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ON THE IRREGULARITY OF GRAPHS BASED ON THE

ARITHMETIC–GEOMETRIC MEAN INEQUALITY

ALI GHALAVAND, ALI REZA ASHRAFI AND DARKO DIMITROV ∗

Abstract. For a graph G of order n , size m and degree sequence D(G) = (d1,d2, . . . ,dn) , a
new measure of irregularity

IAG(G) = 1−nn(d1 + r)(d2 + r) · · ·(dn + r)/(2m+ rn)n,

r ∈ R�0 , is introduced. It is shown that if G has maximum IAG -irregularity among all con-
nected graphs of order n and size m , then (i) Δ(G) = n− 1 ; (ii) for each u,v ∈ V(G) with the
property dG(u) � dG(v) , it holds that N(G,u) ⊆ N[G,v] , where N(G,w) and N[G,w] are the
neighbourhood and the closed neighbourhood of w in G , respectively; (iii) G is a threshold
graph. Further, it is proven that if a graph H has a minimum value of IAG -irregularity among
all irregular graphs of the same order and size, then Δ(H)−δ (H) = 1 . Finally, the graphs with
minimum and maximum IAG -irregularity in the classes of trees, unicyclic and bicyclic graphs
are characterized.
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