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GENERALIZED GAGLIARDO-NIRENBERG INEQUALITIES
VIA MURAMATU’S INTEGRAL FORMULA
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(Communicated by I. Peri¢)

Abstract. We derive three generalized Gagliardo-Nirenberg inequalities in Lorentz, BMO and
homogeneous Lipschitz spaces. They have the forms

IV fllip ey S 1F 1 faomay 1V Fl 8
L ]R )
HkaHLl’-ﬂ‘l (RI) ~ HfHLq 2 (R4) HmeHBMO (R4)?

1F 1l may S 1F N fgem ety 111 Rd)

whose parameters satisfy specific conditions. We use the so-called Muramatu’s integral formula
as the main approach throughout the paper.

1. Introduction to the main results

The original inequality
IV £l ety S 1Sy 1V 11 e (1.1)

was investigated independently by Gagliardo in [6] and Nirenberg in [14]. Due to its
widespread applications in partial differential equations, it is of fundamental interest to
generalize the inequality to other function spaces. In this paper we prove interpolation
inequalities analogous to (1.1) in the setting of Lorentz, BMO and Lipschitz spaces. We
follow a somewhat non-traditional approach, making use of the so-called Muramatu’s
integral formula. Our work is inspired by the paper [9], in which Miyazaki thoroughly
investigated the integral representation formula originated in [13] by Muramatu and
then applied it to study various aspects of Sobolev spaces.
To describe our main results, define

N:={0,1,2,...} and N*:={1,2,3,...}.
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For each function f defined on R and k € N*, the notation V¥ f is understood as
a tuple of all k-th order derivatives of f. Given a normed space F, we write VAf € F
to mean that every component of V¥ f belongs to F . Moreover, we set

IVEAllE = 20 1107l

yENd:|y|=k
Let p,q,r € (1,%), o € (0,°0] and k,m € N be such that 0 < k < m. We consider

IV Nty S 11 Fam ay IV 5 g (1.2)

and ask under which conditions on the parameters (1.2) holds for all f € C(R?). Us-
ing a scaling argument and appropriate test functions, we derive a necessary condition
for (1.2) to hold, which is

m—k—d(t-1) f
0= € [071——] . (1.3)
m—d(t-1) m
roq
The main difficulty lies in finding a sufficient condition. McCormick et al. proved
in [11] thatin thecase k=0, r=2,g<p, ¢ =p and m—% > —%,thereholds

Hf“U’(]Rd ||fHLPP (Rd) S ”fHLq (R4) HmeHLZ (Rd)" (1.4)

This result was later strengthened in [4, Corollary 2.2], where the condition ¢ = p is
dropped and one arrives at

1o (ray S IIfHLqm RY) IV £l Rd
Moreover, [4, Corollary 2.5] asserts thatif k=0, g < p and m — % > 0, then
11 oy S 1F 1 paee (RY) (¥l (RY)" (1.5)

On the other hand, if « = p, g=r < p and m— % >k— 4, then we know from
the Sobolev embedding theorem (cf. [9, Theorem 3.1]) that

IV Fll ey S 1A gy IV £ (RY)" (1.6)

In this paper, we will give a sufficient condition for (1.2) which extends all the
aforementioned estimates (1.4), (1.5) and (1.6). Specifically, we will show that in
addition to (1.3) if the conditions

d d
g<p and m——>k—— (1.7)
r p
are also satisfied, then (1.2) holds for all f € L9~ (R) with V"f € L"*(R?). It is
noted that (1.3) and (1.7) together imply either

p>r or q<p«:<p<r,
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where
1 1-£ £
*

Indeed, suppose (1.3) and (1.7) hold. Suppose further that p < r. Using (1.3),
we arrive at

Equivalently,

worad) <A o)

since ¢ < p and m — % > k— % together guarantee that m — d (% — é) > 0. In turn,

( k)(ll) 11
=) (=-=)<=-=
m r q r P

we obtain

and hence

This implies p. < p.
To see that g < p., we argue as follows. First, g < r due to the assumptions that
g < p and p < r. Secondly,

k k k k
R I L

1
—=—mm m o _
J2 q r q 9 49
which means g < p.. Thus the claim follows.

The whole discussion above is now summarized in our first main theorem as fol-
lows.

THEOREM 1. Let 1 <g<p<oo, 1 <r<ooand O< a<oo. Let kym €N be

such that P P
0<k<m and m——>k——.
r p

Assume either
p>r or q<p.<p<<r,

where p. is given by (1.8). Let f € L9 (RY) satisfy V"f € L"*(RY). Then VXf €
LP%(RY). Moreover, there exists a constant C = C(p,q,r,k,m,d, o) > 0 such that

IV Aty < C AN gm ey 1V ey (1.9)
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where

A remark is immediate.

REMARK 1. The main emphasis in Theorem 1 is that (1.9) holds for all o €
(0,°0]. As such we restrict our attention to the range

ee<o,1—f).
m

Nevertheless, certain estimates of the form (1.9) remain valid for the endpoint values of
0. In particular, there exists a constant C = C(p,r,m,d) > 0 such that

£l p=(ray < CUV™Fll o ey (1.10)
forall f € L™ (R?) with V" € L"(R?), where

1 1
l<r<p<oe, meN" and mzd(———).
r.p

This means the case 6 = 0 is possible. To see this, recall from [3, Theorem 4.2(i)] that
(1.10) holds for m =1, i.e.,

11l Lpe= ey < ClUV Sl roe (ma)- (1.11)

Then (1.10) for a general m € N* follows by iterating (1.11) m times.
Next there exists a constant C = C(p, q,r,k,m,d) > 0 such that

IVl < A 2y 9" U e
forall f € L9=(R?) with V"f € L (R?), where
l<g<p=pi<oo, kmeN, 0<k<m

and p, is given by (1.8). This implies the case 8 =1 — % is also possible. See (3.7)
and its related arguments below for the proof of this statement.

Our second theorem concerns the inequality of the form
k
IVl rn gty S 11 e ey V" F g

The result extends [10, Theorem 1.3], in which o4 = p and 0p = g were consid-
ered.
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THEOREM 2. Let 1 <g<p <o and 1 < ay,0n <. Let k,m € N be such that

k k
0<k<m, qz(l——)p and 0 < (1——)061.
m m

Let f € L9%2(RY) satisfy V" f € BMO(R?). Then VKf € LP*(RY). Moreover, there
exists a constant C = C(p,q,d,k,m, 0, 0) > 0 such that

IV 1l e <Clfiln () IIV’"fIIBMO Ri)- (1.12)

As a concluding demonstration of Muramatu’s integral formula, we prove an inter-
polation inequality involving the Lorentz space L%*(R?) and the homogeneous Lips-
chitz space Ap(R?), which is Theorem 3. Here the space A, (R?) is understood in the
sense of [7, Definition 6.3.4]. The result of this type was lately updated in [4, Theorem
2.4] with indices 1 € (0,1) and ¢ > 0. Our result asserts the validity of the estimate for
all n >0 and ¢ > 1. As such, Theorem 3 extends [4, Theorem 2.4] in certain aspects.
That Theorem 3 holds only for g > 1 is due to a technical reason. More specifically,
its proof requires the sharpened version of Young’s inequality in Proposition 3 below,
which in turn dictates g > 1.

THEOREM 3. Let | <g<p<oo, 0< o <ooand N >0. Let f € L(RY)N
Ap(RY). Then f € LP*(RY). Moreover, there exists a constant C = C(p,q,c,1) >0
such that

1/ llzpaa) < CIANZgegay 1K, Cray: (1.13)

d

where 0 = € (0,1).

d
n+y

It is known that if m € N and r € [1,00) satisfy 1 =m — % > 0, then the Sobolev
space W™ (RY) is continuously embedded in the Lipschitz space An(RY). Hence
Theorem 3 implies (1.5), which is also [4, Corollary 2.5].

The paper is structured as follows. In Section 2 we recall necessary definitions and
results as well as briefly discuss Muramatu’s integral formula. The proofs of Theorems
1, 2 and 3 are presented in Sections 3, 4 and 5 respectively.

2. Preliminaries

In this section, we collect the essential background on function spaces, embedding
inequalities, Hardy-Littlewood maximal function and Muramatu’s integral formula.
2.1. Function spaces

We provide the definitions of Lorentz, BMO and homogeneous Lipschitz spaces.
We start with the Lorentz space.
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DEFINITION 1. For 1 < p < e and 0 < o < oo, the Lorentz space Lp7°‘(Rd)
consists of all measurable functions g : R — R such that |g]| pa(rd) < °°, Where

1
oo o ds\ @
(p/ sa}{xERd:|g(x)|>s}|l’?s) if 0<o<eo,
0
18]l ra(ray =
1
sups |[{x € R? : |g(x)| > s}|? if o0 =oco.
5s>0

Lorentz spaces can be realized as interpolation spaces of the pair (L!,L™) via
K-method. A brief summary of this fact is as follows. More details can be found in
[15] and [2]. Let Xy and X; be Banach spaces which are continuously embedded in
a Hausdorff topological vector space 2 . For each ¢t > 0 and f € Xy + X, define the
K -functional by

K(t,f:Xo,X1) :=inf{||u||x, +1|v|x, 1 u € Xo,v € X1, u+v=f}.

Let 0 <6 <1 and I <r<e. Wedenote by (Xo,X;)g, the space consisting of all
functions g € Xo + X; such that [[g[|(x,x,),, < °°, where

1
0 r d T
(/ {t’eK(t,f;Xo,Xl)} —’) if 7 < oo,
0 t

supt O K (1, f:Xo,X1) if r=oco.
>0

”g”(Xo?Xl)eJ =

The space (Xo,X1)g,» equipped with the norm ||.|(x,x,),, is @ Banach space. It turns
out that forall 1 < p < e and 1 < & < o, we have the relation

(L'R),L7(RY)), 1, =LPH(RY).

Moreover,

P

1 ||g||LP~u(Rd) 2.1

181l 2p. ey < ”gH(Ll(]Rd),L‘”(Rd))li%‘a <

forall g € LP*(RY).
Next we define the space BMO(RRY).

DEFINITION 2. The space BMO(R?) consists of all functions f € L] .(R?) such
that

1
I lmogssy = sup g7 [ 17— falde < =

1
where fp:= B /B f(x)dx and the supremum is taken over all balls B in R?.
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It is straightforward that L (R?) ¢ BMO(R?) and

1/ lspo@ey < 21l = (may

forall f € L*(RY).
Lastly, we define the homogeneous Lipschitz space. We follow [7, Definition
6.3.3].

DEFINITION 3. Let h € R?. The difference operator A, is defined by

Apf(x) := flx+h) = f(x)

forall f € C(R?) and x € RY.
For each k € N*, the operator Alf; is defined recursively by

AL f = Anf,
ALE = A(AK ).

Let 1 > 0. We denote by A, (RY) the Lipschitz space of order 7, i.e., the space
consisting of all f € C(R?) such that

4" )
Hf”A,, gd) = |[fll=(ma) + sup  sup hT <o
xeR heRA\{0} I

Here [17] denotes the largest integer which is smaller than 7.
We denote by Ay (R?) the homogeneous Lipschitz space of order 1, i.e., the space
consisting of all f € C(R?) such that

Al
Hf”Aﬂ (R¢) “= SUP  sup w < oo

veRdperd\fop A7

2.2. Necessary inequalities

We present some estimates to be used in the proofs of our main results. We start
with an interpolation inequality.

PROPOSITION 1. ([4, Theorem 2.1]) Let 0 < g < p<r<eoand 0 < o0 L oo, If
feLr=(RY)NL*(R?), then f € LP*(R?) and there exists a constant C = C(p, q,r, o)
> 0 such that

”fHLPﬂ(]Rd CHfHLq (Rd) Hf”er Rd)’

where 6 € (0,1) satisfies
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Next we state Young’s inequalities for L and weak L” spaces.

PROPOSITION 2. ([8, Theorems 1.2.12 and 1.2.13]) Let 1 < p,q,r < oo satisfy

1

1
q por
Then for all f € LP(R?) and g € L' (RY),
1f* gl Lamay < 181l rmay 1f 1| o (may-

Moreover, if 1 < p,q <eo and 1 < r < oo, then there exists a constant C =C(p,q,r) >0
such that

1 * 8l =gty < Clgllpr ey 1F1l ey

forall f € LP~(R?) and g € L' (RY).

Young’s inequalities can be sharpened as follows.

PROPOSITION 3. ([8, Theorem 1.4.24]) Let 1 < p,q,r < oo satisfy

1 1 1
—+1l==+-.
q pr

Then there exists a constant C = C(p,q,r) > 0 such that
1/ *&llaray < Cllgllr@ay l1f 1 1po=(ray
forall f € LP>(R?) and g € L' (RY).

We also require a version of Holder’s inequality for weak spaces.

PROPOSITION 4. ([8, Exercise 1.1.15]) Let k € N* and f; € L7/ (R?), where
0<pj<eoand 1 <j<k. Let

Then
k

I17

J=1

1k =k
<p 7 ITp TTIfilleie ey
Lr=(R4) Jj=1 J=1
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2.3. Hardy-Littlewood maximal operator

We recall the definition and some boundedness properties of the Hardy-Littlewood
maximal function.

DEFINITION 4. Let f € Ll (R?). The function
1
M)W i=sup s | f)]dy
550 [B(x,8)| JB(x.6)

is called the (centered) Hardy-Littlewood maximal function of f, where B(x,8) C R¢
denotes the open ball with center x and radius & in RY.

It is well known that the Hardy-Littlewood maximal function acting boundedly

between Lorentz spaces.

PROPOSITION 5. The following statements hold.

(i) -2 ()| 1=ty < 1 f |l (may forall f € L=(R?).
(i) There exists a constant C > 0 such that

1A ()| 1y < ClS N 1 ey

forall f e L'(RY).

(ili)  Forall 1 < p<eoand 1 < o < B < oo thereexists a constant C=C(p, o, 3) >0
such that
||j/(f)||le,B(Rd) < C”fHLpa(Rd)

forall f € LP*(RY).

See [8, Theorem 2.1.6] for (i) and (ii). Statement (iii) follows from (i) and (ii) as
well as the Marcinkiewicz interpolation theorem and inclusion relation between Lorentz
spaces.

2.4. Muramatu’s integral formula

We quickly construct Muramatu’s integral formula. For more details, see [9] and
[10].
Define
Ki(x) = 17K (3)

for each function K on R, x € R? and ¢ > 0. Denote by 2'(R¥) the space of distri-
butions on R?, i.e., the dual space of C°(R¢). Forevery f € Z'(R?) and ¢ € C°(RY),
the value of f at ¢ is written as (f,¢) and the convolution ¢  f is given by

¢xf(x) = (fr0(x—))

forall x € RY.
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Let o € CZ(B(0,1)) be such that /d o(x)dx=1.Let m,N € N*. Set
R

ox)= Z %8a(xaa)(x)) and K(x) = Z M&a(xaw(x)) (2.2)

|ot| <N+m o |ot|=N+m
for all x € RY. Then K can be expressed as K = 2 \Bl=m dPKPB) | where KB) ¢
CZ(B(0,1)). Moreover, (2.2) implies that
d -
S o} =K 23)

forall x € RY.
Next let f € 2'(R%). Using equality (2.3), we can prove that

(o x N~ @ N = [ Hx ) & @4
for all x € R? and for all 0 < € < A < 0. In addition,
limgexf=f in 2'(RY). (2.5)
Combining (2.4) and (2.5), we obtain
f=lim ;K,*f?+(pl*f in 7'(RY). (2.6)

We call (2.6) Muramatu’s integral formula.

It is worth mentioning that when f belongs to a specific function space, the con-
vergence in (2.6) can be interpreted in a different way. For instance, if f € LL_(R9)
then the limit in (2.6) holds pointwise in R?. Whereas, if f € LP(R?) for some
1 < p < o then the limit in (2.6) converges in L’(R?). These follow from the fact
that the convergence in (2.5) holds either pointwise in R? or in L?(R?), depending
on whether f € LL (R?) or f € LP(RY) respectively (cf. [1, Theorem 4.22] and [5,
Theorem C.4.6]).

Now let y € N? be such that 0 < k := |y| < m. We apply (2.6) with f replaced
by d7f € 2'(R?) to obtain

.t dt
8yf:ili% : K,*&Yf7+(p;t*87’f. 2.7

Direct calculations confirm that

of = 1im/A Y ok ((ayldm)t*aﬁf) %-F?L_k((ay(p)l*f). 2.8)

e=0/e g5,

The first term on the right-hand side in (2.8) has the form

A
lim/g 2(1,%) ? —. G(x).

e—0
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We will use the fact that if f()’l llg(z, -)HL,,(R[/)% < oo with 1 < p < oo, then it follows
that G € LP(R?) and

A dt
16 oy < [ 8t ooy - (2.9)

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We manage the task by dividing
the proof into two cases, depending on whether p > r or g < p. < p < r < . Hereafter,
it is convenient to indicate the dependence of a constant C > 0 on certain parameters
using sub-indices. For instance, we write

Cpqr=C(p,q,r)>0.

Proof of Theorem 1. Let f € L4 (R?) satisfy V" f € L"(R%). Fix y € N such
that |y| = k. We use Muramatu’s integral formula (2.8).

Case 1: Suppose p > r. Let A > 0 be arbitrary. Since | <g<p and 1l <r < p,
there exist indices s,u € (1,e0) such that

1 1 1 1 1
—Hl=—t-=—+-.
P rou q s

It follows from Proposition 3 that

/A
0 LP(RY)

A
<cw< Lt 3 @K 19° Fl e
1BI=m

2 fm—k=1 ((371{(!3))[ ,@ﬁf)
[Bl=m

dt+271(979) * f | oy

A0 @)l s ey f”Lll“’"(Rd))

A d
=Cpaqr (/0 D) ”aYK(ﬁ)”L”(Rd) ||aﬁfHU~°°(Rd)dt
|B|=m

d_q_
+A5 k”&Y(P”LS(]Rd)f“L%‘”(R"))

A 11 11
m—k+d(-—+ ) — m dll-1)_
< Gy ([ 019 g+ 47D 4

m—k—d(L-1 m —d(1-1)_g
< Cpgrima (A C=2) 197 il gy + 25 ||qu.m<Rd)), G.1)

d d
where we used m — — > k — — in the last step.
r p
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Using (2.8), (2.9) and (3.1) yields

mkd(

m 1)k
17 F Lty < Cpaima (x B IV oy + 4 ||qu,m(Rd>).

(3.2)
Since A > 0 is arbitrary, we can optimize the right-hand side of (3.2) to obtain
”ayf”Ll’(Rd) S Cpar, =(R4) ”me”U‘” (Rd)”
This estimate holds true for all multi-index y of length & and therefore

IV £l @) < Cpgarkama 1 | e gy IVl -5 ) (3.3)

Choose

d .
p+max{q,r} + " if k+%—m>0,
—_ . .

d =
3 an ) 2]

P1=
2p otherwise.

Then

d d d
1<g<p <p<pa, m——>k——>k—— and p,pa>r.
P2 P1

We infer further from (3.3) that

||kaHLl’i>°°(Rd) <Gy, ”kaHLl’i(Rd Crm,piq.rd ||fHLq (Rd) ||meHLroo RA)’ (3.4)

—k—d(
_d(%_

Nextlet n € (0,1) be such that

where

==

_ J, ie{l1,2}.

)

6 =

=

Applying Proposition 1, we obtain

IV £llra gy < Cpoprps IV oy Hwﬂm

[°] +9 1 1-6 6,(1—
< CpgrakmalFllgytean ™ ||V'"f||L,;H;Jd @)

Since 6;M + 6,(1 —n) = 6, the desired inequality (1.9) follows.
Case 2: Suppose g < p < p < r, where
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In this case, we start with the inequality

(@) (X)] < Ciom (A (F)) 7 (A (IV" 1) () (3.6)

for a.e. x € R?, whose proof can be found in [10] and [12]. The former uses the
Muramatu representation formula, whereas the latter uses the Sobolev representation
formula.

In view of (3.6) as well as Propositions 4 and 5, we deduce that

1-£ m
107 fll ooty < Comp.gr 2 (D)l o 2y -2 (IV fI)HLm Rd)
1— k

Ckm,pqr Hf”Lq m(Rd vafHLrw Rd

Therefore,

1__
IV Al oty < Cempar 11 0 2 g IIV’"fIIL,m Ri)’ 3.7)

Choose

1 1 .o r(m—k)
1 — f <1,
pi=p. and p= 2( +1—’(’”d—")>r b

2r otherwise.
Then
d d
Il<g<pi<p<py, m——>k—— and py>r
r P2
Combining (3.3) and (3.7) together yields
HV fHLPl < Cemprgrd ”fH = (Rd) v f”L'Nle
and

1-6
IVE £l o2y < Cps [V £l 12 () < Clompr.gra £l o @ty V"I | o
where
m—k—d<l—L_)
6, = S ie{1,2}.

RN

o =1-%
m

Note that

by construction.
Next by repeating the procedure used to obtain (3.4) and (3.5) in Case 1, we
arrive at

k m
IV Al (ray < Cpganokama | Faomeay IV 5

The proof is complete. []
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4. Proof of Theorem 2

Before proving Theorem 2, we comment on our method of proof.

REMARK 2. Theorem 2 extends [ 10, Theorem 1.3]. Despite the fact that our proof
of Theorem 2 and [10, Proof of Theorem 1.3] are both based on Muramatu’s integral
formula, we present here a different viewpoint applying the K method in interpolation
theory. In contrast, [10, Proof of Theorem 1.3] makes use of the Hardy-Littlewood

maximal operator.

In the course of proof, we require the following observation.

LEMMA 1. Let ¢ € C*(B(0,1)) be such that /d ¢ (x)dx = 0. Then there exists
R
a constant Cy 4 > 0 such that

Sug||¢t*g||Lw(Rd) < Co.a I8l gmoma)
>
forall g € BMO(RY).

Proof. Lett >0, x € R? and g € BMUO(R?). Then

(@ xg)(x)| = t_d/B(OJ) (e(x—Y) — ) ¢ (%) dy‘

<l | ) l80) =8| @

< 91l=(ray 1B(O, D) [18] | Brrora)

This verifies the claim. [
Now we prove Theorem 2.

Proof of Theorem 2. Fix f € L¥*(R%)\{0} with V"f € BMO(R?) and y € N?
such that |y| = k. We use Muramatu’s integral formula (2.8).

Now fix s > 0. By the definition of the K-functional, there exist functions u; €
L'(RY) and vy € L*(R?) such that

us+vs=f and ||uSHL1(Rd)+sHvS||LW(Rd)<2K(s,f;L1,L°°). 4.1)

Let A > 0. By setting
Up =275 (7)1 xus)

and

A
V, = lim ( Y ok ((aﬁdm)t*aﬁf)) g <(87(p),1*vs>,
B=m !

e—0 £
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we deduce from (2.8) that
Af =Usy+ Vi a.e. on RY. (4.2)
Next estimate U, ; and V; ; separately. For U, ; one has
Ul ) < 27107 @)a Nl ey s 2 ety = 107 @1 1 ety A Nl ey (4:3)

by Proposition 2. To deal with Vj ; , first observe that
KB e c=(R?) and /d 9K B) dx — 0.
R

Consequently, Lemma [ and (2.9) assert that

m— t -
Vol < [ 3 0GP, 08 oy & 25107001 04
1Bl=m

. dt
Cod (/ >t kHaﬁfHBMOR" ‘HL “lvsll = Rd>
|Bl=m

= Gt (A" 19" Fllgasoqza) + A~ ||vs||Lm(Rd)). 4.4)

Combining (4.1), (4.2),(4.3) and (4.4) together, we may conclude that 97 f € L' (R?)
+L=(R?) and

K(s,07f;L',L7) < || U all 1 (gay + 5 1Viall = (ra)
< Gk (AR (s, il L)+ AV f o) (425)

If V" fll pro(ray = 0. then by letting 2 — oo in (4.5) and recalling that k> 0 by
hypothesis, we obtain K(s,d?f;L',L™) = 0. This in turn implies |[V*f|| ., ®d) =0,
whence the assertion of Theorem 1.2 is trivial.

Next suppose that [|[V" f||gyso(ray > 0. Since (4.5) holds for all A > 0, we may
choose A4 such that

ATEK (s, fiL'L7) = sA" V" f | gao ea) -
Then we obtain further from (4.5) that
o ko k m
K(s,07f;L',L7) < Guyasm K'“n (s, fiL',L7) |V fIIBMO Rd)- (4.6)

Keeping in mind the inclusion relation between Lorentz spaces, it suffices to prove

Theorem 2 when .
= (1 — —) o.
m

There are two possibilities.
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First we consider ¢, 0p < e. Then by combining (4.6) and the assumption that

M _4_,_k
o p m’

we derive

H&ny(Ll,Lm)1 o <G

1

1
B S B o I qe r‘l dS) “
sP m K" m (s, f3 L0, L —
fHBMO]R‘] (/0 |: ( f )

s
and hence

" k 1— &
19 iy, < Conka 19" Wy @D
P

4%

Secondly, we consider ¢y = ap = . Analogous arguments as in the first case
lead to (4.7). By virtue of (2.1) and (4.7), we have

g L
197 Fpen ) < 5 okt IV 1y 1 i oy

Thus we obtain Theorem 1.2. [

It is worth pointing out that the proof of Theorem 2 also yields a specific case of
Theorem 1 as follows.

PROPOSITION 6. Let 1 < p,g,r < oo, 1 < 0y,0 < oo and k,m € N* such that

Let f € L9%2(RY) satisfy V" f € L"(R?). Then VXf ¢ L% (R?). Moreover, there
exists a constant C = C(p,q,d,k,m,r,0,0,) > 0 such that

k

k

CIIfHLqJ{H@ IIV’"fllffﬂgd

HkaHLl’ﬂl (R) =

5. Proof of Theorem 3

We start with a technical lemma.

LEMMA 2. ([9, Lemma 9.5]) For each u € N*, define the sequence {b }j o SO
that the identity

i

v=1

v u—1 )
t) = bt/
J=0
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holds as a polynomial in t. If u =1 then the product on the left-hand side is regarded
as 1 and hence by = 1. Let K € CZ(RY) be written in the form

Kx)= Y 0°K“),
|ak:u71

where each K\%) satisfies K'*) € C*(B(0,1)) and /dK(a)(x) dx=0.
R

Let w € CZ(B(0,1)) satisfy /dw(x)dx: L. Set
R

u—1 -1
wen =0 3 515 e S (5@ K aPon,

|or|=u—1j=0 <a|Bl=j
and

Wi (x,y) =t‘2dW<;—C,§)

foreach t > 0. Then
Ki* f(x) =/ / Wi(x—y,x—y—uz) Al f(y)dydz
R4 JRA

forall x e R4,
Now we prove Theorem 3.
Proof of Theorem 3. Let f € L9 (R?) N Ay(R?) and A > 0. Since
L9 (RY) € L'(RY) + L7(RY) C L (R),
it follows from (2.7) that

A
70 = tim [ (xS + (05 1)) 6.0

e—0 £

fora.e. x € R?.
Set u=[n]+1. In (2.2) we choose N = u so that K can be written in the form
of Lemma 2, from which it follows that

Koo f(3) = [

i Jod Wi 33—y —uz) AL f(v) dydz (52)

forall x € RY.
For each x,y,z € RY, if W;(x —y,x —y —uz) # 0 then

x—y|<t and |x—y-—uz|<t
since W vanishes outside B(0,1) x B(0,1), and hence

luz| < |x—y—uz|+ |x—y| < 2t
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and

yl

- Al ulz|
[We(x =y, =y = u2)| < 72 |WI| o gt ety Lo,y <f> Lo.1) (7) '

Applying (5.2), (5.3) and keeping in mind that
1
AL £ ()] = 1AM ) < 1N, ey 21

for all y,z € R?, we obtain

— X — u
Kow 01 < Gt 2 Ul [ 200 (720 2 () v

<Crat™ gz [, 14" L2 (Il iz
2%

< Cn,df_dHfHA,,(Rd)/Ou P tar
< Crat | fll Ay (re)

for all x € R This leads to

forall € > 0.
On the other hand, by Young’s inequality,

A
/ I{t‘k‘fﬂ
e t

forall € > 0.
For each € > 0, set

dt A
<CoallFlagieey [ 177t < Coa AT 1 ey

L=(R4)

= 19e * f = @1 % [l o=y < Cq If 1] L=(ea)
L2>(RY)

A dt
Tef:/ Kixf—
£ t

Then according to (5.5) and (5.6),

I Tef 1l o (ra
Teflim = (2 [} | re B 7] > )

g -4
< CPJI HTS.ﬂ ! q,00 Rd ||T8fHLm(,]’Rd)

<CpamalF 1y (A 11y e

forall € > 0.

—a—1 I
P~ dr

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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Next, let s € (1,00) satisfy

Then Proposition 3 asserts that
103 % fll o ey < CpgllOnll s (mey I1F 1| oo ey
S Cp’qlé_d 101l (ra) 11 L= (e
< o2 G5 | e 59)
Combining (5.8) and (5.9) together yields

SU13||Tsf+ @1 % [l ey <o (5.10)
£>

Also recall from (5.1) that

lin(l)(Tgf—i—(p;Lf):f a.e. on RY, (5.11)

As such, f € LP(R?) and lir% |Tef + @ax f — fllLpmey = 0. Indeed, the former fol-
£—

lows since (5.10) and (5.11) together imply f belongs to the weak closure of L?(R?)
which coincides with the norm closure of LP(R?). The latter is a direct consequence
of Muramatu’s integral formula.

Consequently,

1-4 1-4 1 dfLl-1
1 1iscay < Crana (AN 1y + 2 N )

(5.12)
Set

~

n+

w(t) = .
n+g

Since (5.12) holds for all A > 0, we can optimize the right-hand side of (5.12) to
arrive at

w(p) 1=w(p)
Hf”LI’(Rd) < Cp.,q.,n,d ||fHLq,oo(Rd) Hf”An(Rd)' (5.13)
To finish the proof, we choose indices p; and p» such that
I<g<pr <p<py<eoo,

Then it follows from (5.13) that

1 ; .
1 i) < Corgma I Iy I W i€ (1,2
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Next choose 6 € (0,1) such that

1 1-6 6
+ —.

p D1 P2

By virtue of Theorem 1, we obtain

Hf||le,a(Rd X pqa ||f‘ Lpl Rd Hf”gl’z m(Rd)
17’10‘ ||f‘ LP1 ]Rd ||fHLP2 Rd)

)+6
<cpq,,da||fuw ARl V] P

(p1)—6w(p2)
Since (1 —0)w(p1)+ Ow(p2) = w(p), the proof is complete. [

We conclude this section with two remarks concerning the above proof of Theo-
rem 3.

REMARK 3. Lemma 2 is used to derive (5.4) which is valid for all n > 0. How-
ever, if n € (0,1) then (5.4) follows from a simple argument without using Lemma 2.
Indeed, since

/dK(y)dyzo and suppK C B(0,1),
R

we have
sl = [t (552) o) s
<K e 1114y @) /Rd =y 1) <|x;y|> d

t
< HKHLw(Rd) |Sd—l|t_dHf”An(Rd)/0 Atd=1 g,

<

S

@)L

forall x € R? and r > 0. Here |S¢~!| denotes the surface measure of the unit sphere in
RY.

REMARK 4. The operator 7 given by (5.7) defines a bounded mapping from
L4=(R?) to L4 (R?) whose norm is independent of € and A . It is interesting to note
that we can prove this without using the identity

Tef = Qexf—@Quxf.

To this end, we invoke the Calderén-Zygmund theory of singular integrals. The main
ideas are as follows. See [9, Chapter 6] for a thorough treatment.
For each € >0 and A > 0, set
A dt
_ / K2
£ t
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Then % is a Schwartz function and the following properties hold:

Tgf:%*f,
My = || F(H)|| = (may < Cka <>

My = sup x| |V (x)] < Cx g < o,
x€R4

where % (%) denotes the Fourier transform of 7.

By Parseval’s identity, T, maps boundedly from L?(R¢) to L?(R?). Using Calderén-
Zygmund decomposition given in [8, Theorem 4.3.1], we can prove that 7, maps
boundedly from L'(R9) to L'**(R?). The Marcinkiewicz interpolation theorem then
implies T maps boundedly from L' (R?) to L'(RY) for all r € (1,2). By duality,
T, also maps boundedly from L"(R?) to L"(R¥) for all r € (1,e0). Furthermore, the
norms of all these mappings depend only on M, M;,r and d. Another application of
the Marcinkiewicz interpolation theorem verifies that 7 : L9 (RY) — L9(RY) is a
bounded operator whose norm depends only on K, d, and q.
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