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Abstract. We introduce the multivariate analogue of the well known inequality 1+ x � ex , for
an abstract non negative real number x . The result emerges from the study of the blow up time
of certain solutions of the Cauchy problem for a particular ODE. It is also closely related to the
notion of completely monotone functions and the theory of divided differences.

1. Introduction

The basic inequality
1+ x � ex, (1)

where x is a non negative real number, is common in estimations and useful in appli-
cations, especially for (relatively) small values of x .

To the best of the authors’ knowledge, there is no multivariate analogue of (1).
The establishment of such a generalization is the aim of this short note. In particular,
we show that

n

∏
i=1

(1+ xi)
ai � e

1
n

n
∏
i=1

xi
, (2)

where x1, . . . ,xn are pairwise distinct non negative real numbers and

ai :=

n
∏
j=1
j �=i

x j

n
∏
j=1
j �=i

(x j − xi)
.
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We make the standard empty product convention, hence (2) becomes (1) when n = 1.
Moreover, we show that the equality in (2) holds only for the case when one xi equals
zero.

Unlike (1), (2) can not be extended in the whole euclidean space, e.g., when n = 2,
(2) is not defined for (x1,x2) = (2,−2) , it is not well defined for (0,−1) , and it does
not hold for

(
1,− 1

2

)
or
(− 1

4 ,− 1
2

)
.

The generalized inequality (2) naturally emerges from the study of a specific au-
tonomous ODE Cauchy problem. Such an ODE Cauchy problem is fundamental in
Mathematical Biology, particularly for the study of one species growth in population
dynamics. Knowing (2), a straightforward way can be employed for its demonstration.
However, such a way is far from being elementary since it requires both the concept of
completely monotone functions and the mean value theorem for divided differences.

In the present short note, we work as follows: In Section 2 we employ the ODE
approach, i.e. we briefly study the corresponding Cauchy problem in order to show the
existence of solutions that blow up in (finite) time (Section 2.1) and we then proceed by
proving (2), while we scrutinize the bound of the blow up time of the aforementioned
solutions (Section 2.2). The straightforward path is followed in Section 3, where we
first present the preliminaries (Section 3.1), based upon which we obtain the desired
inequality (Section 3.2). We conclude our analysis with Section 4, where we further
generalize (2) in order to allow repetitions.

2. The ODE approach

2.1. The springboard

We consider the autonomous ODE Cauchy problem⎧⎨
⎩

dy
dt

(t) = f (y(t)) := (−1)n+1y(t)
n
∏
i=1

(
1− 1

ki
y(t)
)

y(0) = y0,
(3)

where k1, . . . ,kn are pairwise distinct positive real numbers in ascending order. The
standard logistic model, and the logistic model with strong Allee effect, see, e.g., [3],
are well known representatives of (3) for n = 1 and n = 2, respectively.

From the classic theory concerning Cauchy problems for ODEs (see, e.g., [2]), we
can easily deduce existence of a unique smooth maximal solution of (3),

y : (−ε1,ε2) → R, where ε1,2 ∈ (0,∞] ,

that depends smoothly on the problem’s data.
From the phase line, which is depicted in Figure 1, we get that

• the sets

(−∞,0) , {0} , (0,k1) , {k1} , (k1,k2) , . . . ,(kn−1,kn) , {kn} , (kn,∞)

are (time) invariant, for which we have also utilized the uniqueness of y , and
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Figure 1: Phase line of (3).

• y is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

negatively global (in time), when y0 < 0 and n ≡ 1 mod 2

positively global, when y0 < 0 and n ≡ 0 mod 2

positively global, when y0 > kn

global, when y0 ∈ [0,kn] .

It is only left to check the behavior of y when

1.

y0 < 0 and

{
t → ε2

−, when n ≡ 1 mod 2

t →−ε1
+, when n ≡ 0 mod 2

2.

y0 > kn and t →−ε1
+,

in order to close the qualitative analysis of (3).

1. If y0 < 0 we split our analysis in two cases:

(a) If n ≡ 1 mod 2, then y(t) < 0 and f (y(t)) < 0 ∀t ∈ (−ε1,ε2) , as well as
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y is monotonically decreasing. We then have

t =
t∫

0

dx =
y0∫

y(t)

∣∣∣∣ 1
f (x)

∣∣∣∣dx =
y0∫

y(t)

− 1
f (x)

dx =
y0∫

y(t)

− 1

(−1)n+1x
n
∏
i=1

(
1− 1

ki
x
)dx

=
y0∫

y(t)

n
∏
i=1

ki

−x
n
∏
i=1

(ki − x)
dx, ∀t ∈ (0,ε2) .

Hence

ε2 =
y0∫

−∞

n
∏
i=1

ki

−x
n
∏
i=1

(ki − x)
dx =

y0∫
−∞

n
∏
i=1

ki

(−x)n+1 n
∏
i=1

(
1− ki

x

)dx, (4)

since y is maximal. Now, from the inequalities

n
∏
i=1

ki

(−x)n+1 > 0 and 0 <
1

n
∏
i=1

(
1− ki

x

) < 1, ∀x < y0, (5)

we get the bound

ε2 <

y0∫
−∞

n
∏
i=1

ki

(−x)n+1 dx =

n
∏
i=1

ki

n(−y0)
n < ∞, (6)

i.e., y blows up in the future.

(b) If n ≡ 0 mod 2, then y(t) < 0 and f (y(t)) > 0 ∀t ∈ (−ε1,ε2) , as well as
y is monotonically increasing. We then have

−t =
0∫

t

dx =
y0∫

y(t)

∣∣∣∣ 1
f (x)

∣∣∣∣dx =
y0∫

y(t)

1
f (x)

dx =
y0∫

y(t)

1

(−1)n+1x
n
∏
i=1

(
1− 1

ki
x
)dx

=
y0∫

y(t)

n
∏
i=1

ki

−x
n
∏
i=1

(ki − x)
dx, ∀t ∈ (−ε1,0) .

Hence

ε1 =
y0∫

−∞

n
∏
i=1

ki

−x
n
∏
i=1

(ki − x)
dx =

y0∫
−∞

n
∏
i=1

ki

(−x)n+1 n
∏
i=1

(
1− ki

x

)dx, (7)
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since y is maximal. Inequalities (5) hold here also, thus we get the bound

ε1 <

y0∫
−∞

n
∏
i=1

ki

(−x)n+1 dx =

n
∏
i=1

ki

n(−y0)
n < ∞, (8)

i.e. y blows up in the past.

2. If y0 > kn , then y(t) > kn and f (y(t)) < 0 ∀t ∈ (−ε1,ε2) , as well as y is mono-
tonically decreasing. We then have

−t =
0∫

t

dx =

y(t)∫
y0

∣∣∣∣ 1
f (x)

∣∣∣∣dx =

y(t)∫
y0

− 1
f (x)

dx =

y(t)∫
y0

− 1

(−1)n+1x
n
∏
i=1

(
1− 1

ki
x
)dx

=

y(t)∫
y0

n
∏
i=1

ki

x
n
∏
i=1

(x− ki)
dx, ∀t ∈ (−ε1,0) .

Hence

ε1 =
∞∫

y0

n
∏
i=1

ki

x
n
∏
i=1

(x− ki)
dx =

∞∫
y0

n
∏
i=1

ki

xn+1
n
∏
i=1

(
1− ki

x

)dx, (9)

since y is maximal. Now, from the inequalities

n
∏
i=1

ki

xn+1 > 0 and 0 <
1

n
∏
i=1

(
1− ki

x

) <
1

n
∏
i=1

(
1− ki

y0

) , ∀x > y0,

we get the bound

ε1 <

∞∫
y0

n
∏
i=1

ki

xn+1
n
∏
i=1

(
1− ki

y0

)dx =

n
∏
i=1

ki

ny0
n

n
∏
i=1

(
1− ki

y0

) < ∞, (10)

i.e. y blows up in the past.

2.2. Derivation of the main result

With (4), (7) and (9) at hand, we proceed to the calculation of the exact blow up
time of the pair of families of extreme solutions of (3), i.e. for y0 < 0 and y0 > kn .

First, we notice that the functions inside the integrals in the aforementioned rela-
tions need to be further analyzed:
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1. We employ the partial fraction decomposition to write

n
∏
i=1

ki

−x
n
∏
i=1

(ki − x)
=

A
−x

+
n

∑
i=1

Ai

ki− x
, ∀x < y0 < 0. (11)

For the calculation of the coefficients A,A1, . . . ,An we study the consequent
equality

n

∏
i=1

ki = A
n

∏
i=1

(ki − x)− x
n

∑
i=1

Ai

n

∏
j=1
j �=i

(k j − x), ∀x ∈ R. (12)

We set x = 0 in (12) to get A = 1. Moreover, we eliminate the coefficient of xn

in the right hand side of (12) to have

(−1)n

(
A+

n

∑
i=1

Ai

)
= 0 ⇒

n

∑
i=1

Ai = −1.

Then, we fix an i0 ∈ {1, . . . ,n} and we set x = ki0 in (12) to get

n

∏
i=1

ki = −ki0

n

∑
i=1

Ai

n

∏
j=1
j �=i

(
k j − ki0

)
= −ki0Ai0

n

∏
j=1
j �=i0

(
k j − ki0

)⇒ Ai = −

n
∏
j=1
j �=i

k j

n
∏
j=1
j �=i

(k j − ki)
.

2. In an analogous manner, we write

n
∏
i=1

ki

x
n
∏
i=1

(x− ki)
=

B
x

+
n

∑
i=1

Bi

x− ki
, ∀x > y0 > kn, (13)

and its consequent equality

n

∏
i=1

ki = B
n

∏
i=1

(x− ki)+ x
n

∑
i=1

Bi

n

∏
j=1
j �=i

(x− k j), ∀x ∈ R.

Dealing as above, we get

B = (−1)n, Bi =

n
∏
j=1
j �=i

k j

n
∏
j=1
j �=i

(ki− k j)
= (−1)nAi and

n

∑
i=1

Bi = (−1)n
n

∑
i=1

Ai = (−1)n+1.



A NOTE ON THE MULTIVARIATE GENERALIZATION OF A BASIC SIMPLE INEQUALITY 919

Second, we employ (11) and (13) to calculate ε2 or ε1 and ε1 , respectively:

1. If y0 < 0, we then have

y0∫
−∞

n
∏
i=1

ki

−x
n
∏
i=1

(ki − x)
dx =

y0∫
−∞

1
−x

+
n

∑
i=1

Ai

ki − x
dx =

∞∫
−y0

1
x

+
n

∑
i=1

Ai

ki + x
dx

= lim
x→∞

ln

(
x

n

∏
i=1

(ki + x)Ai

)
− ln

(
−y0

n

∏
i=1

(ki− y0)
Ai

)
.

Besides,

ln

(
x

n

∏
i=1

(ki + x)Ai

)
= ln

(
x
1+

n
∑
i=1

Ai
n

∏
i=1

(
ki

x
+1

)Ai
)

= ln

(
n

∏
i=1

(
ki

x
+1

)Ai
)

,

hence
y0∫

−∞

n
∏
i=1

ki

−x
n
∏
i=1

(ki − x)
dx = ln

(
n

∏
i=1

(
1+

ki

−y0

)−Ai
)

and so

ln

(
n

∏
i=1

(
1+

ki

−y0

)−Ai
)

=

{
ε2, if n ≡ 1 mod 2

ε1, if n ≡ 0 mod 2.
(14)

2. Analogously, if y0 > kn , then

∞∫
y0

n
∏
i=1

ki

x
n
∏
i=1

(x− ki)
dx =

∞∫
y0

(−1)n

x
+

n

∑
i=1

Bi

x− ki
dx

= lim
x→∞

ln

(
x(−1)n

n

∏
i=1

(x− ki)Bi

)
− ln

(
y0

(−1)n
n

∏
i=1

(y0− ki)Bi

)
.

Since

ln

(
x(−1)n

n

∏
i=1

(x− ki)Bi

)
= ln

(
x
(−1)n+

n
∑

i=1
Bi

n

∏
i=1

(
1− ki

x

)Bi
)

= ln

(
n

∏
i=1

(
1− ki

x

)Bi
)

,

we have

ε1 = ln

(
n

∏
i=1

(
1− ki

y0

)−Bi
)

. (15)
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Now, all we have to do is to combine (6) and (8) with (14), as well as (10) with
(15), to derive (2):

1. For y0 < 0 we have

ln

(
n

∏
i=1

(
1+

ki

−y0

)−Ai
)

<

n
∏
i=1

ki

n(−y0)
n

and we set xi := ki
−y0

to get the desired result when x1, . . . ,xn are positive.

2. For y0 > kn we have

ln

(
n

∏
i=1

(
1− ki

y0

)−Bi
)

<

n
∏
i=1

ki

ny0
n

n
∏
i=1

(
1− ki

y0

)

and now we set

xi :=
ki
y0

1− ki
y0

to get the desired result also when x1, . . . ,xn are positive.

3. We notice that the equality in (2) holds when one xi equals zero. Since the strict
inequality holds for positive values of all xi , we deduce that the equality in (2)
holds only when one xi equals zero.

3. The straightforward approach

3.1. Preliminaries

First we give the definition of completely monotone functions (see, e.g., [4]).

DEFINITION 1. A function f ∈C∞((0,∞)) is (strictly) completely monotone iff

(−1)n f (n)(x) � 0
(

(−1)n f (n)(x) > 0
)

, ∀(x,n) ∈ (0,∞)×N.

A known example of strictly completely monotone function is

f (x) :=
ln(1+ x)

x
, ∀x ∈ (0,∞) , (16)

since (see, e.g., [4])

(−1)n f (n)(x) = n!

1∫
0

tn

(1+ tx)n+1 dt > 0, ∀(x,n) ∈ (0,∞)×N.
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We note that from the classic Beppo Levi theorem of monotone convergence, or the
Lebesgue (or Arzéla) theorem of dominated convergence, we get

(−1)n lim
x→0+

f (n)(x) = n!

1∫
0

tndt =
n!

n+1
and (−1)n lim

x→∞
f (n)(x) = 0. (17)

We also need a generalization of a well known result to higher derivatives, the
mean value theorem for divided differences (see, e.g., [5], [6], or [1]).

THEOREM 1. Let x1, . . . ,xn be pairwise distinct real numbers, with

m := min
i∈{1,...,n}

{xi} and M := max
i∈{1,...,n}

{xi},

as well as f ∈ C([m,M])∩Cn−1((m,M)) . Then ∃x0 ∈ (m,M) , such that

[x1, . . . ,xn; f ] :=
n

∑
i=1

f (xi)
n
∏
j=1
j �=i

(xi − x j)
=

f (n−1)(x0)
(n−1)!

.

3.2. Proof of the main result

We assume that x1, . . . ,xn are pairwise distinct positive real numbers and we want
to deduce that

n

∏
i=1

(1+ xi)ai < e
1
n

n
∏
i=1

xi
,

or, equivalently,
n

∑
i=1

f (xi)
n
∏
j=1
j �=i

(x j − xi)
<

1
n

, (18)

where f is as in (16). Employing Theorem 1, we have that ∃x0 ∈ (m,M) , such that

n

∑
i=1

f (xi)
n
∏
j=1
j �=i

(x j − xi)
= (−1)n−1 [x1, . . . ,xn; f ] =

(−1)n−1 f (n−1)(x0)
(n−1)!

.

Since f is strictly completely monotone, the function (−1)n f (n−1) is strictly increas-
ing, thus (−1)n−1 f (n−1) is strictly decreasing, which implies that

(−1)n−1 f (n−1)(x0)
(n−1)!

<
(−1)n−1

(n−1)!
lim

x→0+
f (n−1)(x) (17)=

1
n

and (18) then follows.
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4. Allowing repetitions

In (2) the numbers x1, . . . ,xn are distinct. Here we show how to deal with probable
repetitions. An elegant approach relies on a proper scaling of (2). Indeed, for some
natural numbers r1, . . . ,rn at hand, we directly deduce from (2) that

n

∏
i=1

ri

∏
j=1

(1+ τi jxi)
ai j � e

1
m

n
∏
i=1

xi
ri

ri
∏
j=1

τi j

,

where x1, . . . ,xn,τ11, . . . ,τnrn are real numbers, such that τ11x1,τ12x1, . . . ,τnrn−1xn,τnrnxn

are pairwise distinct non negative real numbers, as well as

m :=
n

∑
i=1

ri and ai j :=

⎛
⎝ n

∏
k=1
k �=i

τk
rk

rk
∏
�=1

τk�

⎞
⎠
⎛
⎝ ri

∏
�=1
� �= j

τi�

⎞
⎠

⎛
⎝ n

∏
k=1
k �=i

rk
∏
�=1

(τk�xk − τi jxi)

⎞
⎠
⎛
⎝ ri

∏
�=1
� �= j

(τi� − τi j)

⎞
⎠

.

Now, we make the least complex choice of numbers, namely we choose x1, . . . ,xn to be
pairwise distinct non negative real numbers and τi j = j , and the above inequality then
becomes

n

∏
i=1

ri

∏
j=1

(1+ jxi)ai j � e
1
m

n
∏
i=1

ri!xi
ri

, (19)

where x1, . . . ,xn are pairwise distinct non negative real numbers, as well as

m :=
n

∑
i=1

ri and ai j :=

ri
∏
�=1
� �= j

�
n
∏
k=1
k �=i

rk!xk
rk

ri
∏
�=1
� �= j

(�− j)
n
∏
k=1
k �=i

rk
∏
�=1

(�xk − jxi)
.

The equality (19) holds only when one xi equals zero.
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