||ν),

and similarly for Tp (see [10]). Moreover, one clearly has

Dp(μ ||ν) � Tp(μ ||ν).

Classical counterexamples show that, in general, the above inequalities cannot be
reversed, and that there are no comparison between the total variation distance and the
Wasserstein distance. The goal of this article is to show that all of the above distances
are equivalent when restricted to the class of convex measures. In Section 2, we recall
the definition and the main properties of convex measures. Section 3, which contains
our main results, establishes a quantitative comparison between all aforementioned dis-
tances within the class of isotropic convex measures.

2. Preliminaries on convex measures

2.1. Definition

For a parameter α ∈ [−∞,+∞] , for real numbers a,b � 0, and λ ∈ [0,1] , denote

Mλ
α (a,b) =

⎧⎪⎪⎨
⎪⎪⎩

((1−λ )aα + λbα)
1
α if α /∈ {−∞,0,+∞}

min(a,b) if α = −∞
a1−λ bλ if α = 0
max(a,b) if α = +∞

.
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Recall that a random variable X in R
n with distribution μ is s-concave, s∈ [−∞,+∞] ,

if for all λ ∈ [0,1] , for all compact sets A,B ⊂ R
n such that μ(A)μ(B) > 0, one has

μ((1−λ )A+ λB) � Mλ
s (μ(A),μ(B)). (1)

The parameter s is understood as a convexity parameter. From the definition, one can
see by Jensen’s inequality that any s-concave measure is r -concave for all r � s . In
particular, any s-concave measure is −∞-concave. The class of −∞-concave measures
is called convex measures, and the class of 0-concave measures is called log-concave
measures. A function f : R

n → [0,+∞) is κ -concave, κ ∈ [−∞,+∞] , if for all λ ∈
[0,1] , for all x,y ∈ R

n such that f (x) f (y) > 0, one has

f ((1−λ )x+ λy) � Mλ
κ ( f (x), f (y)). (2)

The class of convex measures has been extensively studied by Borell in [15], [16]. In
particular, Borell proved that if X is not supported on a proper affine subspace of R

n ,
then X is s-concave, with s∈ [−∞, 1

n ] , if and only if X admits a density f with respect
to Lebesgue measure on R

n , which is κ -concave, with κ ∈ [− 1
n ,+∞] satisfying the

relation κ = s
1−sn . Moreover, if X is s-concave, then the random variable 〈X ,θ 〉 is

also s-concave, for all θ ∈ Sn−1 .

2.2. Concentration inequalities

Recall that a random variable X in R
n is isotropic if X is centered and if for all

θ ∈ Sn−1 ,
E[〈X ,θ 〉2] = 1.

The next two lemmas provide concentration and moments inequalities for s-concave
measures, and were established in [1]. First, recall that if X is s-concave, then E[|X |p] <
+∞ for all s > − 1

p (see [15]), where | · | denotes the Euclidean norm in R
n .

LEMMA 2.1. ([1, Corollary 5.4]) Let − 1
2 < s < 0 . Let X be an isotropic s-

concave random variable in R
n . Then, for all u > 0 ,

P(|X | � u) �
(

cmax{√n, 1
|s| }

u

) 1
2|s|

.

In particular, if s � − 1
2
√

n , then for every 6c
√

n � u � 3c
|s| ,

P(|X | � u) � e−c0u,

where c and c0 are universal positive constants.

LEMMA 2.2. ([1, Lemma 7.3]) Let p � 1 . Let − 1
p < s < 0 . Let X be an s-

concave random variable in R
n . Then, there is a universal constant c > 0 such that

E[|X |p] 1
p � cC(p,s)E[|X |],
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where

C(p,s) =

{
p for s > − 1

p+1
1

|s|1−
1
p (1−p|s|)

1
p

for − 1
p < s � − 1

p+1
. (3)

The next lemma provides bounds on the var-entropy of s-concave random vari-
ables, and was established in [27].

LEMMA 2.3. ([27]) Let κ ∈ (− 1
n ,+∞] . Let X be a random variable in R

n with
density f being κ -concave. Then,

Var(log( f (X))) �
n

∑
i=1

1
(1+ iκ)2 .

The next lemma is implicit in [28] and [26]. It is an extension of a result of
Grünbaum [31]. We include a proof for reader convenience.

LEMMA 2.4. Let s > −1 . Let X be an s-concave random variable in R . Then,

P(X � E[X ]) � (1+ s)−
1
s .

Proof. Assume s < 0, the argument for s � 0 is similar. Since X is s-concave,
−X is s-concave and therefore the cumulative distribution function of −X , F(x) =
P(−X � x) , x ∈ R , is s-concave. Therefore, Fs is convex. Denote by f the density of
−X . By Jensen’s inequality,

Fs(E[−X ]) = Fs
(∫

R

t f (t)dt

)
�
∫

R

Fs(t) f (t)dt =
Fs+1(x)
s+1

∣∣∣∣
x=+∞

x=−∞
=

1
1+ s

.

Equivalently, P(−X � E[−X ]) � (1+ s)−
1
s . �

2.3. Maximum of the density of convex measures

It is known that the density of a convex measure is bounded (see, e.g., [9]). This
section gathers and develops explicit bounds on the maximum of the density of isotropic
s-concave distributions. In dimension 1, there is the following bound.

LEMMA 2.5. ([3]) Let s ∈ (− 1
2 ,0) . Let X be an isotropic s-concave random

variable in R with density f . Then,

‖ f‖∞ � 1
1+2s

.

Next, we develop a multidimensional analog of Lemma 2.5.
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PROPOSITION 2.6. Let s ∈ (− 1
2 ,0) . Let X be an isotropic s-concave random

variable in R
n with density f . Then,

‖ f‖∞ � cn(1+n|s|)dn
0n

n
2 ,

where c > 0 is a universal constant and

d0 = d0(n,s) =
(1+n|s|)4(1+n|s|)

1+2s
. (4)

Proposition 2.6 extends [3, Theorem 9(e)] to the whole range s ∈ (− 1
2 ,0) and

provides a simpler estimate. Note that the constant d0 in Proposition 2.6 becomes
absolute when s > − c

n . The proof relies on the following lemma.

LEMMA 2.7. ([27]) Let s ∈ (−∞,0) . Let X be a random variable in R
n with

density f being κ -concave, with κ = s/(1−sn) . For any c0 ∈ (0,1) such that n log(c0)
< −∑n

i=1(1+ iκ)−1 , there exists c1 ∈ (0,1) such that

P( f (X) � cn
0‖ f‖∞) � 1− cn

1.

Proof of Proposition 2.6. The proof of Lemma 2.7 in [27] provides information
on the constant c1 . Precisely, one may take

c1 = cα
0

n

∏
i=1

(
1+ iκ

1+ iκ −α

) 1
n

, (5)

where α ∈ (0,1+nκ) satisfies

n

∑
i=1

1
1+ iκ −α

= −n log(c0).

Note that by the AM-GM inequality, and the simple inequality log(x) < 2
α xα/2 , for

x > 0, we have

c1 � cα
0

1
n

n

∑
i=1

1+ iκ
1+ iκ −α

� cα
0

1
n

n

∑
i=1

1
1+ iκ −α

= cα
0 log

(
1
c0

)
<

2
α

c
α
2
0 . (6)

Moreover, if α < 1+nκ
2 , then

− log(c0) =
1
n

n

∑
i=1

1
1+ iκ −α

� 1
1+nκ −α

<
2

1+nκ
.

We deduce that if − log(c0) � 2/(1+nκ) , then α � (1+nκ)/2. Now, choose

c0 =

(
1+nκ

4
(1+ s)−

1
s

2

) 4
1+nκ

, (7)
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and recall that κ = s
1−sn ∈ (− 1

n+2 ,0) and s ∈ (− 1
2 ,0) . Note that this choice of c0

satisfies 0 < c0 < 8−
4

1+nκ , therefore c0 ∈ (0,1) , − log(c0) � 2/(1+nκ) � 1
n ∑n

i=1(1+
iκ)−1 , and thus the corresponding α such that ∑n

i=1
1

1+iκ−α =−n log(c0) satisfies α �
(1+nκ)/2. Hence, recalling (5), we have by (6),

c1 <
2
α

c
α
2
0 � 4

1+nκ
c

1+nκ
4

0 =
(1+ s)−

1
s

2
. (8)

Now, consider the convex set

K = {x ∈ R
n : f (x) � cn

0‖ f‖∞},

where c0 is given in (7), and choose

c2 = (1+2s)
(1+ s)−

1
s

2
. (9)

We will prove that K ⊃ c2Bn
2 . For this, we follow [35]. Assume that K does not

contain c2Bn
2 . Since K is convex, this implies that there exists θ ∈ Sn−1 such that

K ⊂ {x ∈ R
n : 〈x,θ 〉 � c2} . Therefore, by Lemma 2.7 and (8),

P(〈X ,θ 〉 � c2) � P(X ∈ K) � 1− cn
1 � 1− c1 > 1− (1+ s)−

1
s

2
.

However, denoting by g the density of 〈X ,θ 〉 and recalling (9), we have by Lemmas
2.4 and 2.5,

P(〈X ,θ 〉 � c2) = P(〈X ,θ 〉 � 0)+P(0 � 〈X ,θ 〉 � c2)

� 1− (1+ s)−
1
s +‖g‖∞c2

� 1− (1+ s)−
1
s +

1
1+2s

c2

= 1− (1+ s)−
1
s

2
.

Hence, we have a contradiction. Therefore, K ⊃ c2Bn
2 . We deduce that

1 �
∫

K
f (x)dx � cn

0‖ f‖∞Vol(K) � cn
0‖ f‖∞cn

2Vol(Bn
2).

It remains to note that one may find a universal constant c > 0 such that

1
c0

� [c(1+n|s|)]4(1+n|s|),
1
c2

� c
1+2s

. � (10)
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2.4. L1 -regularization of the density of convex measures

The following proposition extends a result of Eldan and Klartag [23] to convex
measures. First, recall the density of a centered Gaussian in R

n with variance t2 ,
t > 0,

φt(x) =
1

(2πt2)
n
2
e−

|x|2
2t2 , x ∈ R

n. (11)

PROPOSITION 2.8. Let s ∈ (− 1
2 ,0) and let f be the density of an isotropic s-

concave measure in R
n . Recall the value of d0 in (4). Then, there is a universal

constant c > 0 such that for all t > 0 ,

‖ f − f ∗φt‖L1 � c1+n|s|d0tn. (12)

Proof. First, let us show that one may assume that f is of class C1 and strictly
positive on R

n . Since f is κ -concave, κ = s
1−sn < 0, we have that the function F = f κ

is convex. Define, for ε > 0, the Moreau envelope of F (also called infimum convolu-
tion),

Fε(x) = inf
y∈Rn

{
F(y)+

1
2ε

|x− y|2
}
, x ∈ R

n.

It is known that for all ε > 0, Fε is convex, of class C1 , and finite on R
n , and Fε ↗ F

pointwise as ε ↘ 0 (see, e.g., [43], [19], [33], [7]). Therefore, defining fε = F
1
κ

ε
gives rise of a family of κ -concave functions of class C1 , strictly positive on R

n , and
converging pointwise to f . Since fε � f1 for all ε ∈ (0,1) , if one can show that
f1 ∈ L1(dx) , then one may apply Lebesgue dominated convergence theorem to deduce
that fε converges to f in L1(dx) as ε → 0. This would conclude the argument that one
may restrict the proof to κ -concave density functions that are C1 and strictly positive
on R

n . To show that f1 ∈ L1(dx) , we use that since f is the density of an s-concave
measure,

f (x) � C

1+ |x|n− 1
s

, x ∈ R
n,

for some constant C > 0 (see, e.g., [9]). Therefore,

F1(x) = inf
y∈Rn

{
f κ (y)+

1
2
|x− y|2

}
� inf

y∈Rn

{
Cκ(1+ |y|n− 1

s )|κ | +
1
2
|x− y|2

}

� inf
y∈Rn

{ Cκ

21−|κ | (1+ |y|)+
1
2
|x− y|2

}

=
Cκ

21−|κ |
(
1+ inf

y∈Rn

{
|y|+ 1

2 Cκ

21−|κ|
|x− y|2

})
,

where the last inequality comes from concavity of x �→ x|κ | , as |κ | = |s|
1−sn < 1

n+2 < 1,

and (n− 1
s )|κ | = 1. We recognize the Moreau envelope of the Euclidean norm, which
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is known to be the Huber function (see, e.g., [7, Chapter 6]), namely

inf
y∈Rn

{
|y|+ 1

2 Cκ

21−|κ|
|x− y|2

}
= Hλ (|x|),

with λ = Cκ

21−|κ| , where, for r � 0,

Hλ (r) =

{
r− λ

2 r > λ
1
2λ r2 r � λ

.

Finally,

f1(x) = F
1
κ

1 (x) � 2
1−|κ|
|κ| C

(1+Hλ (|x|)) 1
|κ|

,

which is an integrable function since 1
|κ | > n .

Now, let us prove inequality (12) for C1 and strictly positive κ -concave functions,
κ = s

1−sn . For this, we follow [23]. Recall from the proof of Proposition 2.6 that the
set

K = {x ∈ R
n : f (x) � cn

0‖ f‖∞}
contains c2Bn

2 , where c0 is defined in (7) and c2 in (9). Denoting F = f κ , we have
that F is convex and thus for all x,y ∈ R

n ,

〈∇F(x),y〉 � 〈∇F(x),x〉+F(y)−F(x).

Taking y = c2∇F(x)/|∇F(x)| when |∇F(x)| �= 0, we deduce that for all x ∈ R
n ,

c2|∇F(x)| � 〈∇F(x),x〉+ sup
|y|�c2

F(y)− inf
x∈Rn

F(x) � 〈∇F(x),x〉+ sup
y∈K

F(y)− inf
x∈Rn

F(x).

Therefore,
c2|κ ||∇ f (x)| � κ〈∇ f (x),x〉+ f 1−κ(x)‖ f‖κ

∞(cnκ
0 −1).

Hence, for all x ∈ R
n ,

|∇ f (x)| � − 1
c2
〈∇ f (x),x〉+ f (x)

cnκ
0 −1
c2|κ | .

Integrating the above inequality and using an integration by parts, we obtain

∫
Rn

|∇ f (x)|dx � n
c2

(
1+

cnκ
0 −1
n|κ |

)
� n

c0c2
.

We conclude by using the estimate (10) and the following particular case of a result of
Ledoux [36] (valid for all C1 functions),

‖ f − f ∗φt‖L1 � 2t
∫

Rn
|∇ f (x)|dx. �
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3. Main results and proofs

First, we introduce the next elementary lemma, which will be implicitly used.

LEMMA 3.1. Let A,B,m, p,M > 0 . Define F(t) = Atm + B
t p . Then,

inf
t�M

F(t) = A
p

m+p B
m

m+p

⎛
⎝max

{
A
B

Mm+p,
p
m

} m
m+p

+
1

max
{

A
BMm+p, p

m

} p
m+p

⎞
⎠ .

Proof. The infimum is attained at t = max

{
M,
(

B
A

p
m

) 1
m+p

}
. �

The first theorem provides quantitative reversal bounds between total variation
distance and bounded Lipschitz distance.

THEOREM 3.2. Let s ∈ (− 1
2 ,0) . Let μ and ν be s-concave isotropic probability

measures on R
n . Then, there exists a universal constant c > 0 such that

dTV (μ ,ν) � c1+n|s| (1+n|s|)2(1+n|s|)
√

1+2s

√
n
√

dBL(μ ,ν).

Proof. Similarly as in [40], let g be a continuous function with ‖g‖∞ � 1. For
t > 0, let gt = g ∗ φt , where φt is defined in (11). Note that ||gt ||∞ � 1 and that gt is
1/t -Lipschitz. By triangle inequality,∣∣∣∣

∫
gdμ −

∫
gdν

∣∣∣∣�
∣∣∣∣
∫

(g−gt)dμ
∣∣∣∣+

∣∣∣∣
∫

(g−gt)dν
∣∣∣∣+

∣∣∣∣
∫

gtdμ −
∫

gtdν
∣∣∣∣ .

Denote by f the density of μ . By Proposition 2.8, we have∣∣∣∣
∫

(g−gt)dμ
∣∣∣∣=

∣∣∣∣
∫

g( f − f ∗φt)dx

∣∣∣∣� || f − f ∗φt ||1 � 2tn
c0c2

.

Similarly, ∣∣∣∣
∫

(g−gt)dν
∣∣∣∣� 2tn

c0c2
.

Finally, ∣∣∣∣
∫

gtdμ −
∫

gtdν
∣∣∣∣� dBL(μ ,ν)||gt ||BL � dBL(μ ,ν)max(1,1/t).

Combining the above estimates, taking the supremum over all such g , and using the
dual representation

dTV (μ ,ν) = sup

{∣∣∣∣
∫

gdμ −
∫

gdν
∣∣∣∣ : g ∈C(Rn), ‖g‖∞ � 1

}
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of total variation distance (see, e.g., [40]), we deduce

dTV (μ ,ν) � dBL(μ ,ν)max(1,1/t)+
4n

c0c2
t

for every t > 0. To conclude, choose

t =

√
dBL(μ ,ν)

4n
c0c2

,

and note that t � 1 since c0,c2 ∈ (0,1) and dBL(μ ,ν) � 2, then apply (10). �

REMARK 3.3. We recover the result of [40] for log-concave measures by letting
s → 0 in Theorem 3.2.

Next, we provide a comparison between 1-Wasserstein distance and bounded Lip-
schitz distance.

THEOREM 3.4. Let s ∈ (− 1
2 ,0) . Let μ and ν be isotropic s-concave probability

measures on R
n . Then, there exists a universal constant c > 0 such that

W1(X ,Y ) � c
√

nmax
{

1,
1√
n|s|

} 1
1+4|s|

dBL(X ,Y )
1

1+4|s| .

Proof. We follow [40]. First, recall the representation

W1(μ ,ν) = sup
g

∣∣∣∣
∫

gdμ −
∫

gdν
∣∣∣∣ , (13)

where the supremum is over 1-Lipschitz functions g : R
n → R (see, e.g., [47]). Let

g : R
n → R be a 1-Lipshitz function. Assume without loss of generality that g(0) = 0.

For R > 0, define

gR(x) =

⎧⎨
⎩

−R if g(x) < −R
g(x) if −R � g(x) � R
R if g(x) > R

.

By construction, we have
‖gR‖BL � max{1,R}. (14)

Note that

E[|g(X)−gR(X)|] = E[(g(X)−R)1{g(X)>R}]−E[(g(X)+R)1{g(X)<−R}]

� E[|g(X)|1{|g(X)|>R}].

Since |g(X)| � |X | , we deduce by Cauchy-Schwarz that

E[|g(X)−gR(X)|] � E[|X |1{|X |>R}] �
√

E[|X |2]
√

P(|X | > R).
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Using that X is isotropic and applying Lemma 2.1, there exists a universal constant
c > 0 such that

E[|g(X)−gR(X)|] � √
n

(
cmax{√n, 1

|s| }
R

) 1
4|s|

.

The same inequality holds for E[|g(Y )−gR(Y )|] . We deduce that

|E[g(X)]−E[g(Y)]| � |E[gR(X)]−E[gR(Y )]|+2
√

n

(
cmax{√n, 1

|s| }
R

) 1
4|s|

.

Using the fact that |E[gR(X)]−E[gR(Y )]| � ‖gR‖BLdBL(X ,Y ) , we arrive at

|E[g(X)]−E[g(Y)]| � ‖gR‖BLdBL(X ,Y )+2
√

n

(
cmax{√n, 1

|s| }
R

) 1
4|s|

. (15)

Taking supremum over all 1-Lipschitz function g , using (14) and the representation
(13), inequality (15) leads to

W1(X ,Y ) � max{1,R}dBL(X ,Y )+2
√

n

(
cmax{√n, 1

|s| }
R

) 1
4|s|

. (16)

Note that there exists a universal constant c > 0 such that

dBL(X ,Y ) � 2 � 1
4|s|2

√
n

(
cmax

{√
n,

1
|s|
}) 1

4|s|
,

therefore, taking supremum over all R � 1 in (16), we deduce from Lemma 3.1 that
there is a universal constant c > 0 such that

W1(X ,Y ) � dBL(X ,Y )
1

1+4|s|

(
2
√

n

(
cmax

{√
n,

1
|s|
}) 1

4|s|
) 4|s|

1+4|s|

×
⎡
⎣( 1

4|s|
) 4|s|

1+4|s|
+(4|s|) 1

1+4|s|

⎤
⎦ .

The result follows since m− m
1+m +m

1
1+m � 2, with m = 4|s| > 0. �

REMARK 3.5. As s→ 0, the constant in the right-hand side of Theorem 3.4 blows
up to +∞ . One may recover the result of [40] for log-concave measures as s → 0 by
applying the second part of Lemma 2.1. The details are left to the readers.

The following theorem establishes a comparison between Wasserstein distances.
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THEOREM 3.6. Let 1 � p < q and α ∈ (1,2] . Let s ∈ (− 1
αq ,0) . Let μ and ν be

isotropic s-concave probability measures on R
n . Then, there is an absolute constant

c > 0 such that

Wq(μ ,ν) � c
(
C(αq,s)

√
n
) 2|s|α′(q−p)

1+2|s|α′(q−p)

(
max

{√
n,

1
|s|
}) q−p

q(1+2|s|α′(q−p))

×Wp(μ ,ν)
p
q

1
1+2|s|α′(q−p) ,

where

C(αq,s) =

{
αq for s > − 1

αq+1
1

|s|1−
1

αq (1−αq|s|)
1

αq
for − 1

αq < s � − 1
αq+1

.

Here α ′ = α
α−1 denotes the Hölder conjugate of α .

Proof. We follow [40] with the necessary modifications. Let X and Y be dis-
tributed according to μ and ν respectively. Note that for all R > 0,

E[|X −Y |q] = E[|X −Y |q1{|X−Y |�R}]+E[|X −Y |q1{|X−Y |>R}].

On one hand,
E[|X −Y |q1{|X−Y |�R}] � Rq−p

E[|X −Y |p]. (17)

On the other hand, by Hölder’s inequality,

E[|X −Y |q1{|X−Y |>R}] � E[|X −Y |αq]
1
α P(|X −Y | > R)

1
α′ . (18)

Since P(|X −Y | > R) � P(|X | > R/2)+P(|Y | > R/2) , Lemma 2.1 implies that there
is a universal constant c > 0 such that

P(|X −Y | > R) � 2

(
2cmax(

√
n, 1

|s| )

R

) 1
2|s|

. (19)

By isotropicity of X and Lemma 2.2, there is a universal constant c > 0 such that

E[|X −Y |αq]
1
α �

(
E[|X |αq]

1
αq +E[|Y |αq]

1
αq

)q
�
(
cC(αq,s)

√
n
)q

. (20)

Combining (17), (18), (19) and (20), we obtain

E[|X −Y |q] � Rq−p
E[|X −Y |p]+2

1
α′

(
2cmax(

√
n, 1

|s|)

R

) 1
2|s|α′ (

cC(αq,s)
√

n
)q

.

Taking infimimum over all coupling results in

Wq(μ ,ν)q � inf
R>0

⎡
⎣Rq−pWp(μ ,ν)p +2

1
α′

(
2cmax(

√
n, 1

|s| )

R

) 1
2|s|α′ (

cC(αq,s)
√

n
)q⎤⎦ .
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By Lemma 3.1, we deduce that

Wq(μ ,ν)q �Wp(μ ,ν)
p

1+2|s|α′(q−p)

(
2

1
α′ (2cmax{√n,

1
|s| })

1
2|s|α′ [cC(αq,s)

√
n]q
) q−p

1
2|s|α′ +q−p

×
[(

1
2|s|α ′(q− p)

) q−p
1

2|s|α′ +q−p
+
(
2|s|α ′(q− p)

) 1
1+2|s|α′(q−p)

]
.

We conclude by using the fact that m− m
1+m + m

1
1+m � 2, with m = 2|s|α ′(q− p) >

0. �

REMARK 3.7. Similarly as in Remark 3.5, as s → 0, the constant in the right-
hand side of Theorem 3.6 blows up to +∞ , and one needs to apply the second part of
Lemma 2.1 to recover the result for log-concave measures. We do not know whether
Theorem 3.6 is valid when s is in a neighborhood of − 1

q .

We now discuss entropic distances. In general, one cannot compare the relative
entropy D(μ ||ν) and, say, dTV (μ ,ν) , for arbitrary s-concave measures μ ,ν , since
dTV (μ ,ν) � 2 while D(μ ||ν) = +∞ if μ is not absolutely continuous with respect to
ν . Next, we establish quantitative comparisons for relative entropy and more general
Rényi divergences when ν = γn the standard Gaussian measure in R

n . The quantity
D(μ ||γn) is of fundamental importance as it is strongly related to the hyperplane con-
jecture (see, e.g., [11], [39], [13]) and to the entropic Central Limit Theorem (see, e.g.,
[5], [2], [24]). The following result provides a comparison between the relative entropy
and total variation distance.

THEOREM 3.8. Let α ∈ (1,2] . Let s ∈ (− 1
2α ,0) . Let μ be an isotropic s-

concave probability measure in R
n , and let γn denote the standard Gaussian distri-

bution in R
n . Then, there is a universal constant c > 0 such that

D(μ ||γn) � cn(1+n|s|) log(α ′n)

(1−2α|s|)
4|s|(α′−1)
1+4|s|α′

max

(
1,

1√
n|s|

) 2
1+4|s|α′

×
(

dTV (μ ,γn)
1

1+4|s|α′ +dTV (μ ,γn)
)

,

where α ′ = α
α−1 denotes the Hölder conjugate of α .

Proof. We follow [40] but correct a mistake in their original argument. Let us
denote by f the density of μ and denote

φ(x) = (2π)−
n
2 e−

|x|2
2 , x ∈ R

n,

the density of the standard Gaussian measure γn in R
n . Denote by Z a random variable

with density φ , by Y a random variable with density f , and denote

X =
f (Z)
φ(Z)

, W =
f (Y )
φ(Y )

.
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Note that

E[X log(X)] = E

[
f (Z)
φ(Z)

log

(
f (Z)
φ(Z)

)]
=
∫

f (x) log

(
f (x)
φ(x)

)
dx = D(μ ||γn). (21)

It is classical that if μ and ν have densities u and v respectively (with respect to
Lebesgue measure), then dTV (μ ,ν) =

∫ |u− v|dx , therefore

dTV (μ ,γn) =
∫
| f (x)−φ(x)|dx = E[|X −1|] = 2E[(X −1)1{X�1}], (22)

where we use E[X ] = 1 in the last equality. Now, consider the function h(x) = x log(x)
on [0,+∞) . Since h is convex and h(1) = 0, we have for all 1 � x � R ,

h(x) � h(R)
R−1

(x−1).

Hence, if R � 2, then for all 1 � x � R , x log(x) � 2log(R)(x− 1) . Therefore, using
(21) and (22),

D(μ ||γn) = E[X log(X)] � E[X log(X)1{1�X�R}]+E[X log(X)1{X>R}]
� 2log(R)E[(X −1)1{1�X�R}]+E[X log(X)1{X>R}]
� log(R)dTV (μ ,γn)+E[X log(X)1{X>R}]. (23)

Since W = f (Y )/φ(Y ) , we have

E[X log(X)1{X>R}] =
∫

f (x) log

(
f (x)
φ(x)

)
1{ f>Rφ}(x)dx

= E[log(W )1{W>R}]

� E[| log(W )|α ]
1
α P(W > R)1− 1

α , (24)

where the last inequality follows from Hölder’s inequality. Next, we are going to upper
bound the term E[| log(W )|α ]1/α . Note that

E[| log(φ(Y ))|α ]
1
α � n

2
log(2π)+

1
2

E[|Y |2α ]
1
α .

Since Y is isotropic, we deduce by Lemma 2.2 that there exists a universal constant
c > 0 such that

E[| log(φ(Y ))|α ]
1
α � cn

(1−2α|s|) 1
α

. (25)

On the other hand, by Hölder’s inequality and Lemma 2.3,

E[| log( f (Y ))|α ]
2
α � E[log2( f (Y ))] = Var(log( f (Y )))+E[log( f (Y ))]2

� n
(1+nκ)2 +h(Y )2, (26)

where κ = s
1−sn , and h(Y ) = E[− log( f (Y ))] is the differential entropy of Y .
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Here, we correct a mistake from [40], where it is claimed that the inequality
h(Y ) � 0 holds for isotropic log-concave Y , which is being used to obtain an upper
bound on h(Y )2 . This is inaccurate, and in fact, the inequality h(Y ) � 0 would imply
the hyperplane conjecture (see, e.g., [11], [39], [13]).

Since Gaussians maximize the entropy when fixing the covariance matrix, we have

h(Y ) � n
2

log(2πe). (27)

On the other hand, by Proposition 2.6, there is a universal constant c > 0 such that

‖ f‖∞ � cn(1+n|s|)dn
0nn/2, (28)

where d0 is defined in (4), hence

h(Y ) = E[− log( f (Y ))] � −n
2

log(c2(1+n|s|)d2
0 n). (29)

Since s > − 1
2α , we have

d0 � α ′(1+n|s|)4(1+n|s|), (30)

therefore, combining (27) with (29), we deduce the existence of an absolute c > 0 such
that

h(Y )2 � cn2(1+n|s|)2 log(α ′n)2,

where α ′ is the Hölder conjugate of α . In particular, there should be an extra log(n)
factor in the proof of [40, Proposition 7]. Recalling (26), we deduce that

E[| log( f (Y ))|α ]
1
α � cn(1+n|s|) log(α ′n), (31)

for some absolute constant c > 0. Therefore, combining (25) and (31),

E[| log(W )|α ]
1
α � c

(1−2α|s|) 1
α

n(1+n|s|) log(α ′n), (32)

for some absolute constant c > 0. It remains to upper bound P(W > R) . By Lemma 2.1
and (28), there is a universal constant c > 0 such that for all R � cn(1+n|s|)dn

0(2πn)
n
2 ,

P(W > R) � P

(
(2π)

n
2 e

|Y |2
2 >

R

cn(1+n|s|)dn
0n

n
2

)

= P

⎛
⎝|Y | >

√√√√2log

(
R

cn(1+n|s|)dn
0(2πn)

n
2

)⎞⎠

�

⎡
⎢⎢⎢⎢⎣

cmax{√n, 1
|s| }√

2log

(
R

cn(1+n|s|)dn
0(2πn)

n
2

)
⎤
⎥⎥⎥⎥⎦

1
2|s|

. (33)
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Finally, combining (23), (24), (32) and (33), there is an absolute constant c > 0 such
that for all R � cn(1+n|s|)dn

0(2πn)
n
2 ,

D(μ ||γn) � log(R)dTV (μ ,γn)+E[| log(W )|α ]
1
α P(W > R)

1
α′

� log(R)dTV (μ ,γn)+
cn(1+n|s|) log(α ′n)

(1−2α|s|) 1
α

(
cmax{√n, 1

|s| }
) 1

2|s|α′

log

(
R

cn(1+n|s|)dn
0(2πn)

n
2

) 1
4|s|α′

= At +AM +
B
t p ,

where

A = dTV (μ ,γn), t = log

(
R

cn(1+n|s|)dn
0(2πn)

n
2

)
, M = log(cn(1+n|s|)dn

0(2πn)
n
2 ),

B =
cn(1+n|s|) log(α ′n)

(1−2α|s|) 1
α

(
cmax

{√
n,

1
|s|
}) 1

2|s|α′
, p =

1
4|s|α ′ .

Minimizing over R > cn(1+n|s|)dn
0(2πn)

n
2 , or, equivalently, over t > 0, we have by

Lemma 3.1,

D(μ ||γn) � A
p

p+1 B
1

p+1

(
p

1
p+1 +

(
1
p

) p
1+p
)

+AM,

and the result follows using (30). �
We do not know whether Theorem 3.8 holds when s is in a neighborhood of

− 1
2 with a rate of convergence independent of α . Nonetheless, under an exponential

moment assumption and a weaker rate of convergence, one may provide a comparison
(dependent on the exponential moment) between more general Rényi divergences and
total variation distance for s ∈ (− 1

2 ,0) . This is the aim of the next theorem.

THEOREM 3.9. Let s ∈ (− 1
2 ,0) . Let μ be an isotropic s-concave probability

measure on R
n , and let γn denote the standard Gaussian distribution on R

n . Let
p > 1 and α ∈ (1,2] . Under the moment assumption

M =
∫

e
|x|2
2 α(p−1)dμ(x) < +∞,

we have, denoting dTV = dTV (μ ,γn) ,

Tp(μ ||γn)�

(
cn(1+n|s|)dn

0n
n
2

)p−1

p−1

⎡
⎢⎢⎢⎣
√

dTV +d2
TV +M

1
α

⎛
⎜⎜⎝c

√
p−1max{√n, 1

|s| }√
log

(
1+ 1

dTV

)
⎞
⎟⎟⎠

1
2|s|α′

⎤
⎥⎥⎥⎦ ,

where c > 0 is an absolute constant and d0 is defined in (4).
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Proof. Recall the definition of the Tsallis entropy of order p > 1 of Y with density
f and Z with density φ ,

Tp(Y ||Z) =
1

p−1

[∫
f (x)p

φ(x)p−1 dx−1

]
.

Denote, as in the proof of Theorem 3.8,

X =
f (Z)
φ(Z)

, W =
f (Y )
φ(Y )

.

We have, for R � 1,

(p−1)Tp(Y ||Z) = E[X p−1] � E[(X p −1)1{1�X�R}]+E[(X p−1)1{X>R}].

Note that the function h(x) = xp − 1 is convex, and h(1) = 0, therefore, we have that
for all 1 � x � R ,

h(x) � h(R)
R−1

(x−1).

Hence, for all R � 2, recalling (22),

E[(X p−1)1{1�X�R}] � 2
Rp−1

R
E[(X −1)1{1�X�R}] � Rp−1dTV (μ ,γn).

On the other hand,

E[X p1{X>R}] = E[W p−11{W>R}] � E[Wα(p−1)]
1
α P(W > R)

α−1
α .

Using Proposition 2.6, we have for some absolute constant c > 0,

E[W α(p−1)]
1
α = E

[(
f (Y )
φ(Y )

)α(p−1)
] 1

α

�
(
cn(1+n|s|)dn

0n
n
2

)p−1
E[e

|Y |2
2 α(p−1)]

1
α ,

and by (33), we have for all R > cn(1+n|s|)dn
0(2πn)

n
2 ,

P(W > R) �

⎡
⎢⎢⎢⎢⎣

cmax{√n, 1
|s| }√

2log

(
R

cn(1+n|s|)dn
0(2πn)

n
2

)
⎤
⎥⎥⎥⎥⎦

1
2|s|

.

Hence,

(p−1)Tp(Y ||Z) � Rp−1 dTV (μ ,γn)+
A

log

(
R

cn(1+n|s|)dn
0(2πn)

n
2

) 1
4|s|α′

,



STATISTICAL DISTANCES FOR ISOTROPIC CONVEX MEASURES 899

where

A =
(
cn(1+n|s|)dn

0n
n
2

)p−1
E[e

|Y |2
2 α(p−1)]

1
α

(
cmax

{√
n,

1
|s|
}) 1

2|s|α′
.

It remains to choose

R = cn(1+n|s|)dn
0(2πn)

n
2

(
1+

1
dTV (μ ,γn)

) 1
2(p−1)

. �

Let us comment on the moment assumption in Theorem 3.9. It was shown in [10]
that the assumption Tp(Y ||Z) < +∞ , p > 1, implies that Y has moments of all orders,
and in fact

E[ec |Y |2
2 ] < +∞,

for all c < p−1
p . On the other hand, note that if Y has a bounded density, which is the

case if Y is s-concave, then the assumption

E[e
|Y |2
2 (p−1)] < +∞,

implies that Tp(X ||Z) < +∞ .
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