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VOLTERRA INTEGRAL OPERATOR FROM WEIGHTED
BERGMAN SPACES TO GENERAL FUNCTION SPACES

RUISHEN QIAN AND XIANGLING ZHU*

(Communicated by J. Jakseti¢)

Abstract. The boundedness, compactness and essential norm of Volterra integral operator V,
from weighted Bergman spaces A%, to general function spaces F(g,qt —2,s) are investigated in
this paper.

1. Introduction

Let D be the unit disk in the complex plane C, H(D) be the class of functions
analytic in D and H® be the class of bounded analytic functions on ID. The Hardy
space H?(D) (0 < p <o) is the set of all f € H(ID) with (see [5])

151 = 0 5 [ 1t 0 < =
0<r<1
Suppose that 0 < p <o, 0t > —1 and
1
dAa(2) = (1= |2)dA () = —(1 = |o?)“dxdy.
The weighted Bergman space AL, consists of all f € H(D) with (see [39])
1715, = [ f@IrdAate) < =

Let 0 < B < oo. The Bloch type space %P is the class of all f € H(D) for which
(see [38])

= [f(0)] +Slel]g(l — 21 @) <.
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The little Bloch type space %’g consists of all f € H(ID) such that

lim (1—[z*)?|f'(z)| =0.

|2 —1~

For 0 < p<eo, =2 < g<oo, 0< s < oo, the space F(p,q,s) ([36]) is defined as
the space of all functions f € H(ID) such that

1150 = O 500 [ |F QI (1= 1P)" (1~ lu(2)) dA@) <

Here ¢,(z) = (a—2z)/(1 — az) is the Mébius transformation of I that interchanges 0
and a. When g = p—2 and s > 1, it gives the Bloch space #. If p=2, ¢ =0 and
s =1, it is BMOA space, the space of analytic functions in the Hardy space H'(DD)
whose boundary functions have bounded mean oscillation.

Let f,g € H(ID). The Volterra integral operator V, is defined by

Vof(z) = /Ozg’(w)f(w)dw, z€D.

From [2], we see that V, is bounded on Hardy spaces if and only if ¢ € BMOA. Aleman
and Siskakis in [3] showed that V, is bounded on the Bergman space A? if and only
if g € #. Siskakis and Zhao in [22] proved that V, is bounded on BMOA if and only
if ¢ € BMOA|og. Xiao in [34] proved that V, is bounded on Q; if and only if g €
Qfog. The boundedness and compactness of a more general operator between F(p,q, s)
and Bloch-type spaces were characterized in [27] (for a special case see also [11]).
The operator V, and its generalizations have attracted attention of many authors. See
[1,4,7,8,9,10, 11, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 37]
and the references therein for more results of the operator V, and their generalizations.

In this paper, we study the boundedness of Volterra integral operator V, acting
from AL to F(q,qt —2,s). More specifically, we prove that V, is bounded from A%, to

t—2—o
F(q,qt —2,s) if and only if g € B , when ps > p —q; V, is bounded from A%,

to F(g,qt —2,s) if and only if g € F(%,(qt —2-1%)0 %) when ps <p—gq.
Moreover, the norm and essential norm of the operator V, are also investigated. This
paper is a continuation of some previous investigations (see [18, 33, 35]), but our results
here are more general. Generally speaking, the case of ps < p — ¢ can not be deduced
by using tent spaces (see [ 13] and [34]). Thus, the interesting way is deducing with the

case ps < p — q. For higher-dimensional case, we refer to [14, 15].

In this paper, the symbol f ~ g means that f < g < f. We say that f < g if there
exists a constant C such that f < Cg.
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2. Boundedness of the operator V,

In this section, we are going to give some auxiliary results and the characterization
of the boundedness of V, : Al — F(q,qt —2,s). Let I be an arc of dD and || be the
normalized Lebesgue arc length of 1. The Carleson square based on I, denoted by S(1),
is defined by

S(1) = {zzre"" eD:1-|I|<r<1,e® el}.
Let u be a positive Borel measure on . For 0 < s < oo, u is called an s-Carleson

measure if
u(S(1))
1coD |1\‘

< oo

LEMMA 1. [36] Let 0 < p < oo, =2 < g<oo, 0<s< o and g+s> —1. Then
fEF(p,q,s) ifandonlyif du(z) = |f'(2)|P(1—|z|*)7**dA(z) is a bounded s-Carleson

measure.

The hyperbolic distance (Bergman metric) of z and w in D is denoted by

1 1+
W) = = log ————2-,
Plow)=3loe 2

A sequence {z;}7_; in D is called an §-lattice in hyperbolic distance if D =J7_; D(z;,9),
where D(z;,0) ={weD:B(w,z;) <8} and B(zi,z;) > g fori#j.

LEMMA 2. [39] Suppose o0 > —1 and 0 < p < eo. There exists a positive number
0o such that for any 6 € (0,8y), any 0 -lattice {zj} in D, and any

m>max{—1,2<1—l>},
p

the following statements hold.
(1)If f € AY, then there exists {a;} € (P with H{aj}He,, < C||fllp,e Such that

) = T

—
7=z

(2)If {a j} € (P, then the function f defined by the above series converges in Ag‘
and

1£llp.e <Cl{aj} |-

LEMMA 3. (Khinchine’s inequality) [12] For x € [0,1), let rj(x) =ro (2/x), j =
1,2, with

1, o<y-Dl<1)2,
mw_{—LIHSy—M<L
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Then for any 0 < p < e and integer N > 0, there exists ¢, > 0 such that

N , p/2 P i , p/2
cp (26|cj| ) < ) dx<6—<2’cj’ ) .
j:

P \j=0
Now we are in a position to state and prove the main result in this section.

1| N
D cjrilx
=0

THEOREM 1. Let 1 <g<p<eo, 0<s< 1, gt+s5>1and —1 < a<min{pt—
2,pt—1— T}‘ Suppose that g € H(D). Then the following statements hold.
(1) When ps > p—q, Vy is bounded from A% to F(q,qt —2,s) if and only if

pr—2—o

gEAB P . Moreover,
Vel = llgll_mz-a-

(2) When ps < p—gq, V, is bounded from AY, to F(q,qt —2,s) if and only if

geF( b4 (qt 2_@)_;9 o )
P—aq

P/’ pP—q9 pP—4g
oy p
ie. |g’(z)|pqu(1 — |Z|2)(‘1’ 2 p) “1dA(z) isa ﬂ-Carleson measure. Moreover,
V ~ o pS_ N .
1Yl ~ gl -0 2, 2
Proof. (1). Suppose ps>p—q and g € % By Lemma 1, we need to show
that the measure
dpy, () (@) = [Ve(f) @)]" (1= [z dAR) = |£(2)]7 |&'(2)|* (1 = [/} * > dA(z)

pr—2—o
is an s-Carleson measure for any f € AL. If p=gq,using g€ % 7 , we obtain

lg'(2)|" (1= |z 2 < HgH’;,,,,z,a (1—1zP)*, for zeD.
¥ P
Thus,
IVeflI7 (g gr—2.) =sup /D |(Vef) ()P (1 = |2*)P 2 (1 — | @u(2) |*)*dA(2)

=sup | 1(2) @7 |g'@)]" (1= 1272 (1 = [ga(2)[*)'dA(2)

Sllgll” oo sup [ 1F@)IP(1—[2)* (1= |@a(z)*) dA(2)
B P acDJ/D

SIAE NN’ paa -
o %71,

If p> g, since

€' )| (1= ()"

pr—2—a
B P
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holds for all z € D, we have

_ 0
/@)1 (L= 2 S gl oy (1 —P) 77727, for zeD.
B "
For any arc I C dID, using Holder’s inequality, we have

My, () (SU) = /S o @ |g’(Z)|q (1- \zlz)‘”*z*“dA(z)

el e [, OIS @

ST g VTS |z|2>°‘dA<z>)Z (f, (-0 ) "

Noting that ps > 1, we deduce p— —2 > —1, which implies that (see [33, p. 138])

S

[ = 1F%dAG) ~ 117
(1)

Hence, '
M) (S()) ”g”l;pr—Z—a 113 11,
B P

which implies that

M, (n(SU))

q ~
el g™ 2 =

q q
,S ||g||'%pt7§70! ”fHAg‘ <

That is, V, is bounded from A} to F(g,qt —2,s). Moreover,

Vel S Mgl mzea-

On the other hand, suppose that V, is bounded from A%, to F(g,qt —2,s). For any
acD,let

1 —|a|
70:44
(1—az)'™»
It is not hard to check that f, € A}, and || fallaz ~ 1. For b€ D and r >0, let D(b,r) =
{zeD: B(b,z) < r} denote the Bergman metric disk centered at » with radius . From
Proposition 4.3.8 in [39], we see that

Ja(z) =

(1—p]?)?* _ 1 _ 1 1
[1—bzl¢ (1=l (1=[bP)>  [D(b,r)]
when z € D(b,r), where |D(b,r)| denotes the area of the Bergman disk D (b, r). Thus,

/D( @I |8 )| (1= [1)7 (1~ | 9al(2) ) dA(2)

< /Ifa 191/ @) (1= P21~ u(@) PYAR) £ Vel gz
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Noting that
1 1
|fa(2)] ~ ST ~ Ty z € D(a,r),
(I=lal?) 7 (1=[zP) >
we get
@) B s
(1—1aP) T @I S [ R (- P20~ () aA)
Vel ) < IVl

—2—-a

which implies that g € # = and

el mz-a SVl
From the above proof, we see that

Vel = ll8ll_n-2-a-

(2) Suppose that |¢/(2) 25 (1 - 2P) 27~ %) #744(2) is a L= -Carleson mea-
sure. By Lemma 1, we need to show that the measure

dity,()(2) = |Ve(f) (2)|* (1 = 27> dA(z)

is an s-Carleson measure for any f € AL . For any arc I C 9D, we have

(S = [ 1@ @ (1~ ) da

4 r—q
4 L p
<( [, @ra-lma)" ([ € o)
S(1) S(1)
q y 5o
<Ay (117°9) 7 N8l g (zoaey o o)
< el o I
NHfHAI HgH F(2L (qr-2-9%) ;20,25 ‘ %,
which implies that
My, () (S(T))
q ~ sl < q
||ng||F(q,qt72,S) Isgl;%) I ~||g|| F( (qi—2— ﬂ)pL_pL ||fH

That is, V, is bounded from A} to F(g,qt —2,s). Moreover,
IVell S llglpipe a2y 2 ooy

pP—q’pP—q

On the other hand, suppose that V, is bounded from A} to F(q,qt —2,s). Let
{z;} bea §-lattice in D, m > max{—1,2(1—1/p)} and

)
+2+_0!

(I—z52)"" 7
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By Lemma 2, we know that for sufficient small 6 > 0, and any A = {7L j} € (P the
function
7) =X 4;fi(2)
J

is a function in A%, and
1 fallaz, < ClIA]er-

For every x € [0,1), let A(x) = {A;rj(x)} . Itis clear that
[AG)[ler = |Al[er,  for x € [0,1).

Using Lemma 1 and the fact that V, is bounded from A}, to F(q,q7 —2,s), we have

I / [ @) [g'@)|" (1= <)~ dA(2)

§HVgIIq’|fA< 14

Maz S WVl IA@IE < Vel “IANG-

Integrating both sides of the above inequality over [0,1) with respect to x, and then
using Lemma 3, we obtain

q

2
ho (Z ) ’(Z)|2> [§/@)[* (1= ey aA @) S HFIVe A
j
For convenience, write D; =D (Zj’ ). We have
/lfj lqlg lq — 2" dA(z)

~(1=g) @* (1= )" ~*dA(2),

which implies

2+a / |g |’1 |Z| f]l 2+\dA( )
DS (1 — |Z |

~ 2 / W |£i(2) ) g/ (2)|" (1 — |22 dA(z)

Jj:D;cS(I

q/2
< 2, (2114 A ) ¢/ (1~ ) 2"dA()

JDCS

q/2
N/ ( Al | fic( )l) g (2)|* (1—|2))7*"*dA(z)

SHPIVE AN
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This further implies, by the duality relation of ¢ 7 and (77 , that

rP—q

P e

pP—q

e [, QDA AR
sDesm) \ (1— }Z/

Let z € D; and D(z,r) C D;. Using the sub-mean property of |g'|, that is,

QIS G o, [0 A

we easily deduce that

’g/(z)’q (1 _ ‘Z|2)qt72+_\v,%

5(1—||)_%_2/ €O = Ry aac

(I—IZ\ / g (W) |7 (1= [w[*)" 25 dA(w).
Therefore,
_ 9% _p_
/ ¢ 1P (1— ) ) Faa)
=
(1—|Z +2 (/ ’g |51 ‘Z| qt— 2+sdA( ))
L
P—q
~ |‘1 ‘Z| qt— 2+sdA()
l — Zj
That is,

Pq

3 [ @i aa) < 1 vl

Foranarc I, let L; = {] D;NS(I ;é@} Clearly

nc o,

JEL;
Let J be the smallest arc on dID such that

U pjcs@).

JEL;
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It is not hard to see that / C J and |J| ~ |I| (see [33]). Thus,

[, @I ) o E)
=) / #5112 F) Faag

JEL;

P

P — 9%
S 2 /Ig’(z)| "’(1—\Z|2)(qt s ")P*qu(z)
) .
S A =T A=

which implies that g € F( gt —2— 9%y ﬂ) and

P/ p—q p—q
s v < VL]l
||g||F (L (qr—2— qﬂ‘)#,ﬁ)wn el

From the above proof, we see that
IVell = llgll (2o qr—r—a2) v ps ).

The proof is complete. [

3. Essential norm of the operator V,
Let us recall the definition of essential norm. Suppose that X be a Banach space
and T is a bounded linear operator on X . The essential norm of T is the distance of T
to the closed ideals of compact operators, that is
IT|le =inf{||T — S| : Sis a compact operator on X}.
For some results on essential norm of integral-type operators see, e.g., [6, 19, 23, 24,

26, 28, 29, 30, 35]. Note that T is compact if and only if ||T||o =0. Let X and Y be
two Banach spaces with X C Y. If f €Y, then the distance from f to X is defined as

disty(f,X) = inf £ ~ gl

LEMMA 4. [37] If o >0 and f € B*, then

limsup(1 — |z[*)¥|f(z)| ~ distga (f, BE) ~ limsup || f — fr|| z«.

lz|]—1~ r—1-

Here fr(z) = f(rz), 0<r<1, zeD.
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LEMMA 5. Let 1 <g<p<oo, 0<s<oo, gr+s5s>1and —1 < o < min{pr —
_( qoy _p
1 1y IfgeF(,, Lo (gt —2—1%) 55, 20), then

o N
distypa (o-12) 2. o) (8»F0(pp_qq (gr—2-L5- L P ))

P’ r=q'p—q P P—4q p—q
P—q
. L —0_9%y_r_ % vd
~ <hmsup/ |g P -z |2)(qt P)ra <1 - |(Pa(Z)|2> qu(Z)>
la|—1
~1 p ps .
llrfllitllpllg 8rllp(re (g—2-a2) o v

Proof. The proof of the lemma is similar to Lemma 2.5 of [37], thus, we omit
O

LEMMA 6. Let 0 <r<1, 1 <g< p<oo, O<s<oo qt—|—s>1 -l<a<

—o
min{pt—Z,pt—l—T} andps>p—q. Letge% . Then Vg, : Al —
F(q,qt —2,s) is compact.

Proof. Let {f,} be any function sequence such that || fu[|,» < 1 and f, — 0 uni-

formly on compact subsets of D as n — co. We only need to show that

From the growth of AL, we have |f(z)] <

nlﬂg, Ve, f HF(W—“) =0.

/11,40 .
< 7/42% Noting that

(1-1zP)

we get

/ 1@V g1(@)14(1 = 272 (1 — |9a(2) *)*dA(2)

IIgIIq pza

ST S [ IA@E0 - P aac)
1—1r2)

||fn||AP Hqu pt—2—o

a D _p_42+a)

S o EED /(1—|Z|2)qt rdA()
(1—1r2) D

Sj”fn”A(’;HgH;ptf;fd .

where we used the fact that [;(1 — [z]*)*dA(z) <0, o> —1. Thatis

q q q
||Vgrfn||F(q7q[727_y) 5 anHA/&”g”%plfgfa .
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In addition,
gt—2— q2+0!)

2\gt—2
L@ =[P S (1= [z)
Then by the Dominated Convergence Theorem we get the desired result. [J
Noting that
o (p1—2)(p—q)
gEF(ﬂ,<ql—2—q—>L ps )C@ P2 ,
P—q p’pP—q9 P—q
we get the following lemma by the similar argument as Lemma 6.

LEMMA 7. Let0<r<l I1<gEp<oo, 0<s<oo, gt+5>1, —1<a<
min{pr —2,pt — 1 — }andPS<p q- If g € F(L (g —2—47) 50 2,

then Vg, : Ab — F(q,qt —2,5) is compact.

We also need the following lemma.

LEMMA 8. [32, Lemma3.7] Let X,Y be two Banach spaces of analytic functions
on D. Suppose that

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T:X —Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if for any bounded sequence {f;} in X such
that {f;} converges to zero uniformly on every compact set of D, then the sequence
{Tf;} converges to zero in the norm of Y .

THEOREM 2. Let 1 <qg<p<oo, 0<s<oo, gt+s>1and —1 < a < min{pt—
2,pt —1— @} Suppose that g € H(D) such that Vy : AY — F(q,qt —2,s) is
bounded. Then the following statements hold.

(1)
FORT g\ P2z, o pfflgfa
HVgHefvl‘lrlnsup(l—\ZI ) 7 lg @ mdist paa(g %y "),
z|—1- K
when ps > p—gq;
(2)
pq qoeN  p ps
Velle = distg pa (o aay p ps (g,Fo<—7<qt—2——>—7—>>
H He F(p J(gt—2 A=) P—q p)p—q' p—gq
rP—q
. pq _o_qoy _p_ ps_ Pa
~ <hmsup/D |gl(z)|p—q (1 _ ‘Z|2)(qt 7 )pq <1 _ \¢a(z)|2> P qu(Z)> ,
al—1

when ps < p—q.
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Proof. Let {I,} be the subarc sequence of 9D such that |I,| — 0 as n — . Set
wp = (1—=1L])¢, € D, where §, is the center of [,. n=1,2,.... Then

L= wn| 2 [T =Waz| % L], z € S(L).

Take

fn(Z) = LW”DZL

(1 —W_nz)H in

Then f, — 0 uniformly on the compact subsets of D as n — o and || fy ||,z < 1. Thus,
for any compact operator S from A%, to F(q,qt —2,s), by Lemma 8, we have

JI_IEO HanHF(q7qt—2,s) =0.
(1) From the above facts, by using Lemma 1 we deduce

HVg _SH thsup (”ngnHF(q,qtfls) - HSf"HF(q,qtfls))
n—oo

=limsup Ve fullF(g.a-2.5)

. 1 s 7
ziimsun (oo [ (0GAY Q- )" 0a) )

n—oo

~limsup (L [ h@Ig @ - le)q’H'YdA(Z))

n—oo |In‘s S(In)

_ 1 24
stimsup | ——or [ (/@11 ) 2HdA()
oo 1A ‘S+ qT S(I)
t—2—o
>limsup(1 — [wal?) 7 | (wa)],

n—oo

which implies that
t—2—o
IVele 2 timsup(1— [wa?)" 7 |g (wn)|
and hence
. ) pr—2—o / . pr—2-a
[Velle Z limsup(1 —[z]) ~ 7 [¢'(z)| ~ dist(g, %, " ).

|2 —1~

On the other hand, by Lemma 6, V,, : A}, — F(q,qt —2,s) is a compact operator.
Combining this with Theorem 1 and the linearity of V, respect to g implies

||VgHe < HVg—Vng = ||Vg—gr|| ~ Hg—ng%m—g—a»
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where the last asymptotic is deduced by the boundedness of V,_, . By Lemma 4, we
have
pr—2—a

IVelle S limsup||f = fyllge < limsup(1 —[z*)" 7 |g'(2)| ~ dist(s, %, ” ).

r—1 |z]—1~

(2) By using Theorem 1, Lemmas 5 and 7, similarly to the proof of (1) we can get
the desired result. The proof is complete. [

COROLLARY 1. Let 1 < g<p<oo, 0<s<oo, gt+s>1and -1 <<
min{pt —2,pt — 1 — @}. Suppose g € H(D) such that V, : Ay, — F(q,qt —2,s) is

bounded. Then the following statements hold.
pt—2—o
(1) Vg is compact from Ay, to F(q,qt —2,s) if and only if g € B, *
ps>p—4q;

(2) Vg is compact from A%, to F(q,qt —2,s) if and only if g € Fo(%,(qt -2-

when

qoN_p_ _ps _
p)p_q,p_q)whenpsgp q.
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