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EXTENSIONS OF DEMOCRACY–LIKE

PROPERTIES FOR SEQUENCES WITH GAPS

MIGUEL BERASATEGUI AND PABLO M. BERNÁ ∗

Abstract. In [16], T. Oikhberg introduced and studied variants of the greedy and weak greedy
algorithms for sequences with gaps. In this paper, we extend some of the notions that appear
naturally in connection with these algorithms to the context of sequences with gaps. In partic-
ular, we will consider sequences of natural numbers for which the inequality nk+1 � Cnk or
nk+1 � C+nk holds for a positive constant C and all k , and find conditions under which the ex-
tended notions are equivalent their regular counterparts. In this context, we study an extension of
democratic bases, proving that if n = (nk)∞

k=1 is an increasing sequence of natural numbers such
that either (nk+1 − nk)∞

k=1 is bounded and (ek)∞
k=1 is a Markushevich basis or (nk+1/nk)∞

k=1 is
bounded and (ek)∞

k=1 is a Schauder basis, then n -democracy is equivalent to democracy. Addi-
tionally, we give examples proving that these results are optimal, and we obtain similar results
for some of the other properties that appear naturally in the study of the greedy algorithm.
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[4] M. BERASATEGUI, P. M. BERNÁ, Quasi-greedy bases for sequences with gaps, Nonlinear Analysis
208 (2021), 112294.
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