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Abstract. In the expansion

(1+ x)1/x = e ·
∞

∑
j=0

(−1) jB j ·
(

x
x+2

) j

, for −1 < x �= 0,

the sequence Bn is monotonically decreasing, bounded as 7
10 < lim

n→∞
Bn < Bn < 8

10 , for n � 4 ,

and is given recursively as

B0 = 1 and B2m = B2m+1 =
1
m

m

∑
j=1

4 j+1
4 j+2

B2m−2 j, for m � 1.

For any integers m,n � 1 , the double inequality

e ·
2m−1

∑
j=0

(−1) j B j

(2n+1) j <

(
1+

1
n

)n

< e ·
2m

∑
j=0

(−1) j B j

(2n+1) j

holds, together with improved Carleman’s inequality

∞

∑
n=1

(
n

∏
i=1

xi

)1/n

< e ·
∞

∑
n=1

(
1−

2m

∑
j=1

(−1) j+1 Bj

(2n+1) j

)
xn ,

true for every sequence xn � 0 such that 0 < ∑∞
n=1 xn < ∞ .

1. Introduction

In 1922 the Swedish mathematician Carleman [1] presented the inequality

x1 +(x1x2)1/2 +(x1x2x3)1/3 + · · ·+(x1x2x3 · · ·xn)1/n + · · ·< e
(
x1 +x2 +x3 + · · ·), (1)

valid for xn � 0 with 0 < x1 +x2 +x3 + . . . < ∞ . It is now called Carleman’s inequality.
First important generalization of (1) was done in 1925 by the English mathemati-

cian Hardy [8]. Later, in 1926 the Hungarian mathematician Pólya [12], in his proof of
(1), derived the crucial improvement

∞

∑
n=1

(
n

∏
i=1

xi

)1/n

�
∞

∑
n=1

(
1+

1
n

)n

xn , (2)
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true for xn � 0 such that 0 < ∑∞
n=1 xn < ∞ . Until recently, many authors provided

various generalizations/improvements of (1), see e.g. [7].
Over the last twenty years, many articles have addressed strengthening (1) by using

(2). This was done mostly on the basis of several estimates of the sequence (1+1/n)n ,
which continued with the search for an accurate estimate of (1+x)1/x , for 0 < x � 1, or
equivalently, an estimate of (1+ 1

x )
x , for x � 1. For example, in 1999, Yang [16], using

the left estimate of his inequality e/(2x+ 2) < e− (1+ 1/x)x < e/(2x+ 1) , valid for

x > 0, improved (1) by the estimate ∑∞
n=1

(
∏n

i=1 xi
)1/n

< e ·∑∞
n=1

(
1−1/(2n)

)
xn , true

for xn � 0 such that 0 < ∑∞
n=1 xn < ∞ . In fact, most authors sought as accurate estimates

of the function (1+ x)1/x as possible, see e.g. [2, 3, 4, 5, 9, 10, 11, 13, 14, 16, 17].
In 2002 H.-W. Chen [2, Theorem 1] provided the expansion

(
1+

1
x

)x

= e ·
(

1−
∞

∑
j=1

b∗∗j
(1+ x) j

)
(x > 0), (3)

where b∗∗n > 0, for n ∈ N , b∗∗1 = 1/2, and b∗∗n = 1
n

(
1

n+1 −∑n−1
j=1

b∗∗j
n+1− j

)
, for n � 2.

Just recently [6], the authors presented their study of the function x �→ (1+ x)1/x ,
for x > 0. They found the expansion

(1+ x)1/x = e
∞

∑
j=0

(−1) j b jx
j (−1 < x � 1), (4)

where the sequence bn is monotonically decreasing, converging to 0, and is defined
recursively as

b0 = 1 and bn =
1
n

n

∑
j=1

j
j +1

bn− j, for n � 1. (5)

Unfortunately, the convergence in (4) is extremely poor in the left immediate neighbor-
hood of the point x = 1 as it is seen in Figure 1, where the graph of the function x �→
(1+ x)1/x , together with the graphs of its approximations σn(x) := e∑n

j=0(−1) j b jx j

and σn+1(x) , for n ∈ {2, 10} , are plotted. This deficiency motivates our contribution.
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Figure 1: Illustration of the double inequality σn+1(x) < (1 + x)1/x < σn(x) , for σn(x) :=
e∑n

j=0(−1) j b jx j , x ∈ (0,1] and n ∈ {2, 10} .
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2. Discussion

We have

(1+ x)1/x = exp

(
1
x

ln(1+ x)
)

, for x > −1,

where, according to Maclaurin’s expansion,

ln(1+ t) =
∞

∑
j=0

(−1) j t j

j +1
, for t ∈ (−1,1]�{0},

we have the expansion

ln

(
1+ t
1− t

)
= ln(1+ t)− ln(1− t) = 2

∞

∑
j=1

t2 j−1

2 j−1
, for |t| < 1. (6)

Using in (6) the substitution

1+ t
1− t

= 1+ x, i.e t =
x

2+ x
, i.e x =

2t
1− t

=: x(t) , (7)

for x ∈ (−1,∞)�{0} , or equivalently, for t ∈ (−1,1)�{0} , we obtain

1
x

ln(1+ x) =
1− t
2t

ln

(
1+ t
1− t

)
=

1− t
t

∞

∑
j=1

t2 j−1

2 j−1

= (1− t)
∞

∑
i=0

t2i

2i+1
. (8)

Hence, for x ∈ (−1,∞)�{0} , i.e. for |t| < 1,

(1+ x)1/x =
(

1+ t
1− t

) 1−t
2t

= exp

(
∞

∑
i=0

t2i

2i+1
−

∞

∑
i=0

t2i+1

2i+1

)

= exp

(
∞

∑
j=0

a j t
j

)
, (9)

where, for j � 0,

a j = (−1) jc j and c j =

⎧⎪⎪⎨
⎪⎪⎩

1
j +1

, j even

1
j
, j odd.

(10)

We shall use the following lemma, demonstrated quite elementarily.
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LEMMA 1. If an analytic function s(t) has the expansion s(t) = ∑∞
j=0 a j t j , for

|t| < r with some r ∈ R+ , then the function f (t) := exp
(
s(t)
)

has the expansion1

f (t) =
∞

∑
j=0

a∗j t
j = ea0

∞

∑
j=0

b∗j t
j (|t| < r), (11)

where a∗j = ea0b∗j , for j � 0 , with

a∗0 = ea0 and a∗n =
1
n

n−1

∑
k=0

(n− k)an−k a∗k (n � 1), (12)

b∗0 = 1 and b∗n =
1
n

n−1

∑
k=0

(n− k)an−k b∗k =
1
n

n

∑
j=1

j ·a j b
∗
n− j (n � 1). (13)

Proof. Let all the suppositions of Lemma 1 be satisfied. Then, due to the analyt-
icity, the function f (t) = exp

(
s(t)
)

has the Taylor series expansion, consequently the
n th coefficient a∗n is given as

a∗n =
f (n)(0)

n!
, for n � 0. (14)

Thus
a∗0 = f (0) = es(0) = ea0 . (15)

Since f ′(t) = es(t)s′(t) = f (t)s′(t) , we have, using (14) and the Leibniz theorem
on the n th derivative of a product,(

f (t)
)(n+1) =

(
f ′(t)

)(n)

=
(

f (t)s′(t)
)(n)

=
n

∑
k=0

(
n
k

)
f (k)(t)s(1+n−k)(t) (n � 0).

Consequently, considering (14), we obtain, for n � 0,

a∗n+1 =
1

(n+1)!

n

∑
k=0

n!

�k! · (n− k)!
·��(k!)a∗k · (1+n− k)!a1+n−k

=
1

n+1

n

∑
k=0

(n+1− k)a∗k an+1−k,

that is, for n � 1,

a∗n =
1
n

n−1

∑
k=0

(n− k)an−k a∗k.

1See the interesting discussions on an expansion of the function (1 + 1/x)x given in [3] and [13], the
latter as a revisit using the Faà di Bruno formula.
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This way we approved (12) and consequently also (13), due to the obvious identity
a∗j = ea0b∗j ( j � 0) . �

Thanks to (9)–(10) and Lemma 1 we have the expansion

(
1+ t
1− t

) 1−t
2t

= e ·
∞

∑
j=0

b∗j t
j (

t ∈ (−1,1)�{0}), (16)

where, according to (9), (10) and (13), the coefficients b∗j are given as

b∗0 = 1 and b∗n =
1
n

n

∑
j=1

j · (−1) jc j b
∗
n− j . (n � 1). (17)

Consequently, for the sequence

Bn := (−1)nb∗n (n � 0), (18)

we have (see (10)),

B0 = 1, 0 < Bn =
1
n

n

∑
j=1

j c j Bn− j � 1, and b∗n = (−1)nBn, for n � 1. (19)

Indeed, referring to (17) and (18), we obtain

���(−1)nBn = b∗n =
1
n

n

∑
j=1

j���(−1) jc j (−1)�n−�j Bn− j, for n � 1.

In addition, considering (10), i.e. the obvious inequalities 0 < j c j � 1, and using the
induction, we approve the estimate 0 < Bn � 1.

Due to (19) we have

B0 = B1 = 1,

B2 = B3 = 5
6 ≈ 0.83,

B4 = B5 = 287
360 ≈ 0.80,

B6 = B7 = 7085
9072 ≈ 0.78 .

(20)



98 V. LAMPRET

3. Monotonicity of the sequence n �→ Bn

3.1. Direct discrete approach

We would like to confirm the detected monotonicity of the sequence n �→ Bn per-
ceived in (20). Thanks to (10) and (19), we obtain, for n � 1,

Bn+1−Bn =
1

n+1

(
1 ·1 ·Bn +

n+1

∑
j=2

j c j Bn+1− j

)
−Bn

=
1

n+1

(
−nBn +

n+1

∑
j=2

j c j Bn+1− j

)

=
1

n+1

(
−

n

∑
j=1

j c j Bn− j +
n+1

∑
j=2

j c j Bn−( j−1)

)

= − 1
n+1

n

∑
i=1

(
ici − (i+1)ci+1

)
︸ ︷︷ ︸

=: (−1)i+1βi

Bn−i . (21)

According to (10), we have, for i � 0,

βi := (−1)i+1
(
ici − (i+1)ci+1

)
=

⎧⎪⎪⎨
⎪⎪⎩

1
i+1

, i even

1
i+2

, i odd .

(22)

The sequence βi is decreasing, satisfying the following relations

1 = β0 > β2 j−1 = β2 j > β2 j+1 = β2 j+2 > 0 ( j � 1). (23)

Now, using (21) and (23), we obtain, for any integer m � 1,

B2m+1−B2m = − 1
2m+1

2m

∑
i=1

(−1)i+1βi B2m−i

= − 1
2m+1

m

∑
j=1

β2 j−1
(
B2(m− j)+1−B2(m− j)

)
. (24)

Thus, if for some integer m � 1 we have B2k+1 = B2k for k ∈ {0,1, . . . ,m− 1} , then
also B2m+1 = B2m . Hence, since B0 = 1 = B1 , we conclude

B2k+1 = B2k (k � 0). (25)
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Consequently, using (25) and (21)–(23), we find, for m � 1,

B2m+2−B2m = B2m+2−B2m+1

= − 1
2m+2

(
β1 B2m +

2m+1

∑
i=2

(−1)i+1βi B2m+1−i

)

= − 1
2m+2

(
B2m

3
+

m

∑
j=1

(
β2 j+1−β2 j

)
B2m−2 j

)

= − 1
6(m+1)

(
B2m−6

m

∑
j=1

B2m−2 j

(2 j +1)(2 j +3)

)
. (26)

We can not demonstrate that the expression between the last round parenthesis in (26) is
positive, for all positive integers m , although Mathematica [15] find B2m+2−B2m > 0,
for m � 500. Therefore, we try differently. Thanks to (19), (25) and (10), we have

B2m =
1

2m

2m

∑
i=1

iαi B2m−i

=
1

2m

( m

∑
j=1

(2 j−1)α2 j−1 B2m−2 j+1︸ ︷︷ ︸
=B2m−2 j

+
m

∑
j=1

(2 j)α2 j B2m−2 j

)

=
1

2m

m

∑
j=1

(
(2 j−1)α2 j−1 +(2 j)α2 j

)
B2m−2 j

=
1
m

m

∑
j=1

(
1− 1

4 j +2

)
B2m−2 j, for m � 1. (27)

Consequently, using (26), we obtain

B2m+2−B2m = − 1
6(m+1)

m

∑
j=1

1
2 j +1

(
4 j +1
2m

− 6
2 j +3

)
B2m−2 j . (28)

Unfortunately, we fail to prove that the sum in (28) is positive, for all integers m � 1.
So, we shall use a complex analysis approach, used in [6].

OPEN PROBLEM 1. Demonstrate directly /elementarily the monotonicity of the se-
quence m �→ B2m .
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3.2. Complex analysis approach to the monotonicity of B2m

The logarithmic function2 L(z) :=
ź

C:1

dζ
ζ (C is any piecewise smooth curve con-

necting 1 and z) is analytic on the simply connected domain C− := C � (−∞,0] and
satisfies the equalities L(z) = ln(z) , for z ∈ R+ and z = exp

(
L(z)

)
, for z ∈ C− . For

z ∈ C− , we have
L(z) = ln(|z|)+ iArg(z), (29)

where Arg(z) ∈ (−π ,π ] is the principal value of the argument of z .
For α ∈ C and z ∈ C− , the α -power of z we define as zα := exp

(
α L(z)

)
. For

z ∈ R+ and α ∈ R , this definition of a power coincides with the standard one. Con-

sequently, considering the expansion3 (16) and the identity 1+z
1−z = 1−|z|2+2iℑ(z)

|1−z|2 , the
composite function

f (z) :=
(

1+ z
1− z

) 1−z
2z

= exp

(
1− z
2z

L
(1+ z

1− z

))
(30)

is analytic on the domain C� (−∞,−1]�
{
1
}

.
We will show that the singularity of f (z) at z = 1 is removable. Indeed, according

to (29)–(30), for r ∈ (0,1/e) and t ∈ (−π ,π ] , we estimate∣∣∣ f (1+ reit)
∣∣∣� exp

(
r

2(1−r)

(
ln 2+r

r + π
))

< exp
(
3 · r

3

(
ln 3

r + π
))

< exp
(
3
(

1
e + π

))
< 4π .

Since f (z) is bounded on the open punctured disk D′(1, 1
e ) :=

{
z ∈ C : 0 < |z−1|< 1

e

}
,

the Laurent expansion of f (z) on D′(1,1/e) reduces to the Taylor expansion guarante-
ing the existence of the finite λ := lim

z→1
f (z) . Therefore, using the additional definition

f (1) := λ , the extension f (z) becomes analytic also on the disk |z−1|< 1/e .
For the function f (z) , being analytic on the simply–connected domain D := C�

(−∞,−1] , we use the Cauchy’s integral formula for derivatives,

f (n)(0) =
n!
2π i

‰
C

f (z)
zn+1 dz (n ∈ N), (31)

where C ⊂ D is any piecewise smooth, simple closed curve enclosing the point z = 0.
In addition, referring to (18), (16) and (30), we have also

e(−1)nBn = ebn =
f (n)(0)

n!
. (32)

Hence, we obtain

Bn =
(−1)n

2π ie

‰
C

f (z)
zn+1 dz (n ∈ N),

2called the principal branch of the logarithm
3 z = 0 is a removable singular point of f (z)
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consequently

B2m−B2m+2 =
1

2π ie

‰
C

(z2 −1) f (z)
z2m+3 dz (m ∈ N), (33)

Here, in contrast to the function f (z) , the function g(z) := (z2 −1) f (z) = (z−1)(1+
z) f (z) is bounded on the notched disk D := {−1 + reit : 0 < r � 1

2 ,−π < t < π} .
Indeed, using (30), for (−1+ reit) ∈ D , we have

∣∣g(−1+ reit)
∣∣� (2+ r)r · exp

(
r

2(1− r)

(∣∣∣ ln r
2− r

∣∣∣+ π
))

< 3r · exp
(
r
(

ln 2
r + π

)
= 3(2eπ)r · r1−r < 6eπ . (34)

Now let, for (small) ε ∈ (0, 1
4 ] and (large) R > 2, the curve C = C(ε,R) be the

oriented sum of consistently oriented curves, C(ε,R) = C1(ε,R)+C2(ε,R)+C3(ε)+
C∗

2(ε,R) , where, as is indicated in Figure 2, C1(ε,R) is the circular arc with center at
z = 0 and radius R , C2(ε,R) and C∗

2(ε,R) are horizontal segments, and C3(ε) = {z ∈
C : |z+1|= ε, ℜ(z) � 1} , the semicircle.

z�x�i�,

z�x�i�,

�
��

��

C��,R�

�1 10

C1��,R�

C3���

C1��,R�

C2��,R�

C2
���,R�

R

iR

�iR

�R

Figure 2: The piecewise smooth, simple closed curve C(ε,R) = C1(ε,R)+C2(ε,R)+C3(ε)+
C∗

2(ε,R) in a simply connected domain D := C� (−∞,−1] , enclosing the point z = 0 .

We have

‰
C(ε,R)

(z2−1) f (z)
z2m+3 dz =

�
�

��

ˆ
C1(ε,R)

+
ˆ

C2(ε,R)
+�

�
�

ˆ
C3(ε)

+
ˆ

C∗
2(ε,R)

(z2−1) f (z)
z2m+3 dz (35)

and

1+ z
1− z

=
1−|z|2 +2i ·ℑ(z)

|1− z|2 , lim
ℜ(z)<0

ℑ(z)↓0

Arg

(
1+ z
1− z

)
= π , lim

ℜ(z)<0
ℑ(z)↑0

Arg

(
1+ z
1− z

)
= −π ,

(36)
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where, using (30) and (36), we obtain

lim
ε↓0

(ˆ
C2(ε,R)

(z2 −1) f (z)
z2m+3 dz+

ˆ
C∗

2(ε,R)

(z2 −1) f (z)
z2m+3 dz

)

=
ˆ −1

−R

(x2 −1)exp
(

1−x
2x

(
ln
∣∣ 1+x
1−x

∣∣+ iπ
))

dx

x2m+3

+
ˆ −R

−1

exp
(
(x2−1) 1−x

2x

(
ln
∣∣ 1+x
1−x

∣∣− iπ
))

dx

x2m+3

= 2i
ˆ −1

−R
(x2 −1)

∣∣∣∣1+ x
1− x

∣∣∣∣
1−x
2x sin

(
1−x
2x π

)
x2m+3 dx

= 2i
ˆ R

1
(t2−1)

∣∣∣∣1+ t
1− t

∣∣∣∣
1+t
2t cos

( π
2t

)
t2m+3 dt . (37)

Thanks to (29)–(30), for R � 3 and t ∈ [−π ,π ] , we estimate∣∣∣ f (Reit )
∣∣∣� exp

(
1+R
2R

ln

(
1+R
R−1

)
+ π
)

< exp
(
1 · ln(2)+ π

)
= 2eπ .

Therefore, for integer m � 1, ε ∈ (0,1/4) and R > 3, we have∣∣∣∣∣
ˆ

C1(ε,R)

(z2 −1) f (z)dz
z2m+3

∣∣∣∣∣<
ˆ

C1(ε,R)

2R2 ·2eπ |dz|
R2m+3 <

4eπ

R2m+1 ·2πR =
8πeπ

R2m .

Thus,

lim
R↑∞,ε↓0

ˆ
C1(ε,R)

(z2 −1) f (z)dz
z2m+3 = 0 . (38)

Similarly, according to (34), we have

lim
ε↓0

ˆ
C3(ε)

(z2 −1) f (z)dz
z2m+3 = 0 . (39)

Now, considering (35), (37), (38) and (39), we get the equality

lim
R↑∞,ε↓0

‰
C(ε,R)

(z2 −1) f (z)
z2m+3 dz = 2i

ˆ ∞

1
(t2−1)

∣∣∣∣1+ t
1− t

∣∣∣∣
1+t
2t cos

( π
2t

)
t2m+3 dt .

Hence, using (33) we find, for integer m � 1,

B2m −B2m+2 =
1

eπ

ˆ ∞

1
(t2 −1)

(
t +1
t−1

) t+1
2t cos

( π
2t

)
t2m+3 dt

=
1

eπ

ˆ 1

0
(1− τ2)

(
1+ τ
1− τ

) 1+τ
2

τ2m−1 cos
(π

2 τ
)

︸ ︷︷ ︸
� 0

dτ > 0. (40)
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3.3. Rough bounding the sequence n �→ Bn

The integral I(m) in (40),

I(m) : =
ˆ 1

0
(1− τ2)

( 1+τ
1−τ
) 1+τ

2 τ2m−1 cos
(π

2 τ
)

dτ

=
ˆ 1

0
(1− τ)

1−τ
2 (1+ τ)

3+τ
2 τ2m−1 cos

(π
2 τ
)

dτ, (41)

we roughly estimate4 from below, using (41), as follows

I(m) >

ˆ 1

0
e−1/(2e) (1+ 3

2 τ
) · τ2m−1 ·

(
π
2 − π

2 τ − 1
6

(π
2 − π

2 τ
)3)

dτ

=
π exp

(
−1/(2e)

)
192 · 240m3+936m2+3(352−5π2)m+12(24−π2)

m(m+1)(m+2)(2m+1)(2m+3)

>
π exp

(
−1/(2e)

)
192 · 240m3+936m2+606m+168

m(m+1)(m+2)(2m+1)(2m+3)

>
π exp

(
−1/(2e)

)
192 · 42·��������

(m+2)(2m+1)(2m+3)
m(m+1)��������

(m+2)(2m+1)(2m+3)

=
21π exp

(
−1/(2e)

)
96m(m+1) > 0.181π

m(m+1) (m � 1) .

Thus, using (40), we obtain5

B2m+2n < B2m − 21 exp(−1/(2e))
96e

n−1

∑
j=0

1
(m+ j)(m+ j+1)

= B2m − 21 exp(−1/(2e))
96e

(
1
m − 1

m+n

)
< B2m −0.066

( 1
m − 1

m+n

)
(m,n � 1). (42)

Similarly, using (41), we estimate from above

I(m) <

ˆ 1

0
1 · (1+ τ)2 · τ2m−1

(
π
2 − π

2 τ − 1
6

(π
2 − π

2 τ
)3 + 1

120

(π
2 − π

2 τ
)5)

dτ

= π
3840 · A(m)+B(m)+C(m)

m(m+1)(m+2)(m+3)(2m+1)(2m+3)(2m+5)(2m+7)

< π
3840 · 1920·

���������������
(m+2)(m+3)(2m+1)(2m+3)(2m+5)(2m+7)

m(m+1)
���������������
(m+2)(m+3)(2m+1)(2m+3)(2m+5)(2m+7)

= π
2m(m+1) = 0.500π

m(m+1) ,

4using the inequalities e−1/(2e) � xx/2 � 1 and (1+ x)3/2 � 1+ 3
2 x , both true for 0 � x � 1 , and π

2 −
x− 1

6

( π
2 − x

)3 � cos(x) � π
2 − x− 1

6

( π
2 − x

)3 + 1
120

( π
2 − x

)5 , valid for 0 < x � π
2

5using the induction and the expansion 1
(m+1)(m+2) = 1

m+1 − 1
m+2
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where

A(m) := 30720m6 +384000m5 +1920(986−π2)m4 +1920(2416−9π2)m3

B(m) := 120(48360−448π2+ π4)m2 +60(55632−1100π2+7π4)m

C(m) := 315(1920−80π2+ π4) .

Consequently, considering (40), we get6

B2m+2n > B2m − 1
2e

n−1

∑
j=0

1
(m+ j)(m+ j+1)

= B2m − 1
2e

(
1
m − 1

m+n

)
> B2m −0.184

(
1
m − 1

m+n

)
(m,n � 1). (43)

Letting n→ ∞ in (42)–(43), we obtain, for any integer m � 1, the double inequal-
ity

B2m − 23
125m

< lim
n→∞

Bn < B2m− 8
125m

. (44)

For example, using m = 2, we estimate

7
10

< lim
n→∞

Bn <
8
10

.

Figure 3 shows, for m∈ {10,30} the graphs of the functions n �→ B2m+2n together
with the graphs of the lower and upper bounds, n �→ B2m − 23

125

(
1
m − 1

m+n

)
and n �→

B2m− 8
125

(
1
m − 1

m+n

)
, respectively.

20 40 60 80 100

0.740

0.745

0.750

m � 10

20 40 60 80 100

0.738

0.739

0.740

0.741

m � 30

Figure 3: The graphs of the functions n �→ B2m+2n and the graphs of the lower and upper
bounds, n �→ B2m− 23

125

( 1
m − 1

m+n

)
and n �→ B2m− 8

125

( 1
m − 1

m+n

)
.

6by induction
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4. Series expansion of (1+ x)1/x

We summarize the results of our previous discussions, the items (7), (9), (16), (18),
(25), (27), (40), (42) and (43), as the following theorem.

THEOREM. For −1 < x �= 0 , the expansion

(1+ x)1/x = e ·
∞

∑
j=0

(−1) jB j ·
(

x
x+2

) j

, (45)

holds, having the series absolutely convergent, where the sequence Bn is monotonically
decreasing (B2m strictly monotonically decreasing) and given recursively as

B0 = 1 and B2m = B2m+1 =
1
m

m

∑
j=1

4 j +1
4 j +2

B2m−2 j =
1
m

m−1

∑
i=0

4(m− i)+1
4(m− i)+2

B2i, (46)

for m � 1 .
The sequence n �→ B2m+2n satisfies, for all m,n � 1 , the double inequality

B2m − 23
125

(
1
m
− 1

m+n

)
< B2m+2n < B2m − 8

125

(
1
m
− 1

m+n

)
, (47)

resulting from the identity

B2m −B2m+2 =
1

eπ

ˆ 1

0
(1− τ2)

(
1+ τ
1− τ

) 1+τ
2

τ2m−1 cos
(π

2 τ
)

dτ (m � 1) . (48)

COROLLARY 1. We have 7
10 < lim

n→∞
Bn < Bn < 8

10 , for n � 4 .

COROLLARY 2. For any integer m � 1 and every real x > 0 we have the follow-
ing relations

(1+ x)1/x =
2e

x+2

∞

∑
i=0

B2i ·
(

x
x+2

)2i

, (49)

S2m−1(x) < (1+ x)1/x < S2m(x) , (50)

where

Sn(x) := e ·
n

∑
j=0

(−1) jB j ·
(

x
x+2

) j

, for n � 1.

Figure 4 shows the graph of the function x �→ (1+x)1/x , together with the graphs of its
approximations Sn(x) := e∑n

j=0(−1) j b jx j and Sn+1(x) , for n ∈ {2, 4} .

Setting x = 1
n in (49), we obtain the next corollary.
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0.5 1.0 1.5 2.0

1.6

1.8
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2.4

2.6

S1�x�

S2�x�
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1.8
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2.4

2.6

S5�x�

S6�x�

Figure 4: Illustration of the double inequality (49), for m ∈ {1, 3} .

COROLLARY 3. For any integers m,n � 1 there holds the following double in-
equality

e ·
2m−1

∑
j=0

(−1) j B j

(2n+1) j <

(
1+

1
n

)n

< e ·
2m

∑
j=0

(−1) j B j

(2n+1) j . (51)

Considering Pólya’s improvement (2), we get from (51) the following corollary.

COROLLARY 4. (Carleman’s inequality improvement) For any integer m � 1 and
for every sequence xn � 0 such that 0 < ∑∞

n=1 xn < ∞ , we have the following improve-
ment of Carleman’s inequality

∞

∑
n=1

(
n

∏
i=1

xi

)1/n

< e ·
(

1−
2m

∑
j=1

(−1) j+1 Bj

(2n+1) j

)
xn

= e ·
∞

∑
n=1

(
1−Δ(m,n)

)
xn , (52)

where

0 < Δ(m,n) :=
m

∑
i=1

1
(2n+1)2i−1

(
B2i−1− B2i

2n+1

)
< 1 (m,n � 1).

OPEN PROBLEM 2. Demonstrate that the estimate (52) improves the inequality

[6, (3.4)], i.e. Δ(m,n) > δ (m,n) :=
2m
∑
j=1

(−1) j+1 b j

n j , for m,n � 1 .
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