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INTEGRAL EQUATIONS ON COMPACT MANIFOLD WITH BOUNDARY

YAZHOU HAN

Abstract. Let (Mn,g,Σ) be a smooth compact Riemannian manifold with boundary and n � 3 .
This paper is devoted to studying a class of integral system{

gpα−1(x) =
∫

Σ K(x,y) f (y)dSy , x ∈ Mn,

f p̃α−1(y) =
∫
Mn K(x,y)g(x)dVx , y ∈ Σ,

where α ∈ (1,n) , pα = 2n
n+α , p̃α = 2(n−1)

n+α−2 , ( f ,g) ∈ Lp̃α (Σ)×Lpα (Mn) and the kernel function
K(x,y) ∈C∞(Mn ×Mn\{(x,x)}) satisfies K(x,y) ∼ |x−y|α−n

g as |x−y|g → 0. Since the system
is the Euler-Lagrange equations of extremal problem

NK(α ,M) = sup
{∣∣∣∫

Mn

∫
Σ
g(x)K(x,y) f (y)dSydVx

∣∣∣ : ‖ f‖Lp̃α (Σ) = ‖g‖Lpα (Mn) = 1
}

,

we will study the existence of the system by concentration-compactness principle. Firstly, we get
NK (α ,M) �Ce(n,α , p̃α ) , where Ce(n,α , p̃α ) is the best constant of Hardy-Littlewood-Sobolev
inequalities on the upper half space established by Dou and Zhu [6] and equals to NK (α ,M)
when (Mn,g,Σ) = (B1(0), | · |,∂B1(0)) and K(x,y) = |x− y|α−n . Secondly, if NK (α ,M) >
Ce(n,α , p̃α ) , we prove that NK(α ,M) is attained. Namely, under the criterion NK (α ,M) >
Ce(n,α , p̃α ) , we get the existence of the system. Lastly, a concrete example satisfying the
criterion is given. The example is closely related to the conformal problems studied by Escobar
[9, 10].
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