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Abstract. In this paper, we would like to study the boundedness of operators of Hardy type
on generalized central function spaces, such as the generalized central Hardy space HAp

ϕ (Rn) ,
the generalized central Morrey space Ṁp

ϕ (Rn) , and the generalized central Campanato space
˙CMOp

ϕ (Rn) , with p ∈ (1,∞) , and ϕ(t) : (0,∞) → (0,∞) . We first show that HAp′
ϕ (Rn) is the

predual of ˙CMOp
ϕ (Rn) . After that, we investigate the boundedness of operators of Hardy type on

those spaces. By duality, we obtain the boundedness characterization of function b∈ ˙CMO
p
ϕ (Rn)

via the Ṁp
ϕ (Rn) -boundedness of commutator [b,H ∗] .

1. Introduction and main results

1.1. Introduction

The aim of this paper is twofold. First, we study some generalized central func-
tion spaces, such as Ṁp

ϕ (Rn) , ˙CMOp
ϕ(Rn) , and HAp

ϕ(Rn) , where p∈ (1,∞) . Through

the paper, we always assume that ϕ(t) is nonincreasing on (0,∞) , and t
n
p ϕ(t) is non-

decreasing on (0,∞) . Then, we prove that HAp′
ϕ (Rn) is the predual of ˙CMO

p
ϕ (Rn) .

Second, we investigate the boundedness of operators of Hardy type on those spaces.
By duality, we obtain the boundedness characterization of function b in ˙CMO

p(Rn)
by means of the boundedness of commutators [b,H ] and [b,H ∗] in the above central
function spaces.

NOTATION. For any q∈ (1,∞) , we denote q′ the conjugate exponent, 1
q + 1

q′ = 1.
With |Ω| we denote the Lebesgue measure of a measurable set Ω in Rn , and Bt is the
ball centered at 0∈ Rn with radius t . As usual, we denote a constant by C , which may
depend on p,n and is probably different at different occurrences. Finally, we denote
A � B if there exists a constant C > 0 such that A � CB .

The Hardy operators are defined by

H ( f )(x) =
1

νn|x|n
∫
|y|<|x|

f (y)dy, x ∈ Rn \ {0} , (1)
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and (dual form)

H ∗( f )(x) =
1
νn

∫
|y|�|x|

f (y)
|y|n dy, x ∈ Rn \ {0} , (2)

where νn = πn/2

Γ(1+n/2) is the volume of unit ball in Rn .
In the pioneering work, Hardy [20] established the integral inequality

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p ∫ ∞

0
f (x)p dx (3)

for all non-negative f ∈ Lp(R+) , with 1 < p < ∞ . Note that the constant p
p−1 is sharp.

By considering two-sided averages of f instead of one-sided, (3) can be equiva-
lently formulated as:

‖H ( f )‖Lp(R) � p
p−1

‖ f‖Lp(R) . (4)

In [5], Christ–Grafakos extended (4) to n -dimension. Furthermore, a sharp bound of
weak type (p, p) of H was obtained by the authors in [13]. Specifically, for any
1 � p � ∞ we have

‖H ( f )‖Lp,∞ � ‖ f‖Lp

for all f ∈ Lp(Rn) . In addition,

‖H ‖Lp→Lp,∞ = 1 .

It is known that the inequalities of Hardy type play important roles in many areas of
mathematics such as analysis, probability and partial differential equations (see, e.g., [2,
3, 5, 12, 19, 21, 22, 27] and the references therein). For example, a slight modification
of (3) by setting F(x) =

∫ x
0 f (t)dt provides us

∫ ∞

0

F(x)p

xp dx �
(

p
p−1

)p ∫ ∞

0
F ′(x)p dx .

The analogue of this inequality in Rn for n > 1 is
∫

Rn

∣∣∣∣ f (x)x

∣∣∣∣
p

�
(

p
n− p

)p ∫
Rn

|∇ f (x)|p dx (5)

where ∇ f is the gradient of f as usual; this holds for all f ∈ C ∞
0 (Rn \{0}) if n < p <

∞ , and for all f ∈ C ∞
0 (Rn) if 1 � p < n . The constant is sharp and equality can only

be attained by functions f = 0 a.e.
Since the Hardy operators are centrosymmetric, the function spaces, which are

characterized by the boundedness of H and H ∗ are central ones. For example, Shi–
Lu, [26] established the boundedness of H and H ∗ in the central Morrey spaces

Ṁp,λ (Rn) (see Definition 1).

THEOREM 1. (Shi–Lu, [26]) Let 1 < p < ∞ , and λ ∈ (0, n
p ) . Then, H (resp.

H ∗ ) is a bounded operator from Ṁp,λ (Rn) → Ṁp,λ (Rn) .
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Moreover, the boundedness characterization of operators of Hardy type in the ho-
mogeneous Herz spaces has been studied by the authors in [14].

Inspired by the above results, we would like to study the boundedness of operators
of Hardy type in generalized central function spaces. Therefore, it is convenient for us
to introduce the notions of those spaces.

DEFINITION 1. A real-valued function f is said to belong to the generalized cen-
tral Morrey space Ṁp

ϕ (Rn) provided the following norm is finite:

‖ f‖Ṁp
ϕ

= sup
Bt

‖ f‖Lp(Bt)

|Bt |
1
p ϕ(t)

,

where the supremum is taken over all the balls Bt in Rn .

REMARK 1. A canonical example is ϕ(t) = t−λ , λ ∈ (0, n
p) . In this case, we

denote Ṁp
ϕ (Rn) by Ṁp,λ (Rn) .

Next, let us define the ϕ -central Campanato space ˙CMO
p
ϕ(Rn) .

DEFINITION 2. A function f ∈ Lp
loc(R

n) is said to belong to ˙CMOp
ϕ (Rn) if

‖ f‖ ˙CMOp
ϕ

:= sup
t>0

‖ f − fBt‖Lp(Bt)

|Bt |
1
p ϕ(t)

< ∞ ,

with fB = 1
|B|
∫
B f (y)dy , for set B in Rn .

REMARK 2. When ϕ(t) ≡ 1, we denote ˙CMO
p
ϕ(Rn) by ˙CMO

p(Rn) for short.

And, if ϕ(t) = t−λ , λ ∈ (0, n
p ] , we denote ˙CMO

p
ϕ (Rn) by ˙CMO

p,λ (Rn) .

REMARK 3. If there exists a constant D0 ∈ (0,1) such that ϕ(2t) � D0ϕ(t) for
all t > 0, then by using the same argument as in [31], we also obtain

Ṁp
ϕ(Rn) = ˙CMO

p
ϕ (Rn) . (6)

In particular, we have Ṁp,λ (Rn) = ˙CMO
p,λ (Rn) , with λ ∈ (0, n

p ] .

REMARK 4. Obviously, for 1 � p1 < p2 we have

˙CMO
p2
ϕ (Rn) ⊂ ˙CMO

p1
ϕ (Rn) . (7)

Moreover, it is known that

BMO(Rn) � ˙CMO
p2(Rn) � ˙CMO

p1(Rn) . (8)

We emphasize that ˙CMO
p(Rn) depends on p . Therefore, there is no analogy of the

famous John–Nirenberg inequality of BMO(Rn) for the space ˙CMO
p(Rn) .
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Our last interested central function space is the generalized central Hardy space.
To define this space, we first point out the definition of a central (1,q,ϕ)-atom.

DEFINITION 3. Let 1 < q � ∞ , and ϕ : (0,∞)→ (0,∞) . A function a(x) is called
a central (1,q,ϕ)-atom, if there exists a ball Bt in Rn such that

(i)supp(a) ⊂ Bt ,

(ii)
∫

Bt

a(x)dx = 0 ,

(iii)‖a‖Lq � 1

|Bt |
1
q′ ϕ(t)

.

Now, we are ready to define HAp
ϕ(Rn) (see definition Hp,ϕ(Rn) by Zorko [31]).

DEFINITION 4. Let 1 < p < ∞ , and let ϕ(t) : (0,∞) → (0,∞) . We denote, by
HAp

ϕ (Rn) , the family of distributions h that, in the sense of distributions, can be written
as

h =
∞

∑
j=0

λ ja j ,

where a j , j � 0 are central (1, p,ϕ)-atoms, and
∞

∑
j=0

|λ j| < ∞ .

It is clear that HAp
ϕ(Rn) is a vector space. In addition, we denote

‖h‖HAp
ϕ

= inf

{
∞

∑
j=0

|λ j|
}

where infimum is taken over all possible decompositions of h as above.

Then,
(
HAp

ϕ (Rn),‖ · ‖HAp
ϕ

)
becomes a normed space.

Such a space of this type has been studied by the authors in [4, 17, 18] and in
the references cited therein when ϕ(t) ≡ 1. In fact, Chen–Lau, [4] studied a theory
of Hardy spaces HAp(R) associated with the Beurling algebras Ap , 1 < p < ∞ , the
space consisting of functions f on Rn for which

‖ f‖Ap =
∞

∑
k=0

2
kn
p′ ‖ f χk‖Lp < ∞ ,

where χk is the characteristic function on the set
{
x ∈ Rn : 2k−1 < |x| � 2k

}
, k � 1.

For convenience, we recall here the definition of HAp(R) via the Beurling alge-
bras Ap .

DEFINITION 5. Let f ∗ be the vertical maximal function, defined by

f ∗(x) = sup
t>0

∣∣( f ∗ψt)(x)
∣∣ ,
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where ψt(x) = t−nψ(x/t) , and ψ is an integrable function on Rn such that
∫
Rn ψ(x)dx

= 1.
Then, we define HAp(R) by the set of functions f such that ‖ f ∗‖Ap is finite.

Moreover, if we set ‖ f‖HAp = ‖ f ∗‖Ap , then ‖ · ‖HAp is a norm.

The most interesting aspect of the theory constructed by Chen–Lau is the atomic
decomposition of HAp(R) , for 1 < p � 2. Thanks to this decomposition, they obtained
the following duality

HAp′(Rn)∗ = ˙CMOp(Rn) . (9)

After that, Garcı́a-Cuerva [17] extended their results for all p ∈ (1,∞) by using the
characterizations via the grand maximal functions. Moreover, the associated spaces
HAq,p , 0 < q < 1, 1 < p � ∞ was investigated by the authors in [18].

REMARK 5. Obviously, for any 1 < p1 < p2 � ∞ we have

HAp2
ϕ (Rn) ⊂ HAp1

ϕ (Rn) . (10)

It is interesting to emphasize that when ϕ(t)≡ 1 the inclusion in (10) is strictly accord-
ing to (8) and (9). This observation is different from the point of view of the classical
Hardy spaces. That is

H1,∞(Rn) = H1,q(Rn) (11)

for 1 < q < ∞ , see Theorem A, [7]. By (11), one can define H1(Rn) (the real Hardy
space) to be any one of the spaces H1,q(Rn) for 1 < q � ∞ .

Next, we discuss the commutators of Hardy operators. For any operator T , let us
define

[b,T ]( f ) := bT ( f )−T (b f ) .

Note that b is called the symbol function of [b,T ] . When T is an operator of Hardy
type, the study of [b,T ] has been investigated by many authors in [13, 16, 14, 23, 24,
25, 26, 27, 29], and the references therein. In [29], Long–Wang proved Hardy’s integral
inequalities for commutators [b,H ] and [b,Hβ ] (the fractional Hardy operator), β ∈
(0,1) , with b belongs to the one-sided dyadic functions ˙CMO

p(R+) . Moreover, Fu
et al., [14] obtained some characterizations of ˙CMO

p(Rn) for 1 < p < ∞ via the Lp -
boundedness of [b,H ] and [b,H ∗] in the following theorem.

THEOREM 2. (Fu et al., [14]) Let b ∈ ˙CMO
max{p,p′}(Rn) . Then both [b,H ] and

[b,H ∗] are bounded on Lp . Conversely,

(a) if [b,H ] is bounded on Lp , then b ∈ ˙CMO
p′(Rn);

(b) if [b,H ∗] is bounded on Lp , then b ∈ ˙CMOp(Rn) .

We also mention that Komori, [16] obtained a characterization of function b ∈
˙CMO

p(R+) by means of the Lp -boundedness of [b,H ] and [b,H ∗] . Note that his
argument can be adapted for the setting of the Euclidean space Rn instead of R+ .

Next, Lu–Zhao, [23] extended Theorem 2 to the space ˙CMO
max{p,q′},λ (Rn) as

follows.
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THEOREM 3. (Lu–Zhao, [23]) Let 1 < q < p < ∞ be such that 0 < λ = 1
q − 1

p <

1
n . Then b ∈ ˙CMO

max{p,q′},λ (Rn) ⇐⇒ [b,H ], [b,H ∗] : Lq(Rn) → Lp(Rn) .

1.2. Main results

As mentioned at the beginning, our first result is the following duality.

THEOREM 4. Let 1 < p < ∞ , and ϕ(t) : (0,∞) → (0,∞) . Then, we have

HAp′
ϕ (Rn)∗ = ˙CMO

p
ϕ (Rn) .

REMARK 6. As a consequence of Theorem 4, we observe that ˙CMO
p
ϕ(Rn) is a

Banach space.

Next, we extend Theorem 1 to Ṁp
ϕ(Rn) .

THEOREM 5. Let 1 < p < ∞ . Assume that there is a constant D0 ∈ (0,1) such
that

ϕ(2t) � D0ϕ(t), ∀t > 0 . (12)

Then, H (resp. H ∗ ) is a bounded operator from Ṁp
ϕ (Rn) → Ṁp

ϕ(Rn) .
In addition, we have

‖H ( f )‖Ṁp
ϕ

�
(

p
p−1

)
‖ f‖Ṁp

ϕ
(13)

for f ∈ Ṁp
ϕ(Rn); and there is a constant C = C(n, p) > 0 such that

‖H ∗( f )‖Ṁp
ϕ

� C‖ f‖Ṁp
ϕ

(14)

for f ∈ Ṁp
ϕ(Rn) .

REMARK 7. We emphasize that condition (12) can be relaxed in the Ṁp
ϕ -boun-

dedness of H , see the proof of Theorem 5. This means that one can take ϕ(t)≡C > 0
in (13).

As a consequence of Theorem 5, Remark 3, and Theorem4, we have the following
corollary.

COROLLARY 1. Same hypotheses as in Theorem 5. Then, the following state-
ments hold true.

(a) H and H ∗ are bounded operators from ˙CMO
p
ϕ(Rn) → ˙CMO

p
ϕ (Rn);

(b) H and H ∗ are bounded operators from HAp′
ϕ (Rn) → HAp′

ϕ (Rn) .

Concerning the boundedness of commutators of Hardy operator, we have the fol-
lowing theorem.
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THEOREM 6. Same hypotheses as in Theorem 5. If b ∈ ˙CMO
max{p,p′}(Rn) , then

the following statements hold true
(a) [b,H ] (resp. [b,H ∗]) is a bounded operator from Ṁp

ϕ (Rn) → Ṁp
ϕ (Rn);

(b) [b,H ] (resp. [b,H ∗]) is a bounded operator from Ṁp′
ϕ (Rn) → Ṁp′

ϕ (Rn) .

REMARK 8. Similarly as in Remark 7, (12) can be relaxed for conclusion (a) of
Theorem 6.

By duality, we have the following result.

COROLLARY 2. Same hypotheses as in Corollary 1. If b ∈ ˙CMO
max{p,p′}(Rn) ,

then [b,H ] (resp. [b,H ∗]) is a bounded operator on ˙CMO
p
ϕ(Rn) and HAp′

ϕ (Rn) .

Typical examples for the Corollaries 1, 2 are ϕ(t) = t−λ , and ϕ(t) =
(

1
log(1+t)

)λ
,

for λ ∈ (0, n
p ] .

Our last result is a characterization of function b in ˙CMO
p(Rn) by means of the

boundedness of [b,H ∗] in Ṁp
ϕ (Rn) .

THEOREM 7. Same hypotheses as in Theorem 5. If b ∈ Lp
loc(R

n) , and [b,H ∗] is
a bounded operator on Ṁp

ϕ (Rn) , then b ∈ ˙CMOp(Rn) .
Furthermore, there exists a constant C > 0 depending on n, p such that

‖b‖ ˙CMOp � C‖[b,H ∗]‖Ṁp
ϕ→Ṁp

ϕ
. (15)

By duality, we have the following corollary.

COROLLARY 3. Same hypotheses as in Theorem 7. If b ∈ Lp
loc(R

n) , and [b,H ]

is a bounded operator on HAp′
ϕ (Rn) , then b ∈ ˙CMO

p(Rn) .
In addition, there exists a constant C > 0 depending on n, p such that

‖b‖ ˙CMOp � C‖[b,H ]‖
HAp′

ϕ →HAp′
ϕ

. (16)

As a consequence of Theorem 7 and Corollary 3, we have the following result.

COROLLARY 4. Same hypotheses as in Theorem 7. Suppose that t
min{ n

p , n
p′ }ϕ(t)

is nondecreasing on (0,∞) , and b ∈ Lmax{p,p′}
loc (Rn) . Then, the following statements

hold true.
(a) If [b,H ∗] is a bounded operator on Ṁp

ϕ (Rn) and Ṁp′
ϕ (Rn) , then b ∈

˙CMO
max{p,p′}(Rn) . In addition, there exists a constant C = C(n, p) > 0 such that

‖b‖ ˙CMOmax{p,p′} � C

(
‖[b,H ∗]‖Ṁp

ϕ→Ṁp
ϕ
+‖[b,H ∗]‖

Ṁp′
ϕ →Ṁp′

ϕ

)
. (17)
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(b) If [b,H ] is a bounded operator on HAp′
ϕ (Rn) and HAp

ϕ(Rn) , then b ∈
˙CMO

max{p,p′}(Rn) . In addition, there exists a constant C = C(n, p) > 0 such that

‖b‖ ˙CMOmax{p,p′} � C

(
‖[b,H ‖

HAp′
ϕ →HAp′

ϕ
+‖[b,H ]‖HAp

ϕ→HAp
ϕ

)
. (18)

Typical examples for Corollary 4 are ϕ(t) = t−λ , and ϕ(t) =
(

1
log(1+t)

)λ
, for

λ ∈ (0,min{ n
p , n

p′ }] .
Our paper is organized as follows. We study the generalized central Hardy space,

and prove Theorem 4 in the next section. The last section is devoted to the proof of
Theorems 5–7, and of Corollary 1–4.

2. HAp′
ϕ (Rn) as the predual of ˙CMO

p
ϕ(Rn)

For any ball B in Rn we denote Lp
0(B) by the subspace of Lp(B) of functions

having mean value zero. It is not difficult to verify that

Lp
0(B)∗ = Lp′(B)/C(B) , (19)

where C(B) is the set of the functions, which are constant on B . Then, we have the
following embedding result.

PROPOSITION 1. For any τ > 0 , and for f ∈ Lp
0(Bτ) , we have

‖1Bτ f‖HAp
ϕ

� |Bτ |
1
p′ ϕ(τ)‖ f‖Lp(Bτ ) .

Proof of Proposition 1. Let us set

a(x) =
1Bτ f (x)

|Bτ |
1
p′ ϕ(τ)‖ f‖Lp(Bτ)

.

Since
∫
Bτ

f (x)dx = 0, then it is not difficult to verify that a is a central (1, p,ϕ)-atom.
Thus, the desired result follows from the Definition 4. �

REMARK 9. As a consequence of Proposition 1, if f ∈ HAp
ϕ(Rn)∗ , then for any

τ > 0 we get

1Bτ f ∈ Lp
0(Bτ)∗ .

Now, we prove Theorem 4.
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Proof of Theorem 4. Let a be a central (1, p′,ϕ)-atom with supp(a) ⊂ Bt for
some t > 0. Then, for any f ∈ ˙CMO

p
ϕ(Rn) we have

∣∣∣∣
∫

Rn
f (x)a(x)dx

∣∣∣∣=
∣∣∣∣
∫

Bt

( f (x)− fBt )a(x)dx

∣∣∣∣
� ‖ f − fBt‖Lp(Bt)‖a‖Lp′ (Bt)

�
‖ f − fBt‖Lp(Bt)

|Bt |
1
p ϕ(t)

� ‖ f‖ ˙CMOp
ϕ
.

For every g ∈ HAp′
ϕ (Rn) , one can decompose g = ∑∞

j=0 λ ja j , where {a j} j�0 is a se-
quence of central (1, p′,ϕ)-atoms; and ∑∞

j=0 |λ j| < ∞ . Thus, we deduce from the last
inequality that

∣∣∣∣
∫

Rn
f (x)g(x)dx

∣∣∣∣=
∣∣∣∣∣

∞

∑
j=0

∫
Rn

λ j f (x)a j(x)dx

∣∣∣∣∣
�
(

∞

∑
j=0

|λ j|
)
‖ f‖ ˙CMOp

ϕ

� ‖g‖
HAp′

ϕ
‖ f‖ ˙CMOp

ϕ
. (20)

This yields

˙CMO
p
ϕ(Rn) ⊂ HAp′

ϕ (Rn)∗ .

It remains to show that

HAp′
ϕ (Rn)∗ ⊂ ˙CMO

p
ϕ (Rn) . (21)

Let F ∈ HAp′
ϕ (Rn)∗ . Thanks to Remark 9, we have that 1Bτ F ∈ Lp′

0 (Bτ)∗ for τ > 0.
By (19), there exists fτ ∈ Lp(Bτ)/C(Bτ) such that

〈1Bτ F,g〉Lp,Lp′ =
∫

Bτ
fτ (x)g(x)dx, ∀g ∈ Lp′

0 (Bτ) . (22)

Thus, for every 0 < τ1 < τ2 , we have

fτ1(x) = fτ2(x) for a.e. x ∈ Bτ1 ,

which makes sense by (22).
Next, let us define f (x) = fτ (x) if x ∈ Bτ . Obviously, we have f ∈ Lp

loc(R
n) .

Now, we show that f ∈ ˙CMO
p
ϕ (Rn) . Indeed, for any ball Bt in Rn , let us fix

τ0 > t . Remind that f (x) = ft (x) ∈ Lp(Bt)/C(Bt) for x ∈ Bt . By duality (19), we
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obtain

‖ f − fBt‖Lp(Bt)

|Bt |
1
p ϕ(t)

=
1

|Bt |
1
p ϕ(t)

sup
‖h‖

L
p′
0 (Bt )

=1

∣∣∣∣
∫

Bt

( f (x)− fBt )h(x)dx

∣∣∣∣
=

1

|Bt |
1
p ϕ(t)

sup
‖h‖

L
p′
0 (Bt )

=1

∣∣∣∣
∫

Bt

f (x)(h(x)−hBt) dx

∣∣∣∣
= sup

‖h‖
L
p′
0 (Bt )

=1

∣∣∣∣∣
∫

Rn
fτ0(x)

(h(x)−hBt)1Bt

|Bt |
1
p ϕ(t)

dx

∣∣∣∣∣ . (23)

Since h∈ Lp′
0 (Bt) and ‖h‖Lp′(Bt)

= 1, then
(h(x)−hBt)1Bt

|Bt |
1
p ϕ(t)

is a central (1, p′,ϕ)-atom

(see the proof of Proposition 1), and∥∥∥∥∥1Bt (h(x)−hBt)

|Bt |
1
p ϕ(t)

∥∥∥∥∥
HAp′

ϕ

� 1 .

With this inequality noted, it follows from (23) that

‖ f − fBt‖Lp(Bt)

|Bt |
1
p ϕ(t)

� ‖1Bτ0
F‖

(HAp′
ϕ )∗

∥∥∥∥∥1Bt (h(x)−hBt)

|Bt |
1
p ϕ(t)

∥∥∥∥∥
HAp′

ϕ

� ‖F‖
(HAp′

ϕ )∗
.

Since the last inequality holds for every t > 0, then we obtain

‖ f‖ ˙CMOp
ϕ

� ‖F‖
(HAp′

ϕ )∗
,

which yields (21).
Hence, we have completed the proof of Theorem 4. �

Next, we exploit some properties of HAp
ϕ(Rn) under certain conditions on ϕ .

PROPOSITION 2. Suppose that ϕ(t) is nonincreasing on (0,∞) , and there exists

τ0 > 0 such that t
n
p ϕ(t) is nondecreasing on (τ0,∞) . Then, HAp′

ϕ (Rn) is the subspace
of L∞

c (Rn)∗ .

Proof of Proposition 2. Let a be a central (1, p′,ϕ)-atom with supp(a) ⊂ Bt ,
and let ψ be a test function in L∞

c (Rn) (the space of bounded functions with compact
support) with supp(ψ) ⊂ Bt0 .

Applying Hölder’s inequality yields∣∣∣∣
∫

Rn
a(x)ψ(x)dx

∣∣∣∣� ‖a‖Lp′ (Bt)
‖ψ‖Lp(Bt∩Bt0) � ‖ψ‖L∞ |Bt ∩Bt0 |1/p

|Bt |1/pϕ(t)
.
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If t � max{t0,τ0} , then it follows from the last inequality and the fact ϕ(t) �
min{ϕ(t0),ϕ(τ0)} that∣∣∣∣

∫
Rn

a(x)ψ(x)dx

∣∣∣∣� ‖ψ‖L∞

min{ϕ(t0),ϕ(τ0)} .

Otherwise, we have t
n
p
0 ϕ(t0) � t

n
p ϕ(t) . Thus,

∣∣∣∣
∫

Rn
a(x)ψ(x)dx

∣∣∣∣� ‖ψ‖L∞ |B(z0,t0)|1/p

|B(z0,t0)|1/pϕ(t0)
=

‖ψ‖L∞

ϕ(t0)
.

By combining the two cases, we get∣∣∣∣
∫

Rn
a(x)ψ(x)dx

∣∣∣∣� ‖ψ‖L∞

min{ϕ(t0),ϕ(τ0)} . (24)

Now, for any h ∈ HAp′
ϕ (Rn) , we can write h = ∑∞

j=0 λ ja j , where a j , j � 0 are
(1, p′,ϕ)-atoms, and ∑∞

j=0 |λ j| < ∞ .
Then, it follows from (24) that∣∣∣∣

∫
Rn

h(x)ψ(x)dx

∣∣∣∣� ∞

∑
j=0

|λ j|
∣∣∣∣
∫

Rn
a j(x)ψ(x)dx

∣∣∣∣
�
(

∞

∑
j=0

|λ j|
)

‖ψ‖L∞

min{ϕ(t0),ϕ(τ0)}

� ‖h‖
HAp′

ϕ

‖ψ‖L∞

min{ϕ(t0),ϕ(τ0)} .

Hence, we obtain the conclusion. �

REMARK 10. As a consequence of Proposition 2, if h∈HAp′
ϕ (Rn) , h = ∑∞

j=0 λ ja j ,
then the series converges to h in the norm of L∞

c (Rn)∗ .

PROPOSITION 3. Same hypotheses as in Proposition 2. Then, HAp′
ϕ (Rn) is a

Banach space.

Proof of Proposition 3. Let { fN}N�1 be a Cauchy sequence in HAp′
ϕ (Rn) . Then,

there exists a subsequence { fNk}k�1 such that

∥∥ fNk − fNk−1

∥∥
HAp′

ϕ (Rn)
� 2−k . (25)

Put
f = fN1 + ∑

k�2

(
fNk − fNk−1

)
.
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Note that for any k � 1, we have

fNk − fNk−1 = ∑
j�0

λ k
j a

k
j ,

where {ak
j} j�0 is a sequence of central (1, p′,ϕ)-atoms, and

∑
j�0

|λ k
j | �

∥∥ fNk − fNk−1

∥∥
HAp′

ϕ (Rn)
+2−k .

With this inequality noted, and by (25), we obtain

∑
k�1

∑
j�0

|λ k
j | � ∑

k�1

21−k < ∞ . (26)

This implies that f can be decomposed into central (1, p′,ϕ)-atoms.
Next, we claim that fNk → f as k → ∞ in the norm of L∞

c (Rn)∗ . If this is true,

then by (26) we can conclude that fN → f in HAp′
ϕ (Rn) as N → ∞ .

Since f = fNk0
+ ∑

k�k0+1

( fNk − fNk−1) , then it suffices to prove that ∑
k�k0+1

( fNk −
fNk−1) converges to 0 as k0 → ∞ with respect to the norm of L∞

c (Rn)∗ .
By (24), we obtain∣∣∣∣∣
∫

Rn
∑

k�k0+1

( fNk − fNk−1)(x)ψ(x)dx

∣∣∣∣∣� ∑
k�k0+1

∑
l�0

|λ k
l |
∣∣∣∣
∫

Rn
ak

l (x)ψ(x)dx

∣∣∣∣
� ∑

k�k0+1
∑
l�0

|λ k
l |

‖ψ‖L∞

min{ϕ(t0),ϕ(τ0)} .

With this inequality noted, it follows from (26) that

lim
k0→∞

∥∥∥∥∥ ∑
k�k0+1

( fNk − fNk−1)

∥∥∥∥∥
L∞

c (Rn)∗
= 0 .

Thus, fNk0
→ f in L∞

c (Rn)∗ as k0 → ∞ .
This puts an end to the proof of Proposition 3. �

3. The boundedness of operators of Hardy type in generalized
central function spaces

3.1. Hardy operators in generalized central function spaces

Proof of Theorem 5. We first prove the Ṁp
ϕ -boundedness of H . In fact, for any

ball Bt in Rn , let us write

H ( f )(x) = H ( f1)(x)+H ( f2)(x), ∀x ∈ Rn ,
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with f1 = f1Bt , and f2 = f1Bc
t
, Bc

t = Rn \Bt .
For f1 , we apply (4) to obtain

‖H ( f1)‖Lp(Bt)

|Bt |
1
p ϕ(t)

�
(

p
p−1

) ‖ f1‖Lp

|Bt |
1
p ϕ(t)

=
(

p
p−1

) ‖ f‖Lp(Bt)

|Bt |
1
p ϕ(t)

�
(

p
p−1

)
‖ f‖Ṁp

ϕ
.

(27)

Next, since f2 = 0 on Bt , then for any x ∈ Bt we observe that

H ( f2)(x) =
1

νn|x|n
∫
|y|<|x|

f2(y)dy = 0 . (28)

A combination of (27) and (28) yields

‖H ( f )‖Lp(Bt)

|Bt |
1
p ϕ(t)

=
‖H ( f1)‖Lp(Bt)

|Bt |
1
p ϕ(t)

�
(

p
p−1

)
‖ f‖Ṁp

ϕ
.

Since the last inequality holds for any t > 0, then we obtain

‖H ( f )‖Ṁp
ϕ

�
(

p
p−1

)
‖ f‖Ṁp

ϕ
.

It remains to prove the Ṁp
ϕ -boundedness of H ∗ . We argue similarly as in (27) in

order to obtain ‖H ∗( f1)‖Lp(Bt)

|Bt |
1
p ϕ(t)

� ‖ f‖Ṁp
ϕ
. (29)

Next, we observe that

|H ∗( f2)(x)| =
∣∣∣∣ 1
νn

∫
|y|�2t

f (y)
|y|n dy

∣∣∣∣= 1
νn

∣∣∣∣∣
∞

∑
k=1

∫
{2kt�|y|<2k+1t}

f (y)
|y|n dy

∣∣∣∣∣
�

∞

∑
k=1

(2kt)−n

∣∣∣∣
∫
{2kt�|y|<2k+1t}

f (y)dy

∣∣∣∣� ∞

∑
k=1

(2kt)−n
∫

B
2k+1t

| f (y)|dy .

Thanks to Hölder’s inequality, and (12), we obtain

|H ∗( f2)(x)| �
∞

∑
k=1

(2kt)−n‖ f‖Lp(B
2k+1t

)|B2k+1t |
1
p′

�
∞

∑
k=1

‖ f‖Lp(B2k+1t)

|B2k+1t |
1
p ϕ(2k+1t)

ϕ(2k+1t)

�
∞

∑
k=1

ϕ(2k+1t)‖ f‖Ṁp
ϕ

�
∞

∑
k=1

Dk+1
0 ϕ(t)‖ f‖Ṁp

ϕ
� ϕ(t)‖ f‖Ṁp

ϕ
.
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Thus, we deduce that

‖H ∗( f2)‖Lp(Bt) � |Bt |
1
p ϕ(t)‖ f‖Ṁp

ϕ
. (30)

Combing (29) and (30) yields the desired result.
Hence, we complete the proof of Theorem 5. �

Proof of Corollary 1. The proof of (a) just follows from Theorem 5 and Remark
3.

It remains to prove (b) . Thanks to duality, for every f ∈ HAp′
ϕ (Rn) we have

‖H ( f )‖
HAp′

ϕ
= sup

‖g‖ ˙CMOp
ϕ

=1

∣∣∣∣
∫

H ( f )(x)g(x)dx

∣∣∣∣= sup
‖g‖ ˙CMOp

ϕ
=1

∣∣∣∣
∫

f (x)H ∗(g)(x)dx

∣∣∣∣
� sup

‖g‖ ˙CMOp
ϕ

=1
‖ f‖

HAp′
ϕ
‖H ∗(g)‖ ˙CMOp

ϕ

� sup
‖g‖ ˙CMOp

ϕ
=1

‖ f‖
HAp′

ϕ
‖g‖ ˙CMOp

ϕ
= ‖ f‖

HAp′
ϕ

.

Hence, we conclude that H maps HAp′
ϕ (Rn) → HAp′

ϕ (Rn) .
Similarly, the conclusion also holds for H ∗ .
Thus, we obtain the proof of Corollary 1. �

3.2. Commutators of Hardy operators in generalized central function spaces

Before we prove Theorems 6 and 7, we recall a fundamental result being useful
for our argument later.

LEMMA 1. Let 1 � p < ∞ , and k � 1 . For any ball Bt in Rn , then we have

∥∥∥b−bB
2kt

∥∥∥
Lp(Bt)

� 2n(k+1)‖b‖ ˙CMOp |Bt |
1
p .

Proof of Lemma 1. For any j � 1, we observe that

∣∣∣bB
2 j+1t

−bB
2 jt

∣∣∣� 1
|B2 jt |

∫
B2 jt

∣∣∣b(y)−bB
2 j+1t

∣∣∣ dy

� |B2 j+1t |
|B2 jt |

1
|B2 j+1t |

∫
B2 j+1t

∣∣∣b(y)−bB
2 j+1t

∣∣∣ dy

� 2n‖b‖ ˙CMO1 � 2n‖b‖ ˙CMOp .
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With this inequality noted, we obtain

∥∥∥b−bB
2kt

∥∥∥
Lp(Bt)

� ‖b−bBt‖Lp(Bt) +
k−1

∑
j=0

∥∥∥bB
2 jt

−bB
2 j+1t

∥∥∥
Lp(Bt)

� |Bt |
1
p
‖b−bBt‖Lp(Bt)

|Bt |
1
p

+
k−1

∑
j=0

∣∣∣bB
2 jt

−bB
2 j+1t

∣∣∣ |Bt |
1
p

� 2n(k+1)‖b‖ ˙CMOp |Bt |
1
p .

Thus, we complete the proof of Lemma 1. �

Next, we estimate ‖1Br‖Ṁp
ϕ

for any ball Br in Rn .

LEMMA 2. Suppose that ϕ(t) is nonincreasing, and t
n
p ϕ(t) is nondecreasing.

Then, for any ball Br in Rn we have

‖1Br‖Ṁp
ϕ

=
1

ϕ(r)
.

Proof of Lemma 2. We consider the following term I(t) :=
‖1Br ‖Lp(Bt )

|Bt |
1
p ϕ(t)

, t > 0.

If t � r , then since ϕ(t) is nonincreasing, then we obtain

I(t) =
|Br ∩Bt |

1
p

|Bt |
1
p ϕ(t)

=
|Bt |

1
p

|Bt |
1
p ϕ(t)

� 1
ϕ(r)

.

Otherwise, it follows from the monotonicity of |Bt |
1
p ϕ(t) that

I(t) � |Br|
1
p

|Br|
1
p ϕ(r)

� 1
ϕ(r)

.

Combining the two inequalities yields

‖1Br‖Ṁp
ϕ

� 1
ϕ(r)

. (31)

The reverse of (31) is obvious since I(r) = 1
ϕ(r) .

Thus, the desired result follows. �

Now, we are ready to prove Theorem 6.

Proof of Theorem 6.
(a) Fix ball Bt in Rn . We write

[b,H ]( f ) = [b,H ]( f1)+ [b,H ]( f2) ,
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with f1 = f1Bt and f2 = f1Bc
t
.

Since [b,H ] maps Lp → Lp , then we have

‖[b,H ]( f1)‖Lp(Bt) � ‖b‖ ˙CMOmax{p,p′}‖ f1‖Lp = ‖b‖ ˙CMOmax{p,p′}‖ f‖Lp(B2t) .

Thus, it follows from the monotonicity of ϕ that

‖[b,H ]( f1)‖Lp(Bt)

|Bt |
1
p ϕ(t)

� ‖b‖ ˙CMOmax{p,p′}
‖ f‖Lp(B2t)

|Bt |
1
p ϕ(t)

� ‖b‖ ˙CMOmax{p,p′}‖ f‖Ṁp
ϕ
. (32)

Next, for any x ∈ Bt we observe that

[b,H ]( f2)(x) = 0 .

A combination of this fact, and (32) provides us that

‖[b,H ]( f )‖Lp(Bt)

|Bt |
1
p ϕ(t)

=
‖[b,H ( f1)‖Lp(Bt)

|Bt |
1
p ϕ(t)

� ‖b‖ ˙CMOmax{p,p′}‖ f‖Ṁp
ϕ
.

Therefore, we obtain the desired result.
(b) Since [b,H ∗] maps Lp → Lp , then we can mimic the proof of (32) to obtain

‖[b,H ∗]( f1)‖Lp(Bt)

|Bt |
1
p ϕ(t)

� ‖b‖ ˙CMOmax{p,p′}‖ f‖Ṁp
ϕ
. (33)

Concerning f2 , we write

‖[b,H ∗]( f2)‖Lp(Bt) =
∥∥∥∥ 1

νn

∫
|y|�2t

(b(x)−b(y))
f (y)
|y|n dy

∥∥∥∥
Lp(Bt)

�
∥∥∥∥∥

∞

∑
k=0

(2kt)−n
∫
{2kt�|y|<2k+1t}

∣∣∣b(x)−bB
2k+1t

∣∣∣ | f (y)|dy

∥∥∥∥∥
Lp(Bt)

+

∥∥∥∥∥
∞

∑
k=0

(2kt)−n
∫
{2kt�|y|<2k+1t}

∣∣∣b(y)−bB
2k+1t

∣∣∣ | f (y)|dy

∥∥∥∥∥
Lp(Bt)

:= I1 + I2 . (34)

We first treat I1 . Applying the triangle inequality, Minkowski’s inequality, and the
Hölder inequality yields

I1 �
∞

∑
k=0

(2kt)−n
∫
{2kt�|y|<2k+1t}

∥∥∥b−bB
2k+1t

∥∥∥
Lp(Bt)

| f (y)|dy

�
∞

∑
k=0

|B2k+1t |−1
∥∥∥b−bB

2k+1t

∥∥∥
Lp(Bt)

‖ f‖Lp(B
2k+1t

)|B2k+1t |
1
p′

�
∞

∑
k=0

∥∥∥b−bB
2k+1t

∥∥∥
Lp(Bt)

ϕ(2k+1t)‖ f‖Ṁp
ϕ
.
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Thanks to Lemma 1 and (12), we get from the last inequality that

I1 �
∞

∑
k=0

2n(k+2)‖b‖ ˙CMOp |Bt |
1
p Dk+1

0 ϕ(t)‖ f‖Ṁp
ϕ

� |Bt |
1
p ϕ(t)‖b‖ ˙CMOp‖ f‖Ṁp

ϕ
. (35)

Note that (35) was obtained by the fact ∑∞
k=0(k+2)Dk+1

0 < ∞ .
For I2 , we use Hölder’s inequality, and Lemma 1 in order to obtain

I2 �
∥∥∥∥∥

∞

∑
k=0

(2kt)−n
∥∥∥b−bB

2k+1t

∥∥∥
Lp′ (B

2k+1t
)
‖ f‖Lp(B2k+1t)

∥∥∥∥∥
Lp(Bt)

�
∞

∑
k=0

∥∥∥b−bB
2k+1t

∥∥∥
Lp′ (B

2k+1t
)

|B2k+1t |
1
p′

‖ f‖Lp(B
2k+1t

)

|B2k+1t |
1
p ϕ(2k+1t)

ϕ(2k+1t)|Bt |
1
p

�
∞

∑
k=0

‖b‖ ˙CMOp′ ‖ f‖Ṁp
ϕ
Dk+1

0 ϕ(t)|Bt |
1
p

� |Bt |
1
p ϕ(t)‖b‖ ˙CMOp′ ‖ f‖Ṁp

ϕ
. (36)

Combining (34), (35), and (36) yields

‖[b,H ∗]( f2)‖Lp(Bt)

|Bt |
1
p ϕ(t)

� ‖b‖ ˙CMOmax{p,p′}‖ f‖Ṁp
ϕ
. (37)

Thus, the desired result follows from (33) and (37).
This ends the proof of Theorem 6. �

Proof of Corollary 2. The proof is similar to the one of Corollary 1, then we leave
its details to the reader. �

Finally, we prove Theorem 7.

Proof of Theorem 7. The proof follows by way of the following lemma.

LEMMA 3. Let a be a central (1, p′)-atom. Then, there exist two functions f ∈
HAp′

ϕ (Rn) , and g ∈ Ṁp
ϕ (Rn) such that

a(x) = f (x)H ∗(g)(x)−g(x)H ( f )(x) , (38)

and

‖ f‖
HAp′

ϕ
‖g‖Ṁp

ϕ
� 2

n
p

ln2
. (39)
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Proof of Lemma 3. Suppose that supp(a) ⊂ Bτ for some τ > 0. Let us set

f (x) =
a(x)

ϕ(τ) ln2
, and g(x) = ϕ(τ)1{τ<|x|<2τ}(x) .

We first claim that the above construction satisfies (38). In fact, if |x| � τ , then it
is clear that

f (x) = H ( f )(x) = 0

since supp(a) ⊂ Bτ , and the cancellation property of a respectively. Thus, (38) is true
for all |x| � τ .

Otherwise, we have g(x) = 0, and

H ∗(g)(x) =
1
νn

∫
|y|�|x|

ϕ(τ)1{τ<|x|<2τ}(y)
|y|n dy

=
ϕ(τ)

νn

∫ 2τ

τ
νns

−nsn−1 ds = ϕ(τ) ln2 .

This yields the above claim.
Now, we prove (39). Since a is a central (1, p′)-atom, then f is a multiple of

central (1, p′,ϕ)-atom, and

‖ f‖
HAp′

ϕ
� 1

ln2
. (40)

Moreover, thanks to Lemma 2, we obtain

‖g‖Ṁp
ϕ

= ϕ(τ)‖1{τ<|x|<2τ}‖Ṁp
ϕ

� ϕ(τ)
ϕ(2τ)

= 2
n
p

τ
n
p ϕ(τ)

(2τ)
n
p ϕ(2τ)

� 2
n
p . (41)

The last inequality follows from the monotonicity of function t
n
p ϕ(t) .

As a result, (39) follows from (40) and (41).
Thus, we obtain Lemma 3. �

REMARK 11. The above construction demonstrates that g ∈ L∞
c (Rn) , and f ∈

Lp′
c (Rn) .

In addition, the result of Lemma 2 can be considered as a HAp′(Rn)∗ factorization.
Note that the H1(Rn) factorization by means of the Calderón–Zygmund operators has
been studied by the authors in [6, 8, 9, 10, 11, 15, 28, 30] and the references therein.

Now, we are ready to end the proof of Theorem 7 by using the duality argument.
Since ˙CMOp(Rn) = HAp′(Rn)∗ , then for any h∈HAp′(Rn) , one can decompose

h =
∞

∑
j=0

λ ja j ,

where {a j} j�0 is a sequence of central (1, p′)-atoms; and ∑∞
j=0 |λ j| < ∞ .
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For every j � 0, by applying Lemma 3 to a j we have that there exist two functions

g j ∈ Ṁp
ϕ (Rn) , and f j ∈ HAp′

ϕ (Rn) such that

a j(x) = f j(x)H ∗(g j)(x)−g j(x)H ( f j)(x) ,

and

‖ f j‖HAp′
ϕ
‖g j‖Ṁp

ϕ
� 2

n
p

ln2
. (42)

Since b ∈ Lp
loc(R

n) , and by Remark 11, the following integrals are well-defined, and
satisfy

∣∣∣∣
∫

Rn
b(x)a j(x)dx

∣∣∣∣=
∣∣∣∣
∫

Rn
b(x) [ f j(x)H ∗(g j)(x)−g j(x)H ( f j)(x)] dx

∣∣∣∣
=
∣∣∣∣
∫

Rn
f j(x)[b,H ∗](g j)(x)dx

∣∣∣∣
� ‖ f j‖HAp′

ϕ
‖[b,H ∗](g j)‖Ṁp

ϕ
. (43)

Note that (43) was obtained from the fact Ṁp
ϕ (Rn) = ˙CMO

p
ϕ (Rn) = HAp′

ϕ (Rn)∗ .

Since [b,H ∗] is a bounded operator on Ṁp
ϕ (Rn) , then it follows from (43) and

(42) that

∣∣∣∣
∫

Rn
b(x)a j(x)dx

∣∣∣∣� ‖[b,H ∗]‖Ṁp
ϕ→Ṁp

ϕ
‖g j‖Ṁp

ϕ
‖ f j‖HAp′

ϕ
� 2

n
p

ln2
‖[b,H ∗]‖Ṁp

ϕ→Ṁp
ϕ
.

With this inequality noted, for any h ∈ HAp′
ϕ (Rn) we get

∣∣∣∣
∫

Rn
b(x)h(x)dx

∣∣∣∣= ∞

∑
j=0

∣∣∣∣λ j

∫
Rn

b(x)a j(x)dx

∣∣∣∣
�
(

∞

∑
j=0

|λ j|
)

2
n
p

ln2
‖[b,H ∗]‖Ṁp

ϕ→Ṁp
ϕ

� 2
n
p

ln2
‖[b,H ∗]‖Ṁp

ϕ→Ṁp
ϕ
‖h‖

HAp′ . (44)

By duality, we obtain

‖b‖ ˙CMOp � 2
n
p

ln2
‖[b,H ∗]‖Ṁp

ϕ→Ṁp
ϕ
. (45)

Hence, we have completed the proof of Theorem 7. �
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Proof of Corollary 3. To obtain the result, we can repeat the proof of Theorem 7
with a slight modification in (43) as follows∣∣∣∣

∫
Rn

b(x)a j(x)dx

∣∣∣∣=
∣∣∣∣
∫

Rn
b(x) [ f j(x)H ∗(g j)(x)−g j(x)H ( f j)(x)] dx

∣∣∣∣
=
∣∣∣∣
∫

Rn
[b,H ]( f j)(x)g j(x)dx

∣∣∣∣
� ‖[b,H ]( f j)‖HAp′

ϕ
‖g j‖Ṁp

ϕ
. (46)

Since [b,H ] maps HAp′
ϕ → HAp′

ϕ , then we deduce from (46) that∣∣∣∣
∫

Rn
b(x)a j(x)dx

∣∣∣∣� ‖[b,H ]‖
HAp′

ϕ →HAp′
ϕ
‖ f j‖HAp′

ϕ
‖g j‖Ṁp

ϕ

� 2
n
p

ln2
‖[b,H ]‖

HAp′
ϕ →HAp′

ϕ
.

By arguing similarly as in (44), for any h ∈ HAp′
ϕ (Rn) , we also obtain

∣∣∣∣
∫

Rn
b(x)h(x)dx

∣∣∣∣� 2
n
p

ln2
‖[b,H ]‖

HAp′
ϕ →HAp′

ϕ
‖h‖

HAp′ .

This yields (16) �

Proof of Corollary 4. The proof of Corollary 4 is just a combination of the results
in Theorem 7 and Corollary 3. Thus, we leave its details to the reader. �
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[3] H. BREZIS AND J. L. VÁZQUEZ, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat.

Univ. Complut. Madrid, 10 (1997), 443–469.
[4] Y. CHEN AND K. LAU, Some new classes of Hardy spaces, J. Funct. Anal., 84 (1989), 255–278.
[5] M. CHRIST AND L. GRAFAKOS, Best constants for two nonconvolution inequalities, Proc. Amer.

Math. Soc., 123 (1995), 1687–1693.
[6] R. COIFMAN, R. ROCHBERG AND G. WEISS, Factorization theorems for Hardy spaces in several

variables, Ann. of Math., 103 (1976), 611–635.
[7] R. COIFMAN AND G. WEISS,Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math.

Soc., 83 (1977), 569–645.
[8] N. A. DAO, S. G. KRANTZ AND NGUYEN LAM, Cauchy integral commutators and Hardy factoriza-

tion on Lorentz spaces, J. Math. Anal. Appl., 498 (2021) 124926.



HARDY OPERATORS AND COMMUTATORS ON FUNCTION SPACES 983

[9] N. A. DAO AND BRETT D. WICK, Hardy factorization in terms of multilinear Calderón–Zygmund
operators using Morrey spaces, Potential Analysis, 55 (2021),
https://doi.org/10.1007/s11118-021-09960-x .

[10] N. A. DAO, Hardy factorization in terms of fractional commutators in Lorentz spaces, Front. Math.
China, (2021), https://doi.org/10.1007/s11464-021-0946-1 .

[11] X. T. DUONG, RUMING GONG, MARIE-JOSE S. KUFFNER, JI LI, BRETT D. WICK AND DONGY-
ONG YANG, Two weight commutators on spaces of homogeneous type and applications, J. Geom.
Anal., 31 (2021), 980–1038.

[12] W. FARIS, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–
373.

[13] ZHAO FAYOU, FU ZUNWEI AND LU SHANZHEN, Endpoint estimates for n-dimensional Hardy
operators and their commutators, Sci. China Ser. A, 55 (2012), 1977–1990.

[14] Z. FU, Z. LIU, S. LU AND H. WANG, Characterization for commutators of n -dimensional fractional
Hardy operators, Sci. China Ser. A, 50 (2007), 1418–1426.

[15] Y. KOMORI AND T. MIZUHARA, Factorization of functions in H1(Rn) and generalized Morrey
spaces, Math. Nachr., 279 (2006), 619–624.

[16] Y. KOMORI, Notes on commutators of Hardy operators, Int. J. Pure. Appl. Math., 7 (2003), 329–334.
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