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RADII PROBLEMS FOR THE FUNCTION az2J(z) + b/, (z) + cJy (2)

SERCAN KAZIMOGLU* AND ERHAN DENIZ

(Communicated by I. Peri¢)

Abstract. In this paper, for three different normalizations of the function
Ny(2) = az’Jy (2) +baJ}, (2) + ey (2),

where J, is Bessel functions of the first kind of order v, the radius of parabolic starlikeness and
uniform convexity are determined. We also give some simple results according to special cases
of the parameters.

1. Introduction

There is an extensive literature in geometric function theory that deals with the ge-
ometric properties of different kinds of special functions like Bessel function [1, 5, 8],
Struve function [3, 13], Lommel function [3] and Ramanujan function [6]. Bessel func-
tion is one of the important special functions, which are especially important for solving
many problems of wave propagation and static potentials. This function plays vital role
in various branches of science and engineering. In the last few decades, several re-
searchers are interested to investigate various geometric properties of special functions
involving Bessel functions. For further information related to Bessel functions and sev-
eral geometric properties (convex, starlike, uniformly convex, parabolic starlike and so
forth), we referto [1, 2, 3, 5, 9, 10, 13] and the references cited therein.

Let U(zo,r) ={z€ C:|z—z0| < r} denote the disk of radius r and center z5. We
let U(r)=U(0,r) and U =U(0,1) = {z € C:|z] < 1}. Let (ay)n>2 be a sequence of
complex numbers with

1
d= 1imsup|an|% >0, and rp = e

Nn—o0

If d =0 then ry = +oo. As usual, with &/ we denote the class of analytic functions
f:U(ry) — C of the form

f@) =2+ Y ad 1)

n=2
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Let . be the subclass of .7 consisting of univalent functions. Goodman [7] introduced
the class €7 of uniformly convex functions. A function f € & is uniformly convex
if for every circular arc y contained in U with center also in U, the image arcf(y) is
convex. Ma and Minda [11] in 1992 and Rgnning [14] in 1993 independently proved
that the function f € &7 is uniformly convex if and only if, for z € U,

zf"(2) zf"(2)
Re(” ) ) 17w |
The real number
wevy oy , zf" (2) zf" (2)
r (f)—sup{re (0,r7): Re (H— 70 ) > renk zeU(r)}

is called % €7 -radius of the function f. In same paper, Rgnning [14] introduced the
class ., of functions f € .o/ satisfying

*(56)> 7|
The real number
7 (f) = sup {r € (0,rf): Re (Z]{/é?) > Z]{/é? - 1’, € U(r)}

is called .#, -radius of the function f. The functions belonging to this class are called
parabolically starlike. It is very clear that, every uniformly convex and parabolic starlike
function also convex and starlike, respectively.

The Bessel function of the first kind of order v is defined by (see [16])

—1)" 2n+v
W’ZE)W@ e, @

where z€ C and v € C suchthat v # —1,—2,... We know that it has all its zeros real
for v > —1 and has exactly two purely imaginary conjugate complex zeros, and all the
other zeros are real for v € (—2,—1). Recently Deniz and Szdsz in [5] determined the
radius of uniform convexity for three kinds of normalized Bessel functions of the first
kind in case of both v > —1 and v € (—2,—1). Later Bohra and Ravichandran [4] ex-
tended the results of Deniz and Szdsz and also obtained radius of parabolic starlikeness
of these functions.
In this paper, we consider the following function

Ny(z) = az’J)l(z) + bzJ.,(z) + cJy(2)

that studied by Mercer [12]. Here, asin[12], (c=0 and b#a) or (¢ >0 and b > a).
Mercer used this function when studying the zeros of the second order derivatives of
Bessel functions. From (2), this function has an infinite series representation given by

2n -1 2ntv



RADII PROBLEMS FOR THE FUNCTION Ny (z) 49

where Q(v) =av(v—1)+bv+c (a,b,c €R).

Note that N, does not belong to 7. Firstly, to prove the main results we need
normalizations of the function N, . In this paper we consider the following normalized
forms

1
v

Fol) = [%Nv@] , @)
v 1-v

gv(e) = %M ). )
v -3

() = %M(ﬁ)» ©

In 1992, Mercer [12] proved that the kth positive zero of N, increases according
to v for v > 0. In 1995, Ismail and Muldoon [8] proved that following results:

(i) For v > 0, the zeros of Ny (z) are either real or purely imaginary,

(ii) For v >max{0, vy}, where vy is the largest real root of the quadratic polynomial
O(v) =av(v—1)+bv+c, the zeros of Ny (z) are real,

(iii) Ifv>0, Q(v)/(b—a)>0 and a/(b—a) <0, the zeros of Ny (z) are all real
except for a single pair which are conjugate purely imaginary

where a,b,c € R suchthat (c=0 and b#a) or (¢c>0 and b>a).

Baricz, Caglar and Deniz [ 1] obtained sufficient and necessary conditions for the
starlikeness of a normalized form of N, by using results of Mercer [12], Ismail and
Muldoon [8] and Shah and Trimble [15]. Recently, Kazimoglu and Deniz [9, 10] stud-
ied radii of starlikeness and convexity of order 8 for the functions fy(z), gv(z) and
hy(z).

In this paper, we obtained the radii of parabolic starlikeness and uniform convexity
of the functions fy(z), gv(z) and hy(z) for the cases (if) and (iii), separately. The
key tools in their proofs are some new Mittag-Leffler expansions for quotients of the
function Ny, special properties of the zeros of the function N, and its derivative.

In order to prove the main results, we need the following lemma given in [5].

LEMMA 1. i. Ifa>b>r>|z|, and A € (0,1], then

gr_lr' 7

b—r a—r

Z Z
A
‘b—z a—z

The followings are very simple consequences of this inequality

Re(bz PR >< r ot ®)

—Z a—7z2

4
R <

and

< : ©))
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ii. If b>a>r>lz|, then

1
(a+2)(b—2)

P 1
S (a—r)(b+r)

(10)

2. Main results

In the rest of this paper, the quadratic polynomial Q(v) = av(v—1)+bv +c
provides the conditions a,b,c €R (¢ =0 and a#b) or (¢ >0 and a < b). Our first
theorem gives the .#, -radius of the functions fy(z), gv(z) and hy(z).

THEOREM 1. Let vy is the largest real root of the quadratic polynomial Q(v) =
av(v—1)+bv+c and v > max{0, vy }. Then the following statements are true:

(i) For v #0, the .%),-radius of the function f, is the smallest positive root of the
equation

1 (ar3l(,”(r) + (2a+b— %) r2J(r) + (b—l—c— I’T") rJ,(r) — %Jv(r)> 0

v ar?Jll(r)+brJ.,(r)+cJy(r)
(ii) The .7, -radius of the function gy is the smallest positive root of the equation

=0.

(1 B v) ar3Jl (r) 4+ (2a+b) r2J0(r) + (b+ ) rJ,(r)
2 ar2 Ty () +brIi(r) + cly(r)

(iit) The .7y -radius of the function hy is the smallest positive root of the equation

| AV + Qat BN+ (b+0) VRV _

1= P RN T A R

Proof. We know that zeros of the function Ny(z) are real for v > max{0, vy},
where Vy is the largest real root of the quadratic polynomial Q(v) =av(v—1)+bv+-c.
Thus, the function Ny (z) admits a Weierstrass decomposition [1] of the form

v 2
Ny(z) = ZVQF((‘;)JZr 3 I (1 _ %) (11)

n>1

where lm denotes the nth positive zeros of the function Ny. The zeros of the func-
tion Ny(z) satisfy the inequality A, | < Ay < --- for v > max{0, vy} and the infinite
product (11) is uniformly convergent on each compact subset of C (see [9]). Also from
(11), we have

Ny (2)
T _V_zﬂ —. (12)
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Therefore, using (4) and (12), we obtain

(@) 1aN(R)
- . 13
AE) VMG % xz (13)
Similarly, from (5), (6) and (12), we get
gv(@) zN’( _
o) (1-v)+ HE ng’ﬂz o (14)
thy(z) vy 1 \[N (Vz
m@)_o_§>+§wa ﬂ;x2 : (15)

If we replace z by z? in the inequality (9) and we put b = A2, it follows that

()
Ba—lel T \A =2

holds for v > max{0,vp} (v#0) and |z| < Ay,, n € N. Therefore, from (13) we
obtain

S\, 1 22 e 26F AGD
“(ﬁ@)‘ ER< —z)l V22 A

On the other hand, using the reverse triangle inequality ||z1| — |z2|| < |21 — 22|, we get

v,n’

zﬂ@_‘: e 26P _ EAGD

(@) ;12 - n;xv%n—w ()

w0 (O |6 (<)
R va1>_ZfVZ_1‘ 2|zl £y (Iz) iy 16
e(ﬂ@ 7 AL (10)

with equality when z = |z| = r. By using the similar calculations for the functions gy
and &, under the condition v > max{0, vy}, we have

@@ [zev@ | 2ldev(a)
m(gdﬁ) gv(2) 4> sl 1
and
(@) | () 22|y ([2])
Re(hv(z) ) e _1‘ Z i) b (18)

with equality when z = |z| = .

The minimum principle for harmonic functions implies that the inequalities (16),
(17) and (18) are valid if and only if |z| < r¢, |z| < rg and |z| < ry, respectively, where
s, g and ry are the smallest positive roots of the following three equations

rfy (r) 1 rgy(r) 1 d rhy, (r) 1

A2 o 2 "2
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Also, these equations are equivalent to, respectively,

b
ar¥J) (r) + <2a—|—b - %) I (r) + (b—l—c— %) v, (r) — —

(1 B v) ar3 ]l (r) 4+ (2a+b) r?J0(r) + (b+ ) rJ, (r) 0

2 ar?Jl(r)+brJ,(r) + cJy(r)

and

i rI' (V) + (a+b)r) (/1) + (b+¢) /1T, (/T)

1— =0.
( arT{ D) + by (V) ()
We note that )
1 4r
lim1l—— ——=1>0
r{% \% rgl A‘\%,n — r2
and ,
1 4r
lim 1-—Y —— = —co,
r/ Ve 7L37,, —r?

Hence r;z(,((rr)) = % has a root in (0,A, ;). Similarly, it can be verified for the other two

equations. This completes the proof of theorem. [

Using the following representation of the function Ny /5(z), in terms of elementary
trigonometric functions

4(b—a)zcosz+ [a (3 —4z%) —2b+4c|sinz

N, Z)= )
1/2() 2\/%\/2
we have
[4(a—b)zcosz+ (4az> —3a+2b—4c) sinz]2
fip@) = 5 ;
(a—2b—4c)°z
(5= 4(a—b)zcosz+ (4az® —3a+2b —4c)sinz
81/2%) = a—2b—4c
and

4(a—b)zcos\/z+ (4az—3a+2b—4c)\/zsin\/z
ha(2) = a—2b—4c '

We now state the following results for the functions fy >, g1/ and hy ;.
COROLLARY 1. The following statements are true.

(i) The 7, -radius of the function f ), is the smallest positive root of the equation

4 (4ar* —2a+b—4c)rcosr+ (4ar? + 16br* + 9a — 6b + 12¢) sinr 0
16 (a — b)rcosr+4(4ar? —3a+2b — 4c)sinr -
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(ii) The .7, -radius of the function g, /2 is the smallest positive root of the equation

2 (4ar* —a—4c)reosr+ (4ar*+ 8br* +3a—2b+4c)sinr B
8(a—b)rcosr+2(4ar —3a+2b—4c)sinr B

0.

(iit) The .#)-radius of the function hy /2 1S the smallest positive root of the equation

(4ar+a—2b—4c)\/rcos\/r+4(a+Db)rsiny/r
8(a—b)\/rcos\/r+2(4ar—3a+2b—4c)sin\/r

In Corollary 1, according to special cases of a,b and c the following table created.

Table 1: Radii of parabolic starlikeness for fy, gy and hy for v=1/2
b=3andc=0 a=landc=0 a=landb=2

a=2 a=3 a=4 b=2 b=3 b=4 c=2 c=3 c=4

) 0.2122 | 0.1640 | 0.1220 0.2409 | 0.2747 | 0.2942 0.4218 | 0.4730 | 0.5127

) 0.2860 | 0.2207 | 0.1640 0.3251 0.3711 0.3977 0.5753 | 0.6476 | 0.7038

r'r (hl ) 0.1381 0.0818 | 0.0450 0.1789 | 0.2339 | 0.2691 0.5785 | 0.7417 | 0.8843
2

Now, we present the radii of parabolic starlikeness of functions f,, gy and h,
when the zeros of Ny (z) are all real except for a single pair which are conjugate purely
imaginary (i.e. when v >0, O(v)/(b—a) >0 and a,/(b—a) < 0).

Here and in the sequel I, denotes the modified Bessel function of the fist kind of
order v. Note that 1, (z) =i~ VJy(iz) and I, (y/z) = (—1)" T I (V=2).

THEOREM 2. Let v >0, Q(v),/(b—a) >0, a/(b—a) <0 and 42 <.
Then the following statements are true:

(i) The 7, -radius of the function fy, is the smallest positive root of the equation

1 (“”%’m +(at b= %) P+ (b+e— ) rly(r) - %W)) —o

v ar?l]l(r)+brll,(r) +cly(r)

(i) The /), -radius of the function gy is the smallest positive root of the equation

(l _ v) ar’ 1 (r) + (2a+ b)rPLL(r) + (b -+ )Ll (r)
ar?lll(r)+brl,(r) +cly(r)

=0.
2

(iii) The .7, -radius of the function hy is the smallest positive root of the equation

(1_v)+arﬁlg’(\/;)—l—(2a+b)rl"/’(\/?)+(b+c)\/;l(}(\/;)
arl(\/r) +by/rl, (V/r) + cly (V)

=0.
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Proof. By using a result of Ismail and Muldoon [8] on zeros of the function Ny (z),
the conditions v >0, Q(v),/(b—a) >0 and a/(b—a) < 0 imply that A, = ia,
o >0 and Ay, >0 for n € {2,3,...}. If this situation is used in the equations (13),
(14) and (15), we have

NG _, L ( @Ot 2o A, 2
fv(2) vi2(v+ Do) e2+22 "5 AL, (2+2)(A2,-2) )
284, (2) a’Q(v+2) 7 o?+ 2%, 2 4
gv(z) - 2v+)O(V) a2 +22 g'z Ao (02+22) (A2, —22) 0
and
2, (2) a’Q(v+2) 2 o2+ A7, 7
hy(z) - 4(v+1)0(v) a2 +z _g'z Ain (0242)(A,—2) @b

In above equalities, we used (see [9])

1 1 2
1y o(v+2)

SA, Av+1DO(v)

In [10], the following equations have been proved

inf Re (Zf‘/’ (Z)>

2€U(r) fv(2)
B 1 a2Q(v+2) 72 a2+2/37n r
=1ty (2(v+ TR YR v I Papey ey
zfy(2)
= 22
fV(Z) z:ir’ ( )
inf Re (Zg/"(z)>
2€U(r) gv(2)
a’Q(v+2) B o?+ 137,1 r
- 1+2(V+1)Q(V) o2 —r2 Zg’z Ay (2= (A}, + 1)
28y(2)
= 23
@ | 2
and
. ', (2)
zelgfr) ke ( hy(z) )
2 2 2 2
14 o-Q(v+2) r 206 + A7, r
4v+now)e—r & A%, (a2—r) (A}, +r)
()
@ |, .
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On the other hand, we replace z by 2, a = & and b = A], in the inequality (10) and
a?Q(v+2)

taking into account that o) < 0, we get
zfy(@) 1‘
fv(z)
1] o*ov+2) 2 2 o+ A7, 7
S v2(v+Do(v) a2+ T e AL, (@2+22) (A2, —22)
e —a?Q(v+2)| 2 2y o’ + Ay, Fal
Svi2(v+ Do) |+ 22 S A (02422 (A3, - )
-l o’Q(v+2) )y o?+ A7, r
Sov \2(v+1)O(v) a2 12 S AN (2=r2) (A2, + r2)
irfl (ir)
I << 25
7uiin * 2

Thus, from inequalities (22) and (25), we have

/ / 2 !
inf [Re (Zf V(Z)) L 1” _ 2yl (26)
|zl<r @) @) fv(ir)
for every r € (0,0;). When the similar processes are also applied to the functions gy
and h,, we obtain

" () e, o

Now, we consider the functions ¢ : (0,c) — R, y: (0,a) — R and ¢ : (0,0?) —

R defined by
452 1 1
=1—-— _
ov(r) v <oc2—r2 g‘zl\%wrﬂ)’
1 1
=1—47
V/v(r) r (az_rz ngél\%n—i—rz)
and

Since the functions ¢, y and ¢ are strictly decreasing and following limits are true

li =1>0, I = —oo, i =1>0, h = —oo
rl\n%w(r) > ,r%w(r) ; r@l//(r) >0, lim y(r)
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and
lim¢(r)=1>0, lim ¢(r) = —oo,
r\O(P( ) r/a2¢( )

it follows that the equations

irf,(ir) 1 irg,, (ir) 1 and —rh,(—r) 1

Sfv(ir) 27 gy(ir) 2 hy(—r) 2

has a unique root 7 (£,,), 7 (gv) € (0, &) and r*» (hy) € (0,02).
This completes the proof. [l

Taking v = 1/2 in Theorem 2, we have the following results.
COROLLARY 2. The following statements are true.
(i) The #p-radius of the function f; /2 s the smallest positive root of the equation

4 (4ar2 +2a— b—|—4c) rcoshr+ (4ar2 +16br2 —9a+ 6b — 12c) sinhr _0
16 (b — a) rcoshr+4 (4ar? +3a — 2b + 4c)sinhr B

(it) The #)-radius of the function g, is the smallest positive root of the equation

2 (4ar* 4+ a-+4c) rcoshr+ (4ar* 4 8br* — 3a+2b — 4c) sinhr B
8 (b—a)rcoshr+2(4ar? +3a—2b+4c)sinhr B

(iit) The .#)-radius of the function hy /2 1S the smallest positive root of the equation

(4ar —a+2b+4c)\/rcosh/r+4(a+b)rsinh\/r
8 (b—a)/rcosh/r+2(4ar+3a—2b+4c)sinh\/r

The following table related with radii of parabolic starlikeness of fi/>, g1/, and
hy , for special cases of a, b and ¢ in Corollary 2.

Table 2: Radii of parabolic starlikeness for fy, gy and hy for v=1/2
b=—-5andc=0 a=—-Sandc=1 a=-2andb=—1

a=4 a=>5 a=06 b=4 b=5 b=6 c=4 c=5 c=6

r'p (fl ) 0.7156 | 0.5602 | 0.4795 0.5466 | 0.6485 | 0.7763 0.6103 | 0.7132 | 0.8166
2

rr(g1) 0.8745 | 0.7102 | 0.6182 0.6976 | 0.8093 | 0.9399 0.7820 | 0.8998 1.0132

=

rr(hy) 1.0765 | 0.7500 | 0.5846 0.7313 | 0.9500 | 1.2281 0.9251 1.1930 | 1.4740

(S

For convenience in the rest of the paper, we shall use the following notation

My(z) =i "Ny(iz)=i" [azzJ",’(iz) +bzJy(iz) + ¢Jy (iz)
= az’I})(z) + bzl (z) + cly (2).
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The second principal result we established concerns the radii of uniform convexity and
reads as follows.

THEOREM 3. The % €V -radius of the function f, is

(i) the smallest positive root ' (fy) of the equation

2Ny(r) (1 1) 2Ny (r)

N \v ) W)

1+

for v = max{0,vp} (v #0), where vy is the largest real root of the quadratic
polynomial Q(v) =av(v—1)+bv+ec.

(ii) the smallest positive root r} of the equation

2My(r) (1 \ 2My(r)
()

M., (r) v oL M, (r)

1+

in the interval (0,0), where 0 < v < 1, Q(Q‘Ej)z) <0, O(v)/(b—a)>0 and
a/(b—a)<0.

Proof. (i) From [9], we know that

@) (@) (1 V()
A NG +(v 1) M)

Using the Weierstrass decomposition of Ny (z) and N}, (z) given by

o)z 2 sy Qv ! Z
Ny(z) = I+ 11 (l - m) and N, (z) = 2TVl 11 (l - m) )

n=1 n=1

where Ay, and A, are the nth positive roots of Ny and Ny, respectively, we have

v(2)
1 =1-|--1 . 29
+ f/( ) Vv r; AZ r; A/Z —z ( )
We now consider the cases max{O, Vo} <v<1(v#0) and v > 1 separately.
Case 1. Let max{0,vp} < 1 (v #0). Then, using (9), we get

Re 5 el <r<Ayy <Ava
(;Z% x ) ;;%112 — v,1 v,

and

—r2

272
RC<Z)L ) Z;L/z 5, |2 <r<Ay; <Ava
n=1 2 n=1
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Thus, we have

2fi(z) (1 27 272
Re(”fc@ SR S DI Wy s
()
=14+ 30
70 G0

where |zl =r and r € (O Al )

s Mol
On the other hand, using the triangle inequality |z + 22| < |z1] + |z2| in (29) to-

gether with the fact that % —1 >0, we obtain

1/ 2 2
z2f7(2) < 1 ) 2r 2r
< =-1 +
f\/, (Z) \% rgl 137,, — r2 rgl A‘\/l2n — r2
— _r \///(r) (31)
filr)
When (30) and (31) are considered together, we conclude that
Re<1+2 a<z>> @), 2
i) fi(2) fo(r)
Case 2. Let v > 1. In the case, using the inequalities (8) and (7), respectively, we
get
z ”(z)> ( 272 (1 ) 272 )
Re( 1+ =Y =1— ) Re =1
( f\// (Z> gl z’\//%n - Zz v A3,;1 - Z2
212 1 2r?
>1- — -1
rgﬁ(Mgn_ﬂ (V )x&ﬁ_ﬂ)
rfo(r)
=1+ f(:/(r) (32)
and
1/ 2 2 1 2 2
Z/V(Z)ZE /2Z 2‘(1__>2 2Z 2
fv (Z) n>1 2’v7n —< v n=1 A’VJI —Z
272 1\ 27
<Y s (1= )
rg{l x\//z,n —2? ( V) x\%,n — 22
2r2 ( 1 ) 2r2
<Y (1<) Y5
2 e \'"v)2m
1
_ Ny (r) (33)

HON
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Thus, from (32) and (33), we get

SQ\ |G|, 200
Re(” fo<z>> @12 TR

Equality holds in last inequality if and only if z = r. Thus it follows that

inf [Re (148} S|y 20,

where r € (0 Al ) . Now, we define the function @, (r) : (0 Al ) — R by

IR | vl
2efl(n) 1 272
=1y = (EW— —(1—;)};%27"_,2)-

It can be easily seen that

8rA2 8rA?
wo - (1- 1) g Ve oy Ve
v nzl (A'\%,n _r2) nzl (A'\/Jzn _,,2)
8r7L2 8rA2,
< 2 2 ” - 22
n=1 ( -r ) n>1 (Av,n_r )
xn21/2_22_xl 212_22
_ 87‘2 ( vV, ) ( v.n 7‘) - ( v,n) ( ;,n 7‘) <0’
n>1 (A2, =) (W2 —1?)

since (Ay,)* (A2, —r2)2 < (/l\’,’n)2 (A3, —r2)2. Thus, @, is a strictly decreasing
function, lim,~ o ®y(r) =1 >0 and lim, A @, (r) = —oo. This means that
v (@)

z 1 (Z) )
Re |1+ =Y —
( (@) fi(@)
for all F(fy) € (O Al ) where r“(fy) is the unique root of 1+ 2 v() _ o

IS | Fo(r)

2rN//(r) 1 2rN,,(r)

+=—1 =
N, (r) % Ny(r)

(ii) By using a result of Ismail and Muldoon [8], on zeros of the function Ny (z), the
conditions 0 < v <1, Q(v) /(b—a)>0 and a/(b—a) <0 implies that A, | = ic,
A io and o, 0’ >0, Ay, Ay, >0 for n € {2,3,...}. Thus, from (29), we have

vl_
o(v+2)
oc2+z (ngzm ~4(v+1)0( ) 22‘212 —,1

>0

1+

)

v+2)0(v+2
a’2+z (,;21’2 _W> ngtz;uz 2 (34)
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Here, we used [9]

o(v+2) (Vv+2)0(v+2)
ngz?tz avrnowv) T o? n%?u? Cav(v1)o(v)

In [10], for 0 < v < 1, the following inequality has been proved
( s >>

(
2v(v+
rfl (ir)
folir)
On the other hand, if in inequalities (9) and (10) we replace z by 72, a by «, b by Avn

a?Q(v+2)
2(v+1)0(v)

OC

V + 2 }"2 2 (X + 2,3 n r4
2(v+noWv)er—r2 T A, (e2=r) (A, +12)
2)0(v+2) P oy o + A2, rt
NOV) o?—R & AP (aP—r) (AR 1)

:1+l

Izl <r<o. (35)

and taking into account that < 0, we get the following inequality:

Z 6’(Z)

(

29(v+2) 7 o’ + A2, Fa
2 t22 3 (2212 _ 2
v+l)Q( Yo 4z S A, (@2+2) (A2, -2)
o2(vi2)0(v+2) 2 _22“/2”3" &
v(v+1O(v) o422 TS AL (07 +22) (A2, - 2)
2 292
<1_1> o« o(v+2) 2206 +Av
v 2(v+1)0(v) S A

2 2 ”
“(v+2)Q(v+2) o'+ A, 7
v+ Do) 22—z

n>2 (a’2+22)
<1_1> ~ a?0(v+2) r2 2y o’ + Ay, r
v 2(v+1)0(v) S A2, (02— (A2, +17)
’2(v+2)Q(v+2) r2 zza’zmc%n r
2v(v+1)0(v) = M (a2 =r) (A2, +12)
_irfy (ir)

= - ki<r<d. (36)

Thus, from inequalities (35) and (36) we conclude that

oo+ 519) 1] -1 20

Z2

o472

Z4

(02 +22) (A%, —2)

N

|

Z2

o+ 22

~

—~

z’\l/zn - Zz)

?

n

N
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for r € (0,a’). Now, we consider the function Y : (0,0/) — R, defined by

B 2irf(ir)
M= T

1 r 42 r 42
:1_<;_1) l4a2—"2_2/13,n+72 43 2+2/1/2 T2

n>2 e s
Since Y, (r) =1+ %{(r’{) is strictly decreasing, lim oYy (r) =1 >0 and
lim, -4 Yy (r) = —oo it follows that the equation 1+ 2i;f (iii)r) = 0 has a unique root
P (fy) € (0.a). D

Taking v = 1/2 in Theorem 3, we have the following corollary.

COROLLARY 3. The following statements are true.

(i) The %€V -radius of the function f , is the smallest positive root of the equation

2 (4ar2 —a— 4c) rcosr+ (4ar2 + 8br? —|—A) sinr
4(a—b)rcosr+ (4dar? —A)sinr
4(4(2a+b)r*+2a—b+4c)reosr+ (—16ar*+8(a+b+2c)r* —3A)sinr
2(4ar> —a—4c)rcosr+ (4ar? +8brt +A)sinr

I+

=0.

(ii) Let gg% <0, 0(1/2) /(b—a)>0and a/(b—a) <0. Thenthe % €V -radius
of the function fi, is the smallest positive root of the equation

2 (4ar* +a+4c)reoshr+ (4ar’ +8br* — A) sinhr
4(—a+b)rcoshr+ (4ar’> +A)sinhr
4(4(2a+b)r* —2a+b—4c)rcoshr+ (16ar*+8(a+b+2c)r? +3A) sinhr
2(4ar +a+4c)reosr+ (4ar+8br: — A)sinr

=0,
where A =3a—2b+4c.
THEOREM 4. The % €V -radius of the function gy is
(i) the smallest positive root r*"(gy) of the equation

PPNy (r) +2(1 = v)rNy(r) + (V> = v)Ny (r)

2 N, (D) + (1 VINe(7)

=0

for v=max{0, vy}, where vy is the largest real root of the quadratic polynomial
o(v)=av(v—1)+bv+ec.
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(ii) the smallest positive root r[’; of the equation

PMU(r) +2(1—v)rM., (r) + (V2 —V)My(r)
M., (r) 4+ (1 = v)M,(r)

=0

in the interval (0,0), where v >0, Q(() <0,0(v)/(b—a)>0and a,/(b—
a) <0.

Proof. (i) In [9], we find that

ng(
1+ = 37
e g, 2 (37)
e () ()
28y rgv
Re( 1+ =1+ , 38
e( v(> E& PG ©G8)

where 8, ,, are the nth positive zeros of the function g/,(z). Equality (37) also implies
that

ng
gv(

<Y 62 :—”g,v(”) re(0,8,1). (39

n>1 - gv(r) 7

Z 62 '2

n=1

Now summarizing (38) and (39) we get

Re(1+ Q) _|#Q)| Sy 42 2o
/ / = 852 2 /( ) ’
8v(2) 8v(2) n>1 9% =T 8vir
where |z| = r. If we define
2rgy(r)
b =1 v 0,6
V(r) + g@(r) ) 7‘6( ) V,l)

then Wy is strictly decreasing, limoWy(r) =1 >0 and lim, »5, , Wy ,(r) = —co.
Consequently, the equation '

which is equivalent to

PPNy (r) +2(1 = v)rNy(r) + (V> = v)Ny (r)

1+2 N+ (L= VING ()

=0

has a unique root say r*“"(gy) in (0,6y 1). Thus
Z 7

Re <1+zg/v(1)) B zg/V(Z)

8v(2) 8y(2)

>0
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forall z € (0,7"(gy)). This completes the proof of part (7).

(ii) The result of Ismail and Muldoon [8] on zeros of the function Ny (z) under
the conditions v >0, Q(v), /(b—a) >0 and a,/(b—a) < 0 implies that o, | = i6,
6 >0 and dy, >0 for n=2,3,.... From (37), we have

" 2
z8v(2)
14 —1+2 -2
8v(2) +22 ,,%52
9222
=142———
g g ;§5z

In [10], authors find that

"
Re <1+ng( )) > l—l—irgV(lr)

8y(2) gy(ir)’
for |z] < r < 6. Since % < 0, the inequality (10) implies that
wy(@)| _ | 360%0(v+2) ¥ 0> +57, z
8v(2) 2v+1)Q(v) 02 +22 5 &5, (07+2%) (6%, 2
2 2 92 52 4
<_39 o(v+2) r 22 + r
2(v+1)Q(v) 6 e S —12) (83, +7%)
e
_ B
gv(lr)
Hence, we have
1 1 (s
Re (1+ng(z>> - Zg,v@ > 142080l
gv(2) gv(2) gv(”)

Consider the function

gu(ir)
Q,(r)= 1+2lrgv(lr)

It can be easily seen that Q. (r) is strictly decreasing,

lim Q =1>0 and limQ = —oo,
r1\r}1) v(r) >0 an r% v(r)

Thus, the equation Qy(r) = 0 has a unique root 7, in (0,6). By using the relation
M, (z) =i VN, (iz), the equation Q,(r) =0 is equivalent to

PMU(r)+2(1—v)rM.,(r) + (v2 - v) My(r)

2 M)+ (1 V)Mo ()

=0. O

Taking v = 1/2 in Theorem 4, we have the following corollary.
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COROLLARY 4. The following statements are true.
(i) The % €V -radius of the function gy, is the smallest positive root of the equation

[4(7a+2b) r*—3a+2b—4c] cosr+ [a (—8r*+br?43) +8 (2b+c) r’—2b+4c| sinr 0
[(4ar?+a—2b—4c)cosr+4 (a+b) rsinr|r e

(ii) Let gg%; <0,0(1/2) /(b—a)>0and a/(b—a) <O0. Thenthe % €V -radius
of the function g, is the smallest positive root of the equation

[4(Ta+2b) r*+3a—2b+4c| coshr+ [8ar*+2 (3a+8b+4c) r* —3a+2b—4c| sinhr 0
[(4ar?—a+2b+4c) coshr+4 (a+b) rsinhr] r -

THEOREM 5. The % ¢V -radius of the function h, is

(i) the smallest positive root 1" (hy) of the equation

INY(VF) + (3= 2v) VAN, (V) + (v2 = 2v) Ny (VF)
VN, (/P T 2= V)N (V)

for v=max{0, vy}, where vy is the largest real root of the quadratic polynomial
o(v)=av(v—1)+bv+ec.

1+

=0

(if) the smallest positive root r) of the equation

My (v/7) + (3= 2v) VMY (v7) + (V2 —2v) My (V/7)

” N ANGESC A G)

=0

inthe interval (0,x), where v >0, Q(Q‘Ej)z) <0, 0(v)/(b—a)>0and a,/(b—
a) <0.

Proof. (i) In [9], we know that

) (2) z
1+ (40)
h,(2) gﬂ%n—z
and 1 1
zh (z)) r i) (r)
Re( 1+ =Y >1- =147 41)
( hy(2) n; Yon =T hy(r)

where 7, , are the nth positive zeros of the function 4/, (z). Equality (40) also implies
that

2y (2)
hy(2)

r i) (r)
< =——"2" re (0, . 42)
2R, e (€O

<y =

= 2
n>1 YVJI —Z
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Thus, from (41) and (42) we conclude that

) (z) ) ) (z) 27 2rhll (r)
Re(1+=Y — = > 1 - =1+—L= |7 =r
(+5%0) R S
Define 2H(r)
T r
0y(r) = h’er) , re(0,%,).

Then, it can be easily seen that ©(r) is strictly decreasing, lim,~ o ©y(r) =1 >0 and
2riy (r)

lim, .o 1 Oy (r) = —co. Consequently, the equation 1+ = o= 0 which is equivalent
to "
. +2rh’v/(r) . rNJ(VT) 4+ (3 =2V) VIN (V1) + (V2= 2V) No (V) 0
hy,(r) VNG (V) + 2= V)Ny(V7)

has a unique root say 7" (hy) in (0, y31> .

(i) From a result of Ismail and Muldoon [8], on zeros of the function Ny (z), the
conditions v >0, Q(v),/(b—a) >0 and a,/(b—a) <0 we say that %, | =ix, x>0
and 7, > 0 for n=2,3,.... Also from (40), we get

) (2) z z K2z 1 z
', (z) T 2 e )

1+ -
n=2 ’)/VJZ -z n=2 ’)/VJZ -z

In [10], the following inequality has been proved

() Hi(—r)
ke (” (@) ) S

for |z| < r < K2
On the other hand, similarly to Theorem 4, we obtain the following inequality

HD)| W)
W) | S )

where |z] < r < K2, Consequently, we have

e (14 200 ) Q) M)
hy(2) hy(2) hy,(=r)
We consider the function
"
Ay(r)=1— 2%55_3 , re(0,x%).
This function is strictly decreasing, lim\ gAy(r) = 1 >0 and lim, -2 Ay(r) = —co.
Thus, it follows that the equation A, (r) = 0 has a unique root 7 in (0,x?). Also, the

mW(=r A .
W = 0 is equivalent to

PMY(F) + (3 29) VML (V) + (v2 = 2v) My (V7)
M (R + 2= v) My (V)

equation Ay (r) =1-2r

1+ =0. O
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Taking v = 1/2 in Theorem 5, we have the following corollary.

COROLLARY 5. The following statements are true.

(i) The %€V -radius of the function hy ; is the smallest positive root of the equation

2(10ar+2br+a—2b —4c)+/rcos\/r+ (—4ar+ 11la+14b+4c)rsin/r 0
(4ar+5a—6b —4c)\/rcos\/r+ (8ar+4br —3a+2b—4c)sin/r

(ii) Let SE?%; <0,0(1/2) /(b—a)>0and a/(b—a) <O0. Thenthe % €V -radius

of the function hy , is the smallest positive root of the equation

2(10ar+2br — a+2b+4c)\/rcosh\/r + (4dar+ 11a+ 14b +4c) rsinh \/r 0
(4ar —5a+ 6b +4c)\/rcosh\/r + (8ar+4br+3a — 2b +4c)sinh/r

Table 3: Radii of uniformly convexity for f,, gy and hy for v=1/2

i) |7 ) | 7 ()
b=3 a=2 0.1190 0.1643 0.0684
and a=3 0.0921 0.1270 0.0407
c=0 a=4 0.0686 0.0945 0.0224
a=-1 | b=2 0.1351 0.1865 0.0886
and b=3 0.1539 0.2127 0.1154
c=0 b=4 0.1648 0.2278 0.1326
a=1 c=2 0.2349 0.3264 0.2796
and c=3 0.2629 0.3660 0.3553
b=2 c=4 0.2845 0.3966 0.4208

Table 3 is related with radii of uniformly convexity for f,, g, and h, in special
cases of a, b and ¢ for v =1/2 in the case (i) of Theorem 3, Theorem 4 and Theorem
5.

Table 4: Radii of uniformly convexity for fy, gy and hy for v=1/2

i) |7 ) | 7 ()
b=-5 a=4 0.4428 0.5591 0.6045
and a=>5 0.3311 0.4360 0.4059
c=0 a=06 0.2786 0.3726 0.3103
a=-5 | b=4 0.3208 0.4251 0.3929
and b=5 0.3902 0.5055 0.5228
c=1 b=06 0.4867 0.6072 0.6956
a=-2 | c=4 0.3566 0.4745 0.4949
and c=5 0.4236 0.5553 0.6499
b=-1 c=6 0.4947 0.6371 0.8173

Table 4 also is related with radii of uniformly convexity for f,, gy and h, in
special cases of a, b and ¢ for v =1/2 in the case (ii) of Theorem 3, Theorem 4 and
Theorem 5.
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