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Abstract. For any two real numbers α > 0 and β > −α , we show that the best constants a and
b (the smallest a and the largest b ) such that the inequalities
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. In particular, we recover the main result of [6] and answer a question, stated in [6],

about the Gregory-Leibniz series
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. More precisely, we show that the best constants

c and d such that the inequalities
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hold for every n � 1 are c =
4
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−4 and d = 0.
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