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SHARP, DOUBLE INEQUALITIES BOUNDING THE FUNCTION
(1 —|—x)1/ * AND A REFINEMENT OF CARLEMAN’S INEQUALITY

VITO LAMPRET

(Communicated by S. Varosanec)

Abstract. In the expansion

oo J
(14x)1% = z j< al >, for —1 <x#0,

x+2

the sequence B, is monotonically decreasing, bounded as % < limB, <B, < 18—0 , for n>4,
n—oo
and is given recursively as

& 4j+1
Z

By=1 d By, =B =
0 an 2m 2m+1 = 4]+2

2m—2j5 for m=>1.

For any integers m,n > 1, the double inequality

2m—1 2m
Bj 1 Bj
¢ Z 1) < ’) s Z " Gnt 1y

holds, together with improved Carleman’s inequality

oo n 1/n 2m
B,
. _ /+171
S(f) < B (- Eorat)

true for every sequence x, > 0 such that 0 < 3

n=1%n < °°.

1. Introduction

In 1922 the Swedish mathematician Carleman [1] presented the inequality

1/2

X1+ (x1x2) +(X1)C2)C3)1/3+"'+ (x1x0x3 --~xn)l/n+"' <e (x1 + X2+ X3 +"'), (1)

valid for x, > 0 with 0 < x| 4+x; +x3+... <eo. Itis now called Carleman’s inequality.

First important generalization of (1) was done in 1925 by the English mathemati-
cian Hardy [8]. Later, in 1926 the Hungarian mathematician Pélya [12], in his proof of
(1), derived the crucial improvement

w [ n VS "
2 HXi < 2 <I+Z> Xn s ()
n=1 \i=1 n=1
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true for x, > 0 such that 0 < 3 | x, < eo. Until recently, many authors provided
various generalizations/improvements of (1), see e.g. [7].

Over the last twenty years, many articles have addressed strengthening (1) by using
(2). This was done mostly on the basis of several estimates of the sequence (14 1/n)",
which continued with the search for an accurate estimate of (1 +x)1/ Y forO<x<1,or
equivalently, an estimate of (1+ %)", for x > 1. For example, in 1999, Yang [16], using
the left estimate of his inequality e¢/(2x+2) < e— (1 + 1/x)* < e/(2x+ 1), valid for
x > 0, improved (1) by the estimate ¥, (H;’zlx,-)l/n <e-3p i (1—=1/(2n))x,, true
for x, > 0 such that 0 < ¥, x,, < eo. In fact, most authors sought as accurate estimates
of the function (1 +x)1/x as possible, see e.g. [2, 3,4, 5,9, 10, 11, 13, 14, 16, 17].

In 2002 H.-W. Chen [2, Theorem 1] provided the expansion

<1+}> _e-<1_§1(1+x)j> (x>0), 3)

b**

where b}* >0, for n € N, b**:1/2,andb**:l<nJrl I 1n+i j) forn>2.

n

Just recently [6], the authors presented their study of the function x +— (1 +x)1/ .
for x > 0. They found the expansion

(l—l—xl/"—ez )b (—1<x<1), (4)

where the sequence b, is monotonically decreasing, converging to 0, and is defined
recursively as
1 & )
by=1 d by=-> —b,_;, forn>1. 5
0 an - J; b orn (3)
Unfortunately, the convergence in (4) is extremely poor in the left immediate neighbor-
hood of the point x =1 as it is seen in Figure 1, where the graph of the function x —
(14 x)'/*, together with the graphs of its approximations oy, (x) := eX_o(=1)/bjx/
and 0,4 (x), for n € {2, 10}, are plotted. This deficiency motivates our contribution.

26¢
2.4+
22¢
20¢
1.8¢
1.6

0.0 0.2 04 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Illustration of the double inequality O,1(x) < (1 + )Y < 6,(x), for on(x) =
eXY o(=1)/bjx/, x€(0,1] and n € {2, 10}.
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2. Discussion

We have
1
(1+x)/% =exp (—ln(l —|—x)) , forx>—1,
x

where, according to Maclaurin’s expansion,

In(1+17)= 2)(_1)jj4f17 forr € (—1,1] {0},

we have the expansion

In il =1In(1+7)—In(1 t)—2§ o for 7] < 1
1-1) =R '
Using in (6) the substitution
L1 1+ ie ¢ al ie 2 (1)
—=1+x 1 = — e x=——=:x
1—1t ’ 2+x’ 1—1t ’

for x € (—1,00) \. {0}, or equivalently, for r € (—1,1) \. {0}, we obtain

1 1—t (141 11—t & 12!
0= n(l—t) : jzzlzj—l

oo t2i
=(1-1 .
=02 557

Hence, for x € (—1,) ~ {0}, i.e. for |7] <1,

|+ )/ 140\ 7 > > 2l
(1+x) _<1—z) =exp| 2oy - 2o

i=0 i=0
= exp (i ajtj> :
j=0
where, for j >0,
L jeven
aj=(-1)/c; and c;= j+11

-, ] odd.
J

We shall use the following lemma, demonstrated quite elementarily.

95

(6)

(M

®)

)

(10)
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LEMMA 1. If an analytic function s(t) has the expansion s(t) = ¥7_oa 1!, for
|t| < r with some r € R", then the function f(t) :=exp (s(t)) has the expansion'

=dajtl =e® Y bl (jr] <), (11)
j=0 j=0

where aj —eaob , for j =0, with

n—1

1

ay=€" and ay=-Y (n—k)a,_xa; (n=1), (12)
=0
1= 1

by=1  and b;:ZE( k)a, ;b = Zjaj (n=1). (13)
k=0

Proof. Let all the suppositions of Lemma 1 be satisfied. Then, due to the analyt-
icity, the function f(z) =exp (s(r)) has the Taylor series expansion, consequently the
nth coefficient &, is given as

(n)
a, = AC) , for n>0. (14)
n!
Thus
a = f(0) = !0 = % (15)

Since f'(t) = ¢*")s'(t) = f(1)s'(t), we have, using (14) and the Leibniz theorem
on the nth derivative of a product,

(Fe) " = (7)™
~ (s )"
=3 (})rh0stm e azo.

k=0

Consequently, considering (14), we obtain, for n > 0,

1 z n!
* : *, — )
o 1 ,EM (=1 Mak (I+n—k)laiini

n

akan+l—k7
thatis, forn > 1,
ln 1
a, = Z(n k)a,_raj.
" =0

ISee the interesting discussions on an expansion of the function (14 1/x)* given in [3] and [13], the
latter as a revisit using the Faa di Bruno formula.
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This way we approved (12) and consequently also (13), due to the obvious identity

a;=e"b; (j=20). O

Thanks to (9)-(10) and Lemma 1 we have the expansion

1-t

I+1\ 7 ——

(T:) :u%;ﬂﬂ (re(—
j:

~{0}),

where, according to (9), (10) and (13), the coefficients b’;- are given as

by=1 and b)=-

ZJ

)/
)'ejby,

Consequently, for the sequence
B, :=(-1)"b; (n>0),

we have (see (10)),

1 &
By=1, 0<BHZZZJ'CJ'B”,J'<1,
j=1

Indeed, referring to (17) and (18), we obtain

and b =(—

(n>

1)"B,,

(16)
1). (17)
(18)
forn>1. (19)

(>W"B, =b}, = % ijwcj(—l)’%*/Bn,j, forn > 1.
=1

In addition, considering (10), i.e. the obvious inequalities 0 < jc¢; <

induction, we approve the estimate 0 < B, < 1.

Due to (19) we have

Bo=B; =1,
B, =B;=32~0.83,
B4—B5— u%OSO,

< 1, and using the

(20)
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3. Monotonicity of the sequence n — B,

3.1. Direct discrete approach

We would like to confirm the detected monotonicity of the sequence n — B, per-

ceived in (20). Thanks to (10) and (19), we obtain, for n > 1,

1 n+1
But —Bu= 1-1-By+ Y jcjButi—j | —Ba

j=2
1 n+1
= —nB jciBpi1_;
1 n n+j§,2.lcj +1—j
n n+1
Z JjejBu-j+ Y jeiB, —(j-1)
= j:2
n
Z (lCl (i+1) c,+1>B
z=1
= (=1)i*1B;
According to (10), we have, for i > 0,
1 .
__|_—17 1 even
) i
B = (—1)’+1<ic,-— (i+ 1)%) -
37 iodd.

The sequence f; is decreasing, satisfying the following relations

L=PBo>Brj1=P2;>Brjr1=P2js2>0  (j=1).

Now, using (21) and (23), we obtain, for any integer m > 1,

1 2m

Byt — By = Tl (=)' BiBopi
i

1

T 2m+1 2 Boi-1(Bagu—jy 1 = Bapn-y)-
j=1

Thus, if for some integer m > 1 we have By = By for k€ {0,1,...,m

also By, +1 = By, - Hence, since By = 1 = By, we conclude

Bojy1 = Bo (k>0).

21

(22)

(23)

(24)

— 1}, then

(25)
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Consequently, using (25) and (21)—(23), we find, for m > 1,

Byni2 — By = Boyi2 — Bog

2m+1

= Bi Bom + — 1) BiBoyy1 i
2m+2

j=1

1 B n
T T o2m+2 ( = + 2 (Bj1 —ﬁzj)Bzm—zj>

- 1 Bo—2j
— 6( <B2m 62 E 2]+3)>. (26)

We can not demonstrate that the expression between the last round parenthesis in (26) is
positive, for all positive integers m, although Mathematica [15] find By,;,4+2 — Boyy > 0,
for m < 500. Therefore, we try differently. Thanks to (19), (25) and (10), we have

1 m
:%< (2]—1)062, 1B 2/+1+Z 2.] a2JB2m 21)

J=1 — ¥ J=1
*BZm72j

LAV :
3 > ((21 — o1+ (2)) a2j>B2m*2j
1

1
D (1—m> Boy—2j, form > 1. 27
j=1

|-

Consequently, using (26), we obtain

moo1 [(4j+1 6
B —B :— — Bom—2j. 28
2m+2 2m m+1 g ]+1 ( m 2]+3> 2m—2j ( )

Unfortunately, we fail to prove that the sum in (28) is positive, for all integers m > 1.
So, we shall use a complex analysis approach, used in [6].

OPEN PROBLEM 1. Demonstrate directly /elementarily the monotonicity of the se-
quence m— By,
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3.2. Complex analysis approach to the monotonicity of B,,,

Z
The logarithmic function® L(z) := Ik % (C is any piecewise smooth curve con-
C:1
necting 1 and z) is analytic on the simply connected domain C~ := C \ (—eo,0] and
satisfies the equalities L(z) = In(z), for z € R* and z =exp (L(z)), for z€ C™. For
z€C™, we have
L(z) = In(|z]) +iArg(z), (29)
where Arg(z) € (—m, ] is the principal value of the argument of z.
For oo € C and z € C™, the ar-power of z we define as z% :=exp (o¢L(z)) . For
z€RT and o € R, this definition of a power coincides with the standard one. Con-
2 .
sequently, considering the expansion® (16) and the identity 7 1“ = %, the

composite function

142\ % -z /142
f(z) = (1—2) :exp<2—ZZL<1—:>) (30)

is analytic on the domain C . (—eo,—1]\ {1}.
We will show that the smgulanty of f(z) at z=1 is removable. Indeed, according
to (29)—(30), for r € (0,1/¢) and 7 € (—m, ], we estimate

gexp( e )(ln2+’+n>>
<exp(3-§(ln%+n>> <exp(3<%+rc>) <A4r.

Since f(z) is bounded on the open punctured disk D'(1, ; ) ={zeC:0<z—-1|< 1 .

the Laurent expansion of f(z) on D'(1,1/e) reduces to the Taylor expansion guarante-

ing the existence of the finite A := lin} f(z). Therefore, using the additional definition
i—

‘f(l +rel)

f(1) := A, the extension f(z) becomes analytic also on the disk |z— 1| < 1/e.
For the function f(z), being analytic on the simply—connected domain & := C \
(—o0, —1], we use the Cauchy’s integral formula for derivatives,

0 =2 By e, G

27 Jo 7]

where C C Z is any piecewise smooth, simple closed curve enclosing the point z =0.
In addition, referring to (18), (16) and (30), we have also

(n)
e (32)
Hence, we obtain
(=" yg f(2)
Bn - B
smic Pl dz (neN)

2called the principal branch of the logarithm
3z =0 is a removable singular point of f(z)



INEQUALITIES BOUNDING THE FUNCTION (14x)'/* 101

consequently

1 Z—1f(z
B _321n+2 = 27'[16%% ( sz_i)_{( ) dz (m S N)7 (33)

Here, in contrast to the function f(z), the function g(z) := (22 —1)f(z) = (z— 1)(1 +
2)f(z) is bounded on the notched disk D := {—1+re : 0 <r < i,—7m <t <m}.
Indeed, using (30), for (—1+re) € D, we have

lg(—1 +reit)| <(24r)r-exp (2(1r_r) ()lnzir) —|—71:>>
< 3r-exp (r(ln% + 77:) =3(2e") 117" < 6e”. (34)

Now let, for (small) € € (0 7] and (large) R > 2, the curve C = C(g,R) be the
oriented sum of consistently orlented curves, C(g,R) =C\(&,R)+ C2(€,R) +C3(g) +
C;(&,R), where, as is indicated in Figure 2, C(g,R) is the circular arc with center at
z=0 and radius R, C(&,R) and C;(€,R) are horizontal segments, and C3(¢) = {z €
C: |lz+ 1| =¢€, R(z) = 1}, the semicircle.

Im
D

z=x—ig, C;3(&R)

CeR)

Figure 2: The piecewise smooth, simple closed curve C(€,R) = C1(€,R) +C2(g,R) + C3(g) +
C5(g,R) in a simply connected domain 9 := C~ (—oo, —1], enclosing the point z = 0.

‘We have

) AR AR N S
C(&,R) Cy(e,R) 5 (&.R)
and

1 1—|z|?+2i- 1 1
o s 12 3(2)7 lim Arg <i> =m, lim Arg <i> =7,
1-z |1 —2z] R(z)<0 -z R(z)<0 -z

3(z)10 S(2)10
(36)
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where, using (30) and (36), we obtain

2 _ 1 2 _ 1
([ S [ i,
elo \ Joy(eg) 2 Cj(eR) <

- (2 = Dexp (12 (n £ +im) ) as

- R y2m+3

+/1R exp ((x —1)L= (ln}1+x|—i77:)>dx

x2m+3
. -1 2 1+x
:21/ (x —1)‘
R 1—x

1—x
r sin (l;xrc)
s

(R 1+1]% cos (%)
:21/1 2 —1) T (37)
Thanks to (29)—(30), for R >3 and ¢ € [—m, 7], we estimate
. 1+R 1+R
‘f(Re") < exp ( 2; In (Rt l) +7‘c> <exp(1-In(2) +7) =2¢".
Therefore, for integer m > 1, € € (0,1/4) and R > 3, we have
2 2 T T T
z7—1)f(z)dz 2R=-2e™|dz 4e 8me
/ ( 22{3( ) < / 2m+3‘ | St 2R =
Ci(e.R) z cer R R R
Thus, ,
—1
lim / (&= Df(z)dz —0. (38)
Rlee,e10 ./, (¢.R) Z¥m+3
Similarly, according to (34), we have
2 _
lim (&= Df(z)dz —0. (39)
SLO C3 (8) Z2m+3

Now, considering (35), (37), (38) and (39), we get the equality

‘ (Z-1Df() . /°° L4e|% cos (%)
1 = =2 ?—1 dr.
RTLI};‘LO %C(s.R) Z2m+3 ¢ ! 1 ( ) 1 —1 £2m+3

Hence, using (33) we find, for integer m >

r+1 5 cos (%)
B B2m+2—_/ (l‘—l) t2m+ft'a dr

1 +7

l+7 2m 1 n
= 21)d 0. 40
o (1—1’) cos (% 7)dr > (40)
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3.3. Rough bounding the sequence n — B,
The integral I(m) in (40),

we roughly estimate* from below, using (41), as follows

o> [ (14 30) P (5 Fr- L (3§97 ar

(1

. ﬂeXP( 1/( 26) 240m3+936m?+3(352—512)m+12(24—n2)
)
)

- 192 m(m+1)(m+2)(2m+1)(2m+3)

< neXP( 1/(2e 240m> +-936m> +606m+168

192 " m(m 1) (m+2)2mA1)(2m+3)

> ﬂeXP( 1/(2e 42-(m+2 m+3)
192 m(m+1)(m+2 mt3)
S > momry (M= 1)

Thus, using (40), we obtain’

n—1
21 exp(—1/(2e)) 1
Bomyon < Bom — 96¢ 26 (m+j)(m+j+1)
j=

_ 2lexp(=1/(2¢)) (1 1

= Bow e (E_m_Jrn)
<Bgm—0066(—— ) (m,n>1).

m+n

Similarly, using (41), we estimate from above

103

(41)

(42)

1
3 5
I(m)</0 L (5L (5-50) + 5 (5-57)) e

_ . A(m)+B(m)+C(m)
= 3840 m(m+1)(m+2)(m+3)(2m+1)(2m+3)(2m+5)(2m+17)

< . 1920-(m+2)(m+3)(2m 2m+5)(2m+7)
3840
m(m+1)(m+2)(m+3)(2m 2m+5)(2m+7)
T 0.500

— 2m(m+1) m(m+1)’

3/2

) valid for 0 <x< %
1

m+l)(m+2) T om2

x_é(%_x)z’gcos(x)gg— —6(%_ ) +120(

“4using the inequalities ¢~ '/(2¢) < x/2 < 1 and (1+x)
1 T _
2
5 =

using the induction and the expansion [T

1+ 2x, both true for 0 <x <1, and Z 57—
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where
A(m) = 30720m° + 384000m° 4 1920(986 — *)m* 4 1920(2416 — 97*)m?
B(m) := 120(48360 — 4487> 4+ n*)m® + 60(55632 — 1100m> + 71*)m
C(m) :=315(1920 — 807>+ *).

Consequently, considering (40), we get®

n—1
1 1
Bowsan > Bon — 5 EO (TR
J=
1 1 1
=Bom— ¢ (35 — )
>B2m_0'184(%_min) (m7n> l) (43)

Letting n — oo in (42)—(43), we obtain, for any integer m > 1, the double inequal-
ity

23 .
By, — —— < limB,, < By, —
Nn—oo

125m 9

125m "~

For example, using m = 2, we estimate

7 . 8
E< hmBn<E.

n—oo

Figure 3 shows, for m € {10,30} the graphs of the functions 7 — Byy12, together

with the graphs of the lower and upper bounds, n +— By, — % (% — mlﬂ) and n —
Bom— 135 (L — —L) , respectively.
0.750 0.741

0.740
0.739
0.738

0.745

0.740

20 40 60 80 100 20 40 60 80 100

Figure 3: The graphs of the functions n — Boyy,.2, and the graphs of the lower and upper

23 (1 1 8 1
bounds, n— By = 135 (5 — ) and = Bay = 135 (3 = ) -

6by induction
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4. Series expansion of (1 +x)!/*

We summarize the results of our previous discussions, the items (7), (9), (16), (18),
(25), (27), (40), (42) and (43), as the following theorem.

THEOREM. For —1 < x # 0, the expansion

(l—l—x)l/x:e-i(—l)ij-( a )17 (45)

o x+2

holds, having the series absolutely convergent, where the sequence B,, is monotonically
decreasing ( Byy, strictly monotonically decreasing) and given recursively as

1 & 4j+1 1" 4m—i)+1
Bo=1 and Bay=Baei= 23 g, o LS A0

MmO g, (46
m & m & 4m—i)+2 2ir (46)

form>1.
The sequence n— By,,40, satisfies, for all m,n > 1, the double inequality

23 (1 1 8 1 1
- ——— B Byy—— | ——— 47
2m 125 (m m+n> < DBomt2n < boam 125 (m m+n> ) ( )
resulting from the identity

1+7

2

1 ! 2 l+7 2m—1 n
By —Bopin=— [ (1—-7%) | —— ™ leos(Z1)dt (m=1). (48)
ern Jo 1—7

COROLLARY 1. We have % < limB, < B, < %,for n>=4.
Nl—oc0

COROLLARY 2. For any integer m > 1 and every real x > 0 we have the follow-
ing relations

oo 2i
1 _ 2 (o
(4= 75 X B <x+2) : (49)
Som—1(x) < (14+2)"* < Sa(x) (50)

where

Sn(x) ::e-i(—l)ij.<xi2>J, for n>1.
j=0

Figure 4 shows the graph of the function x — (1 +x) 1/xtogether with the graphs of its
approximations S, (x) := eX/t_o(—1)/bjx/ and S, (x), for n € {2,4}.
Setting x = % in (49), we obtain the next corollary.
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0.0 0.5 1.0 1.5 2.0
Figure 4: lllustration of the double inequality (49), for m € {1,3}.

COROLLARY 3. For any integers m,n > 1 there holds the following double in-
equality

2m—1 B 1 n
2 1+ =
¢ z 2n—|—1) ( +n)

2m B
= 2 Rerrnk oD

Considering Pélya’s improvement (2), we get from (51) the following corollary.

COROLLARY 4. (Carleman’s inequality improvement) For any integer m > 1 and
for every sequence x, > 0 such that 0 < Y7 x, < oo, we have the following improve-
ment of Carleman’s inequality

oo n 1/n 2m B:
j+1 J
%(Hxl) <e-<l—2(—1)1 7(2’1_'_1)1,))@,

j=1

= e-ng’l (1 — A(m,n))xn, (52)

where

mo By,
0<A — (B <1 =),
(m,m) ; (2n+ 1)%- 1( S 2n+1) (m.n21)

OPEN PROBLEM 2. Demonstrate that the estimate (52) improves the inequality
2m
[6, B4, i.e. A(m,n) > 8(m,n):= 3 (- l)JJrl , for myn > 1.

J=1
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