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GENERALIZED GAGLIARDO–NIRENBERG INEQUALITIES

VIA MURAMATU’S INTEGRAL FORMULA

TRAN MINH NGUYEN, TAN DUC DO, NGUYEN NGOC TRONG

AND BUI LE TRONG THANH ∗

(Communicated by I. Perić)

Abstract. We derive three generalized Gagliardo-Nirenberg inequalities in Lorentz, BMO and
homogeneous Lipschitz spaces. They have the forms

‖∇k f‖Lp,α (Rd ) � ‖ f‖θ
Lq,∞(Rd ) ‖∇m f‖1−θ

Lr,∞(Rd )
,

‖∇k f‖Lp,α1 (Rd ) � ‖ f‖θ
Lq,α2 (Rd ) ‖∇m f‖1−θ

BMO(Rd ),

‖ f‖Lp,α (Rd ) � ‖ f‖θ
Lq,∞(Rd ) ‖ f‖1−θ

Λ̇η (Rd ),

whose parameters satisfy specific conditions. We use the so-called Muramatu’s integral formula
as the main approach throughout the paper.

1. Introduction to the main results

The original inequality

‖∇k f‖Lp(Rd) � ‖ f‖θ
Lq(Rd) ‖∇m f‖1−θ

Lr(Rd) (1.1)

was investigated independently by Gagliardo in [6] and Nirenberg in [14]. Due to its
widespread applications in partial differential equations, it is of fundamental interest to
generalize the inequality to other function spaces. In this paper we prove interpolation
inequalities analogous to (1.1) in the setting of Lorentz, BMO and Lipschitz spaces. We
follow a somewhat non-traditional approach, making use of the so-called Muramatu’s
integral formula. Our work is inspired by the paper [9], in which Miyazaki thoroughly
investigated the integral representation formula originated in [13] by Muramatu and
then applied it to study various aspects of Sobolev spaces.

To describe our main results, define

N := {0,1,2, . . .} and N
∗ := {1,2,3, . . .}.
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For each function f defined on R
d and k ∈ N

∗ , the notation ∇k f is understood as
a tuple of all k -th order derivatives of f . Given a normed space F , we write ∇k f ∈ F
to mean that every component of ∇k f belongs to F . Moreover, we set

||∇k f ||F = ∑
γ∈Nd :|γ|=k

||∂ γ f ||F .

Let p,q,r ∈ (1,∞) , α ∈ (0,∞] and k,m ∈ N be such that 0 � k < m . We consider

‖∇k f‖Lp,α (Rd) � ‖ f‖θ
Lq,∞(Rd) ‖∇m f‖1−θ

Lr,∞(Rd) (1.2)

and ask under which conditions on the parameters (1.2) holds for all f ∈C∞
c (Rd) . Us-

ing a scaling argument and appropriate test functions, we derive a necessary condition
for (1.2) to hold, which is

θ =
m− k−d

(
1
r − 1

p

)
m−d

(
1
r − 1

q

) ∈
[
0,1− k

m

]
. (1.3)

The main difficulty lies in finding a sufficient condition. McCormick et al. proved
in [11] that in the case k = 0, r = 2, q < p , α = p and m− d

2 > − d
p , there holds

‖ f‖Lp(Rd) = ‖ f‖Lp,p(Rd) � ‖ f‖θ
Lq,∞(Rd) ‖∇m f‖1−θ

L2(Rd). (1.4)

This result was later strengthened in [4, Corollary 2.2], where the condition α = p is
dropped and one arrives at

‖ f‖Lp,α (Rd) � ‖ f‖θ
Lq,∞(Rd) ‖∇m f‖1−θ

L2(Rd).

Moreover, [4, Corollary 2.5] asserts that if k = 0, q < p and m− d
r > 0, then

‖ f‖Lp,α (Rd) � ‖ f‖θ
Lq,∞(Rd) ‖ f‖1−θ

Wm,r(Rd). (1.5)

On the other hand, if α = p , q = r < p and m− d
r > k− d

p , then we know from
the Sobolev embedding theorem (cf. [9, Theorem 3.1]) that

‖∇k f‖Lp(Rd) � ‖ f‖θ
Lr(Rd) ‖∇m f‖1−θ

Lr(Rd). (1.6)

In this paper, we will give a sufficient condition for (1.2) which extends all the
aforementioned estimates (1.4) , (1.5) and (1.6) . Specifically, we will show that in
addition to (1.3) if the conditions

q < p and m− d
r

> k− d
p

(1.7)

are also satisfied, then (1.2) holds for all f ∈ Lq,∞(Rd) with ∇m f ∈ Lr,∞(Rd) . It is
noted that (1.3) and (1.7) together imply either

p > r or q � p∗ < p � r,
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where
1
p∗

:=
1− k

m

q
+

k
m

r
. (1.8)

Indeed, suppose (1.3) and (1.7) hold. Suppose further that p � r . Using (1.3),
we arrive at

θ =
m− k−d

(
1
r − 1

p

)
m−d

(
1
r − 1

q

) < 1− k
m

.

Equivalently,

m− k−d

(
1
r
− 1

p

)
<

(
1− k

m

)[
m−d

(
1
r
− 1

q

)]

since q < p and m− d
r > k− d

p together guarantee that m− d
(

1
r − 1

q

)
> 0. In turn,

we obtain (
1− k

m

)(
1
r
− 1

q

)
<

1
r
− 1

p

and hence

1
p

<
1− k

m

q
+

k
m

r
=

1
p∗

.

This implies p∗ < p .
To see that q � p∗ , we argue as follows. First, q < r due to the assumptions that

q < p and p � r . Secondly,

1
p∗

=
1− k

m

q
+

k
m

r
�

1− k
m

q
+

k
m

q
=

1
q
,

which means q � p∗ . Thus the claim follows.
The whole discussion above is now summarized in our first main theorem as fol-

lows.

THEOREM 1. Let 1 < q < p < ∞ , 1 < r < ∞ and 0 < α � ∞ . Let k,m ∈ N be
such that

0 � k < m and m− d
r

> k− d
p
.

Assume either
p > r or q � p∗ < p � r,

where p∗ is given by (1.8). Let f ∈ Lq,∞(Rd) satisfy ∇m f ∈ Lr,∞(Rd) . Then ∇k f ∈
Lp,α(Rd) . Moreover, there exists a constant C = C(p,q,r,k,m,d,α) > 0 such that

‖∇k f‖Lp,α (Rd) � C‖ f‖θ
Lq,∞(Rd) ‖∇m f‖1−θ

Lr,∞(Rd), (1.9)
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where

θ =
m− k−d

(
1
r − 1

p

)
m−d

(
1
r − 1

q

) ∈
(

0,1− k
m

)
.

A remark is immediate.

REMARK 1. The main emphasis in Theorem 1 is that (1.9) holds for all α ∈
(0,∞] . As such we restrict our attention to the range

θ ∈
(

0,1− k
m

)
.

Nevertheless, certain estimates of the form (1.9) remain valid for the endpoint values of
θ . In particular, there exists a constant C = C(p,r,m,d) > 0 such that

‖ f‖Lp,∞(Rd) � C‖∇m f‖Lr,∞(Rd) (1.10)

for all f ∈ Lr,∞(Rd) with ∇m f ∈ Lr,∞(Rd) , where

1 < r < p < ∞, m ∈ N
∗ and m = d

(
1
r
− 1

p

)
.

This means the case θ = 0 is possible. To see this, recall from [3, Theorem 4.2(i)] that
(1.10) holds for m = 1, i.e.,

‖ f‖Lp,∞(Rd) � C‖∇ f‖Lr,∞(Rd). (1.11)

Then (1.10) for a general m ∈ N
∗ follows by iterating (1.11) m times.

Next there exists a constant C = C(p,q,r,k,m,d) > 0 such that

‖∇k f‖Lp,∞(Rd) � C‖ f‖1− k
m

Lq,∞(Rd) ‖∇m f‖
k
m
Lr,∞(Rd)

for all f ∈ Lq,∞(Rd) with ∇m f ∈ Lr,∞(Rd) , where

1 < q < p = p∗ < ∞, k,m ∈ N, 0 � k < m

and p∗ is given by (1.8). This implies the case θ = 1− k
m is also possible. See (3.7)

and its related arguments below for the proof of this statement.

Our second theorem concerns the inequality of the form

‖∇k f‖Lp,α1 (Rd) � ‖ f‖θ
Lq,α2 (Rd) ‖∇m f‖1−θ

BMO(Rd ).

The result extends [10, Theorem 1.3], in which α1 = p and α2 = q were consid-
ered.
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THEOREM 2. Let 1 < q < p < ∞ and 1 � α1,α2 � ∞ . Let k,m ∈ N be such that

0 < k < m, q =
(

1− k
m

)
p and α2 �

(
1− k

m

)
α1.

Let f ∈ Lq,α2(Rd) satisfy ∇m f ∈ BMO(Rd) . Then ∇k f ∈ Lp,α1(Rd) . Moreover, there
exists a constant C =C(p,q,d,k,m,α1,α2) > 0 such that

‖∇k f‖Lp,α1 (Rd) � C‖ f‖1− k
m

Lq,α2 (Rd) ‖∇m f‖
k
m
BMO(Rd ). (1.12)

As a concluding demonstration of Muramatu’s integral formula, we prove an inter-
polation inequality involving the Lorentz space Lq,∞(Rd) and the homogeneous Lips-
chitz space Λ̇η (Rd) , which is Theorem 3. Here the space Λ̇η (Rd) is understood in the
sense of [7, Definition 6.3.4]. The result of this type was lately updated in [4, Theorem
2.4] with indices η ∈ (0,1) and q > 0. Our result asserts the validity of the estimate for
all η > 0 and q > 1. As such, Theorem 3 extends [4, Theorem 2.4] in certain aspects.
That Theorem 3 holds only for q > 1 is due to a technical reason. More specifically,
its proof requires the sharpened version of Young’s inequality in Proposition 3 below,
which in turn dictates q > 1.

THEOREM 3. Let 1 < q < p < ∞ , 0 < α � ∞ and η > 0 . Let f ∈ Lq,∞(Rd)∩
Λ̇η(Rd) . Then f ∈ Lp,α(Rd) . Moreover, there exists a constant C = C(p,q,α,η) > 0
such that

‖ f‖Lp,α (Rd) � C‖ f‖θ
Lq,∞(Rd) ‖ f‖1−θ

Λ̇η (Rd), (1.13)

where θ =
η + d

p

η + d
q

∈ (0,1) .

It is known that if m ∈ N and r ∈ [1,∞) satisfy η = m− d
r > 0, then the Sobolev

space Wm,r(Rd) is continuously embedded in the Lipschitz space Λη (Rd) . Hence
Theorem 3 implies (1.5) , which is also [4, Corollary 2.5].

The paper is structured as follows. In Section 2 we recall necessary definitions and
results as well as briefly discuss Muramatu’s integral formula. The proofs of Theorems
1, 2 and 3 are presented in Sections 3, 4 and 5 respectively.

2. Preliminaries

In this section, we collect the essential background on function spaces, embedding
inequalities, Hardy-Littlewood maximal function and Muramatu’s integral formula.

2.1. Function spaces

We provide the definitions of Lorentz, BMO and homogeneous Lipschitz spaces.
We start with the Lorentz space.
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DEFINITION 1. For 1 � p < ∞ and 0 < α � ∞ , the Lorentz space Lp,α(Rd)
consists of all measurable functions g : R

d → R such that ‖g‖Lp,α(Rd) < ∞ , where

‖g‖Lp,α(Rd) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
p
∫ ∞

0
sα ∣∣{x ∈ R

d : |g(x)| > s}∣∣ α
p

ds
s

) 1
α

if 0 < α < ∞,

sup
s>0

s
∣∣{x ∈ R

d : |g(x)| > s}∣∣ 1
p if α = ∞.

Lorentz spaces can be realized as interpolation spaces of the pair (L1,L∞) via
K -method. A brief summary of this fact is as follows. More details can be found in
[15] and [2]. Let X0 and X1 be Banach spaces which are continuously embedded in
a Hausdorff topological vector space X . For each t > 0 and f ∈ X0 +X1 , define the
K -functional by

K(t, f ;X0,X1) := inf{‖u‖X0 + t‖v‖X1 : u ∈ X0, v ∈ X1, u+ v = f}.

Let 0 < θ < 1 and 1 � r � ∞ . We denote by (X0,X1)θ ,r the space consisting of all
functions g ∈ X0 +X1 such that ‖g‖(X0,X1)θ ,r

< ∞ , where

‖g‖(X0,X1)θ ,r
:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫ ∞

0

[
t−θ K(t, f ;X0,X1)

]r dt
t

) 1
r

if r < ∞,

sup
t>0

t−θ K(t, f ;X0,X1) if r = ∞.

The space (X0,X1)θ ,r equipped with the norm ‖.‖(X0,X1)θ ,r
is a Banach space. It turns

out that for all 1 < p < ∞ and 1 � α � ∞ , we have the relation

(L1(Rd),L∞(Rd))1− 1
p ,α = Lp,α(Rd).

Moreover,

‖g‖Lp,α(Rd) � ‖g‖(L1(Rd),L∞(Rd))
1− 1

p ,α
� p

p−1
‖g‖Lp,α(Rd) (2.1)

for all g ∈ Lp,α(Rd) .
Next we define the space BMO(Rd) .

DEFINITION 2. The space BMO(Rd) consists of all functions f ∈ L1
loc(R

d) such
that

‖ f‖BMO(Rd) := sup
1
|B|

∫
B
| f (x)− fB|dx < ∞,

where fB :=
1
|B|

∫
B

f (x)dx and the supremum is taken over all balls B in R
d .
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It is straightforward that L∞(Rd) ⊂ BMO(Rd) and

‖ f‖BMO(Rd) � 2‖ f‖L∞(Rd)

for all f ∈ L∞(Rd) .
Lastly, we define the homogeneous Lipschitz space. We follow [7, Definition

6.3.3].

DEFINITION 3. Let h ∈ R
d . The difference operator Δh is defined by

Δh f (x) := f (x+h)− f (x)

for all f ∈C(Rd) and x ∈ R
d .

For each k ∈ N
∗ , the operator Δk

h is defined recursively by⎧⎨
⎩

Δ1
h f = Δh f ,

Δk+1
h f = Δh(Δk

h f ).

Let η > 0. We denote by Λη(Rd) the Lipschitz space of order η , i.e., the space
consisting of all f ∈C(Rd) such that

‖ f‖Λη (Rd) := ‖ f‖L∞(Rd) + sup
x∈Rd

sup
h∈Rd\{0}

|Δ[η]+1
h f (x)|
|h|η < ∞.

Here [η ] denotes the largest integer which is smaller than η .
We denote by Λ̇η(Rd) the homogeneous Lipschitz space of order η , i.e., the space

consisting of all f ∈C(Rd) such that

‖ f‖Λ̇η (Rd) := sup
x∈Rd

sup
h∈Rd\{0}

|Δ[η]+1
h f (x)|
|h|η < ∞.

2.2. Necessary inequalities

We present some estimates to be used in the proofs of our main results. We start
with an interpolation inequality.

PROPOSITION 1. ([4, Theorem 2.1]) Let 0 < q < p < r � ∞ and 0 < α � ∞ . If
f ∈Lq,∞(Rd)∩Lr,∞(Rd) , then f ∈Lp,α(Rd) and there exists a constant C =C(p,q,r,α)
> 0 such that

‖ f‖Lp,α (Rd) � C‖ f‖θ
Lq,∞(Rd) ‖ f‖1−θ

Lr,∞(Rd),

where θ ∈ (0,1) satisfies

1
p

=
θ
q

+
1−θ

r
.
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Next we state Young’s inequalities for Lp and weak Lp spaces.

PROPOSITION 2. ([8, Theorems 1.2.12 and 1.2.13]) Let 1 � p,q,r � ∞ satisfy

1
q

+1 =
1
p

+
1
r
.

Then for all f ∈ Lp(Rd) and g ∈ Lr(Rd) ,

‖ f � g‖Lq(Rd) � ‖g‖Lr(Rd) ‖ f‖Lp(Rd).

Moreover, if 1 < p,q < ∞ and 1 � r < ∞ , then there exists a constant C =C(p,q,r) > 0
such that

‖ f � g‖Lq,∞(Rd) � C‖g‖Lr(Rd) ‖ f‖Lp,∞(Rd)

for all f ∈ Lp,∞(Rd) and g ∈ Lr(Rd) .

Young’s inequalities can be sharpened as follows.

PROPOSITION 3. ([8, Theorem 1.4.24]) Let 1 < p,q,r < ∞ satisfy

1
q

+1 =
1
p

+
1
r
.

Then there exists a constant C = C(p,q,r) > 0 such that

‖ f � g‖Lq(Rd) � C‖g‖Lr(Rd) ‖ f‖Lp,∞(Rd)

for all f ∈ Lp,∞(Rd) and g ∈ Lr(Rd) .

We also require a version of Hölder’s inequality for weak spaces.

PROPOSITION 4. ([8, Exercise 1.1.15]) Let k ∈ N
∗ and f j ∈ Lpj ,∞(Rd) , where

0 < p j < ∞ and 1 � j � k . Let

1
p

=
1
p1

+ . . .+
1
pk

.

Then ∥∥∥∥∥
k

∏
j=1

f j

∥∥∥∥∥
Lp,∞(Rd)

� p−
1
p

k

∏
j=1

p
1
p j
j

k

∏
j=1

‖ f j‖Lp j ,∞(Rd).
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2.3. Hardy-Littlewood maximal operator

We recall the definition and some boundedness properties of the Hardy-Littlewood
maximal function.

DEFINITION 4. Let f ∈ L1
loc(R

d) . The function

M ( f )(x) := sup
δ>0

1
|B(x,δ )|

∫
B(x,δ )

| f (y)|dy

is called the (centered) Hardy-Littlewood maximal function of f , where B(x,δ ) ⊂ R
d

denotes the open ball with center x and radius δ in R
d .

It is well known that the Hardy-Littlewood maximal function acting boundedly
between Lorentz spaces.

PROPOSITION 5. The following statements hold.

(i) ‖M ( f )‖L∞(Rd) � ‖ f‖L∞(Rd) for all f ∈ L∞(Rd) .

(ii) There exists a constant C > 0 such that

‖M ( f )‖L1,∞(Rd) � C‖ f‖L1(Rd)

for all f ∈ L1(Rd) .

(iii) For all 1< p< ∞ and 1< α � β � ∞ there exists a constant C =C(p,α,β ) > 0
such that

‖M ( f )‖Lp,β (Rd) � C‖ f‖Lp,α (Rd)

for all f ∈ Lp,α(Rd) .

See [8, Theorem 2.1.6] for (i) and (ii). Statement (iii) follows from (i) and (ii) as
well as the Marcinkiewicz interpolation theorem and inclusion relation between Lorentz
spaces.

2.4. Muramatu’s integral formula

We quickly construct Muramatu’s integral formula. For more details, see [9] and
[10].

Define
Kt(x) = t−d K(

x
t
)

for each function K on R
d , x ∈ R

d and t > 0. Denote by D ′(Rd) the space of distri-
butions on R

d , i.e., the dual space of C∞
c (Rd) . For every f ∈D ′(Rd) and φ ∈C∞

c (Rd) ,
the value of f at φ is written as 〈 f ,φ〉 and the convolution φ � f is given by

φ � f (x) = 〈 f ,φ(x−·)〉
for all x ∈ R

d .
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Let ω ∈C∞
c (B(0,1)) be such that

∫
Rd

ω(x) dx = 1. Let m,N ∈ N
∗ . Set

ϕ(x) = ∑
|α |<N+m

1
α!

∂ α (xα ω(x)) and K(x) = ∑
|α |=N+m

N +m
α!

∂ α(xα ω(x)) (2.2)

for all x ∈ R
d . Then K can be expressed as K = ∑|β |=m ∂ β K(β ) , where K(β ) ∈

C∞
c (B(0,1)) . Moreover, (2.2) implies that

∂
∂ t

{ϕt(x)} = −t−1Kt(x) (2.3)

for all x ∈ R
d .

Next let f ∈ D ′(Rd) . Using equality (2.3) , we can prove that

(ϕλ � f )(x)− (ϕε � f )(x) = −
∫ λ

ε
(Kt � f )(x)

dt
t

(2.4)

for all x ∈ R
d and for all 0 < ε < λ < ∞ . In addition,

lim
ε→0

ϕε � f = f in D ′(Rd). (2.5)

Combining (2.4) and (2.5) , we obtain

f = lim
ε→0

∫ λ

ε
Kt � f

dt
t

+ ϕλ � f in D ′(Rd). (2.6)

We call (2.6) Muramatu’s integral formula.
It is worth mentioning that when f belongs to a specific function space, the con-

vergence in (2.6) can be interpreted in a different way. For instance, if f ∈ L1
loc(R

d)
then the limit in (2.6) holds pointwise in R

d . Whereas, if f ∈ Lp(Rd) for some
1 � p < ∞ then the limit in (2.6) converges in Lp(Rd) . These follow from the fact
that the convergence in (2.5) holds either pointwise in R

d or in Lp(Rd) , depending
on whether f ∈ L1

loc(R
d) or f ∈ Lp(Rd) respectively (cf. [1, Theorem 4.22] and [5,

Theorem C.4.6]).
Now let γ ∈ N

d be such that 0 � k := |γ| < m . We apply (2.6) with f replaced
by ∂ γ f ∈ D ′(Rd) to obtain

∂ γ f = lim
ε→0

∫ λ

ε
Kt � ∂ γ f

dt
t

+ ϕλ � ∂ γ f . (2.7)

Direct calculations confirm that

∂ γ f = lim
ε→0

∫ λ

ε
∑

|β |=m

tm−k
(
(∂ γK(β ))t � ∂ β f

) dt
t

+ λ−k
(
(∂ γ ϕ)λ � f

)
. (2.8)

The first term on the right-hand side in (2.8) has the form

lim
ε→0

∫ λ

ε
g(t,x)

dt
t

=: G(x).
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We will use the fact that if
∫ λ
0 ||g(t, ·)||Lp(Rd)

dt
t < ∞ with 1 � p � ∞ , then it follows

that G ∈ Lp(Rd) and

||G||Lp(Rd) �
∫ λ

0
||g(t, ·)||Lp(Rd)

dt
t

. (2.9)

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We manage the task by dividing
the proof into two cases, depending on whether p > r or q � p∗ < p � r < ∞ . Hereafter,
it is convenient to indicate the dependence of a constant C > 0 on certain parameters
using sub-indices. For instance, we write

Cp,q,r := C(p,q,r) > 0.

Proof of Theorem 1. Let f ∈ Lq,∞(Rd) satisfy ∇m f ∈ Lr,∞(Rd) . Fix γ ∈ N
d such

that |γ| = k . We use Muramatu’s integral formula (2.8) .
Case 1: Suppose p > r . Let λ > 0 be arbitrary. Since 1 < q < p and 1 < r < p ,

there exist indices s,u ∈ (1,∞) such that

1
p

+1 =
1
r

+
1
u

=
1
q

+
1
s
.

It follows from Proposition 3 that

∫ λ

0

∥∥∥∥∥ ∑
|β |=m

tm−k−1
(
(∂ γK(β ))t � ∂ β f

)∥∥∥∥∥
Lp(Rd)

dt + λ−k ‖(∂ γ ϕ)λ � f‖Lp(Rd)

� Cp,q,r

(∫ λ

0
tm−k−1 ∑

|β |=m

‖(∂ γK(β ))t‖Lu(Rd) ‖∂ β f‖Lr,∞(Rd) dt

+λ−k ‖(∂ γϕ)λ‖Ls(Rd) ‖ f‖Lq,∞(Rd)

)

= Cp,q,r

(∫ λ

0
tm−k−1+ d

u −d ∑
|β |=m

‖∂ γK(β )‖Lu(Rd) ‖∂ β f‖Lr,∞(Rd) dt

+λ
d
s −d−k ‖∂ γϕ‖Ls(Rd) ‖ f‖Lq,∞(Rd)

)

� Cp,q,r,k,m

(∫ λ

0
t
m−k+d

(
1
p− 1

r

)
−1 ‖∇m f‖Lr,∞(Rd) dt + λ d

(
1
p− 1

q

)
−k ‖ f‖Lq,∞(Rd)

)

� Cp,q,r,k,m,d

(
λ m−k−d

(
1
r − 1

p

)
‖∇m f‖Lr,∞(Rd) + λ−d

(
1
q− 1

p

)
−k ‖ f‖Lq,∞(Rd)

)
, (3.1)

where we used m− d
r

> k− d
p

in the last step.
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Using (2.8), (2.9) and (3.1) yields

‖∂ γ f‖Lp(Rd) � Cp,q,r,k,m,d

(
λ m−k−d

(
1
r − 1

p

)
‖∇m f‖Lr,∞(Rd) + λ−d

(
1
q− 1

p

)
−k ‖ f‖Lq,∞(Rd)

)
.

(3.2)

Since λ > 0 is arbitrary, we can optimize the right-hand side of (3.2) to obtain

‖∂ γ f‖Lp(Rd) � Cp,q,r,k,m,d ‖ f‖θ
Lq,∞(Rd) ‖∇m f‖1−θ

Lr,∞(Rd).

This estimate holds true for all multi-index γ of length k and therefore

‖∇k f‖Lp(Rd) � Cp,q,r,k,m,d ‖ f‖θ
Lq,∞(Rd) ‖∇m f‖1−θ

Lr,∞(Rd). (3.3)

Choose

p1 =
p+max{q,r}

2
and p2 =

⎧⎨
⎩

p
2

+
d

2
(
k+ d

r −m
) if k+ d

r −m > 0,

2p otherwise.
.

Then

1 < q < p1 < p < p2, m− d
r

> k− d
p2

> k− d
p1

and p1, p2 > r.

We infer further from (3.3) that

‖∇k f‖Lpi,∞(Rd) � Cpi ‖∇k f‖Lpi (Rd) � Ck,m,pi,q,r,d ‖ f‖θi
Lq,∞(Rd) ‖∇m f‖1−θi

Lr,∞(Rd), (3.4)

where

θi =
m− k−d

(
1
r − 1

pi

)
m−d

(
1
r − 1

q

) , i ∈ {1,2}.

Next let η ∈ (0,1) be such that

1
p

=
η
p1

+
1−η

p2
.

Applying Proposition 1, we obtain

‖∇k f‖Lp,α (Rd) � Cp,α ,p1,p2 ‖∇k f‖η
Lp1,∞(Rd) ‖∇k f‖1−η

Lp2,∞(Rd)

� Cp,q,r,α ,k,m,d ‖ f‖θ1η+θ2(1−η)
Lq,∞(Rd) ‖∇m f‖1−θ1η−θ2(1−η)

Lr,∞(Rd) . (3.5)

Since θ1η + θ2(1−η) = θ , the desired inequality (1.9) follows.

Case 2: Suppose q � p∗ < p � r , where

1
p∗

=
1− k

m

q
+

k
m

r
.
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In this case, we start with the inequality

|(∂ γ f )(x)| � Ck,m (M ( f )(x))1− k
m (M (|∇m f |) (x))

k
m (3.6)

for a.e. x ∈ R
d , whose proof can be found in [10] and [12]. The former uses the

Muramatu representation formula, whereas the latter uses the Sobolev representation
formula.

In view of (3.6) as well as Propositions 4 and 5, we deduce that

‖∂ γ f‖Lp∗,∞(Rd) � Ck,m,p,q,r ‖M ( f )‖1− k
m

Lq,∞(Rd) ‖M (|∇m f |)‖
k
m
Lr,∞(Rd)

� Ck,m,p,q,r ‖ f‖1− k
m

Lq,∞(Rd) ‖∇m f‖
k
m
Lr,∞(Rd).

Therefore,

‖∇k f‖Lp∗,∞(Rd) � Ck,m,p,q,r ‖ f‖1− k
m

Lq,∞(Rd) ‖∇m f‖
k
m
Lr,∞(Rd). (3.7)

Choose

p1 = p∗ and p2 =

⎧⎪⎨
⎪⎩

1
2

(
1+

1

1− r(m−k)
d

)
r if r(m−k)

d < 1,

2r otherwise.

Then

1 < q < p1 < p < p2, m− d
r

> k− d
p2

and p2 > r.

Combining (3.3) and (3.7) together yields

‖∇k f‖Lp1,∞(Rd) � Ck,m,p1,q,r,d ‖ f‖θ1
Lq,∞(Rd) ‖∇m f‖1−θ1

Lr,∞(Rd)

and

‖∇k f‖Lp2,∞(Rd) � Cp2 ‖∇k f‖Lp2 (Rd) � Ck,m,p2,q,r,d ‖ f‖θ2
Lq,∞(Rd) ‖∇m f‖1−θ2

Lr,∞(Rd),

where

θi =
m− k−d

(
1
r − 1

pi

)
m−d

(
1
r − 1

q

) , i ∈ {1,2}.

Note that

θ1 = 1− k
m

by construction.
Next by repeating the procedure used to obtain (3.4) and (3.5) in Case 1, we

arrive at
‖∇k f‖Lp,α (Rd) � Cp,q,r,α ,k,m,d ‖ f‖θ

Lq,∞(Rd) ‖∇m f‖1−θ
Lr,∞(Rd).

The proof is complete. �
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4. Proof of Theorem 2

Before proving Theorem 2, we comment on our method of proof.

REMARK 2. Theorem 2 extends [10, Theorem 1.3]. Despite the fact that our proof
of Theorem 2 and [10, Proof of Theorem 1.3] are both based on Muramatu’s integral
formula, we present here a different viewpoint applying the K method in interpolation
theory. In contrast, [10, Proof of Theorem 1.3] makes use of the Hardy-Littlewood
maximal operator.

In the course of proof, we require the following observation.

LEMMA 1. Let φ ∈ C∞
c (B(0,1)) be such that

∫
Rd

φ(x)dx = 0 . Then there exists

a constant Cφ ,d > 0 such that

sup
t>0

‖φt � g‖L∞(Rd) � Cφ ,d ‖g‖BMO(Rd)

for all g ∈ BMO(Rd) .

Proof. Let t > 0, x ∈ R
d and g ∈ BMO(Rd) . Then

|(φt � g)(x)| =
∣∣∣∣t−d

∫
B(0,t)

(
g(x− y)−gB(x,t)

)
φ
(y

t

)
dy

∣∣∣∣
� t−d ‖φ‖L∞(Rd)

∫
B(x,t)

|g(y)−gB(x,t)| dy

� ‖φ‖L∞(Rd) |B(0,1)| ||g||BMO(Rd).

This verifies the claim. �

Now we prove Theorem 2.

Proof of Theorem 2. Fix f ∈ Lq,∞(Rd)\{0} with ∇m f ∈ BMO(Rd) and γ ∈ N
d

such that |γ| = k . We use Muramatu’s integral formula (2.8) .
Now fix s > 0. By the definition of the K -functional, there exist functions us ∈

L1(Rd) and vs ∈ L∞(Rd) such that

us + vs = f and ‖us‖L1(Rd) + s‖vs‖L∞(Rd) � 2K(s, f ;L1,L∞). (4.1)

Let λ > 0. By setting
Us,λ = λ−k ((∂ γ ϕ)λ � us)

and

Vs,λ = lim
ε→0

∫ λ

ε

(
∑

|β |=m

tm−k
(
(∂ γK(β ))t � ∂ β f

)) dt
t

+ λ−k
(
(∂ γ ϕ)λ � vs

)
,
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we deduce from (2.8) that

∂ γ f = Us,λ +Vs,λ a.e. on R
d . (4.2)

Next estimate Us,λ and Vs,λ separately. For Us,λ one has

‖Us,λ‖L1(Rd) � λ−k ‖(∂ γϕ)λ‖L1(Rd)‖us‖L1(Rd) = ‖∂ γϕ‖L1(Rd) λ−k ‖us‖L1(Rd) (4.3)

by Proposition 2. To deal with Vs,λ , first observe that

∂ γK(β ) ∈C∞
c (Rd) and

∫
Rd

∂ γK(β ) dx = 0.

Consequently, Lemma 1 and (2.9) assert that

‖Vs,λ‖L∞(Rd) �
∫ λ

0
∑

|β |=m

tm−k ‖(∂ γK(β ))t � ∂ β f‖L∞(Rd)
dt
t

+ λ−k ‖(∂ γϕ)λ � vs‖L∞(Rd)

� Cm,k,d

(∫ λ

0
∑

|β |=m

tm−k ‖∂ β f‖BMO(Rd)
dt
t

+ λ−k ‖vs‖L∞(Rd)

)

= Cm,k,d

(
λ m−k ‖∇m f‖BMO(Rd) + λ−k ‖vs‖L∞(Rd)

)
. (4.4)

Combining (4.1) , (4.2),(4.3) and (4.4) together, we may conclude that ∂ γ f ∈ L1(Rd)
+L∞(Rd) and

K(s,∂ γ f ;L1,L∞) � ‖Us,λ‖L1(Rd) + s‖Vs,λ‖L∞(Rd)

� Cm,k,d

(
λ−k K(s, f ;L1,L∞)+ sλ m−k ‖∇m f‖BMO(Rd )

)
. (4.5)

If ‖∇m f‖BMO(Rd ) = 0, then by letting λ −→∞ in (4.5) and recalling that k > 0 by

hypothesis, we obtain K(s,∂ γ f ;L1,L∞) = 0. This in turn implies ‖∇k f‖Lp,α1 (Rd) = 0,
whence the assertion of Theorem 1.2 is trivial.

Next suppose that ‖∇m f‖BMO(Rd) > 0. Since (4.5) holds for all λ > 0, we may
choose λ such that

λ−k K(s, f ;L1,L∞) = sλ m−k ‖∇m f‖BMO(Rd).

Then we obtain further from (4.5) that

K(s,∂ γ f ;L1,L∞) � Cm,k,d s
k
m K1− k

m (s, f ;L1,L∞)‖∇m f‖
k
m
BMO(Rd ). (4.6)

Keeping in mind the inclusion relation between Lorentz spaces, it suffices to prove
Theorem 2 when

α2 =
(

1− k
m

)
α1.

There are two possibilities.
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First we consider α1,α2 < ∞ . Then by combining (4.6) and the assumption that

α2

α1
=

q
p

= 1− k
m

,

we derive

‖∂ γ f‖(L1,L∞)
1− 1

p ,α1

� Cm,k,d ‖∇m f‖
k
m
BMO(Rd )

(∫ ∞

0

[
s

1
p−1+ k

m K1− k
m (s, f ;L1,L∞)

]α1 ds
s

) 1
α1

and hence

‖∂ γ f‖(L1,L∞)
1− 1

p ,α1

� Cm,k,d ‖∇m f‖
k
m
BMO(Rd ) ‖ f‖1− k

m
(L1,L∞)

1− 1
q ,α2

. (4.7)

Secondly, we consider α1 = α2 = ∞ . Analogous arguments as in the first case
lead to (4.7) . By virtue of (2.1) and (4.7) , we have

‖∂ γ f‖Lp,α1 (Rd) � q
q−1

Cm,k,d ‖∇m f‖
k
m
BMO(Rd ) ‖ f‖1− k

m
Lq,α2 (Rd).

Thus we obtain Theorem 1.2. �

It is worth pointing out that the proof of Theorem 2 also yields a specific case of
Theorem 1 as follows.

PROPOSITION 6. Let 1 < p,q,r < ∞ , 1 < α1,α2 � ∞ and k,m ∈ N
∗ such that

k < m− d
r
, q =

(
1− k

m− d
r

)
p and α2 �

(
1− k

m− d
r

)
α1.

Let f ∈ Lq,α2(Rd) satisfy ∇m f ∈ Lr(Rd) . Then ∇k f ∈ Lp,α1(Rd) . Moreover, there
exists a constant C = C(p,q,d,k,m,r,α1,α2) > 0 such that

‖∇k f‖Lp,α1 (Rd) � C‖ f‖
1− k

m− d
r

Lq,α2 (Rd) ‖∇m f‖
k

m− d
r

Lr(Rd).

5. Proof of Theorem 3

We start with a technical lemma.

LEMMA 2. ([9, Lemma 9.5]) For each u ∈ N
∗ , define the sequence {b j}u

j=0 so
that the identity

u−1

∏
v=1

(
1− u− v

v
t

)
=

u−1

∑
j=0

b j t
j
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holds as a polynomial in t . If u = 1 then the product on the left-hand side is regarded
as 1 and hence b0 = 1 . Let K ∈C∞

c (Rd) be written in the form

K(x) = ∑
|α |=u−1

∂ αK(α)(x),

where each K(α) satisfies K(α) ∈C∞
c (B(0,1)) and

∫
Rd

K(α)(x)dx = 0 .

Let ω ∈C∞
c (B(0,1)) satisfy

∫
Rd

ω(x)dx = 1 . Set

W (x,y) = (−1)u ud ∑
|α |=u−1

u−1

∑
j=0

(
u−1

j

)−1

b j ∑
β :β�α ,|β |= j

(
α
β

)
(∂ α−β K(α))(x)∂ β ω(y),

and

Wt(x,y) = t−2d W
(x

t
,
y
t

)
for each t > 0 . Then

Kt � f (x) =
∫

Rd

∫
Rd

Wt(x− y,x− y−uz)Δu
z f (y)dydz

for all x ∈ R
d .

Now we prove Theorem 3.

Proof of Theorem 3. Let f ∈ Lq,∞(Rd)∩ Λ̇η(Rd) and λ > 0. Since

Lq,∞(Rd) ⊂ L1(Rd)+L∞(Rd) ⊂ L1
loc(R

d),

it follows from (2.7) that

f (x) = lim
ε→0

∫ λ

ε
(Kt � f )(x)

dt
t

+(ϕλ � f )(x) (5.1)

for a.e. x ∈ R
d .

Set u = [η ]+1. In (2.2) we choose N = u so that K can be written in the form
of Lemma 2, from which it follows that

Kt � f (x) =
∫

Rd

∫
Rd

Wt(x− y,x− y−uz)Δu
z f (y)dydz (5.2)

for all x ∈ R
d .

For each x,y,z ∈ R
d , if Wt(x− y,x− y−uz) �= 0 then

|x− y|< t and |x− y−uz|< t

since W vanishes outside B(0,1)×B(0,1) , and hence

|uz| � |x− y−uz|+ |x− y|< 2t
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and

|Wt(x− y,x− y−uz)|� t−2d ‖W‖L∞(Rd×Rd)�[0,1)

( |x− y|
t

)
�[0,1)

(
u|z|
2t

)
. (5.3)

Applying (5.2) , (5.3) and keeping in mind that

|Δu
z f (y)| = |Δ[η]+1

z f (y)| � ‖ f‖Λ̇η (Rd) |z|η

for all y,z ∈ R
d , we obtain

|Kt � f (x)| � Cη t−2d ‖ f‖Λ̇η (Rd)

∫
Rd

∫
Rd
�[0,1)

( |x− y|
t

)
�[0,1)

(
u|z|
2t

)
|z|η dydz

� Cη,d t−d ‖ f‖Λ̇η (Rd)

∫
Rd

|z|η�[0, 2t
u )(|z|)dz

� Cη,d t−d ‖ f‖Λ̇η (Rd)

∫ 2t
u

0
rη+d−1 dr

� Cη,d tη ‖ f‖Λ̇η (Rd) (5.4)

for all x ∈ R
d . This leads to∥∥∥∥

∫ λ

ε
Kt � f

dt
t

∥∥∥∥
L∞(Rd)

� Cη,d ‖ f‖Λ̇η (Rd)

∫ λ

ε
tη−1 dt � Cη,d λ η ‖ f‖Λ̇η (Rd) (5.5)

for all ε > 0.
On the other hand, by Young’s inequality,∥∥∥∥
∫ λ

ε
Kt � f

dt
t

∥∥∥∥
Lq,∞(Rd)

= ‖ϕε � f −ϕλ � f‖Lq,∞(Rd) � Cq ‖ f‖Lq,∞(Rd) (5.6)

for all ε > 0.
For each ε > 0, set

Tε f =
∫ λ

ε
Kt � f

dt
t

. (5.7)

Then according to (5.5) and (5.6) ,

‖Tε f‖Lp(Rd) =
(

p
∫ ‖Tε f‖L∞(Rd )

0
rq
∣∣∣{x ∈ R

d : |Tε f (x)| > r}
∣∣∣rp−q−1 dr

) 1
p

� Cp,q‖Tε f‖
q
p

Lq,∞(Rd) ‖Tε f‖1− q
p

L∞(Rd)

� Cp,q,η,d ‖ f‖
q
p

Lq,∞(Rd)

(
λ η ‖ f‖Λ̇η (Rd)

)1− q
p

(5.8)

for all ε > 0.
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Next, let s ∈ (1,∞) satisfy

1
p

+1 =
1
q

+
1
s
.

Then Proposition 3 asserts that

‖ϕλ � f‖Lp(Rd) � Cp,q‖ϕλ‖Ls(Rd) ‖ f‖Lq,∞(Rd)

� Cp,q λ
d
s −d ‖ϕ‖Ls(Rd) ‖ f‖Lq,∞(Rd)

� Cp,q λ d
(

1
p− 1

q

)
‖ f‖Lq,∞(Rd). (5.9)

Combining (5.8) and (5.9) together yields

sup
ε>0

‖Tε f + ϕλ � f‖Lp(Rd) < ∞. (5.10)

Also recall from (5.1) that

lim
ε→0

(Tε f + ϕλ f ) = f a.e. on R
d . (5.11)

As such, f ∈ Lp(Rd) and lim
ε→0

‖Tε f + ϕλ � f − f‖Lp(Rd) = 0. Indeed, the former fol-

lows since (5.10) and (5.11) together imply f belongs to the weak closure of Lp(Rd)
which coincides with the norm closure of Lp(Rd) . The latter is a direct consequence
of Muramatu’s integral formula.

Consequently,

‖ f‖Lp(Rd) � Cp,q,η,d

(
λ η

(
1− q

p

)
‖ f‖1− q

p

Λ̇η (Rd)‖ f‖
q
p

Lq,∞(Rd) + λ d
(

1
p− 1

q

)
‖ f‖Lq,∞(Rd)

)
.

(5.12)
Set

w(t) =
η + d

t

η + d
q

.

Since (5.12) holds for all λ > 0, we can optimize the right-hand side of (5.12) to
arrive at

‖ f‖Lp(Rd) � Cp,q,η,d ‖ f‖w(p)
Lq,∞(Rd) ‖ f‖1−w(p)

Λ̇η (Rd). (5.13)

To finish the proof, we choose indices p1 and p2 such that

1 < q < p1 < p < p2 < ∞.

Then it follows from (5.13) that

‖ f‖Lpi (Rd) � Cpi,q,η,d ‖ f‖w(pi)
Lq,∞(Rd) ‖ f‖1−w(pi)

Λ̇η (Rd) , i ∈ {1,2}.
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Next choose θ ∈ (0,1) such that

1
p

=
1−θ

p1
+

θ
p2

.

By virtue of Theorem 1, we obtain

‖ f‖Lp,α (Rd) � Cp,q,α ‖ f‖1−θ
Lp1,∞(Rd) ‖ f‖θ

Lp2,∞(Rd)

� Cp,q,α ‖ f‖1−θ
Lp1 (Rd) ‖ f‖θ

Lp2 (Rd)

� Cp,q,η,d,α ‖ f‖(1−θ)w(p1)+θw(p2)
Lq,∞(Rd) ‖ f‖1−(1−θ)w(p1)−θw(p2)

Λ̇η (Rd)
.

Since (1−θ )w(p1)+ θ w(p2) = w(p) , the proof is complete. �

We conclude this section with two remarks concerning the above proof of Theo-
rem 3.

REMARK 3. Lemma 2 is used to derive (5.4) which is valid for all η > 0. How-
ever, if η ∈ (0,1) then (5.4) follows from a simple argument without using Lemma 2.
Indeed, since ∫

Rd
K(y)dy = 0 and suppK ⊂ B(0,1),

we have

|Kt � f (x)| =
∣∣∣∣
∫

Rd
t−d K

(
x− y

t

)
( f (y)− f (x))dy

∣∣∣∣
� t−d ‖K‖L∞(Rd) ‖ f‖Λ̇η (Rd)

∫
Rd

|x− y|η�[0,1)

( |x− y|
t

)
dy

� ‖K‖L∞(Rd) |Sd−1|t−d ‖ f‖Λ̇η (Rd)

∫ t

0
rη+d−1 dr

� Cη,d ‖ f‖Λ̇η (Rd) t
η

for all x ∈ R
d and t > 0. Here |Sd−1| denotes the surface measure of the unit sphere in

R
d .

REMARK 4. The operator Tε given by (5.7) defines a bounded mapping from
Lq,∞(Rd) to Lq,∞(Rd) whose norm is independent of ε and λ . It is interesting to note
that we can prove this without using the identity

Tε f = ϕε � f −ϕλ � f .

To this end, we invoke the Calderón-Zygmund theory of singular integrals. The main
ideas are as follows. See [9, Chapter 6] for a thorough treatment.

For each ε > 0 and λ > 0, set

K (x) =
∫ λ

ε
Kt(x)

dt
t

.
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Then K is a Schwartz function and the following properties hold:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tε f = K � f ,

M1 = ‖F (K )‖L∞(Rd) < CK,d < ∞,

M2 = sup
x∈Rd

|x|d+1 |∇K (x)| < CK,d < ∞,

where F (K ) denotes the Fourier transform of K .
By Parseval’s identity, Tε maps boundedly from L2(Rd) to L2(Rd) . Using Calderón-

Zygmund decomposition given in [8, Theorem 4.3.1], we can prove that Tε maps
boundedly from L1(Rd) to L1,∞(Rd) . The Marcinkiewicz interpolation theorem then
implies Tε maps boundedly from Lr(Rd) to Lr(Rd) for all r ∈ (1,2) . By duality,
Tε also maps boundedly from Lr(Rd) to Lr(Rd) for all r ∈ (1,∞) . Furthermore, the
norms of all these mappings depend only on M1,M2,r and d . Another application of
the Marcinkiewicz interpolation theorem verifies that Tε : Lq,∞(Rd) → Lq,∞(Rd) is a
bounded operator whose norm depends only on K , d , and q .
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