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INTEGRAL EQUATIONS ON COMPACT MANIFOLD WITH BOUNDARY

YAZHOU HAN

(Communicated by J. Jakšetić)

Abstract. Let (Mn,g,Σ) be a smooth compact Riemannian manifold with boundary and n � 3 .
This paper is devoted to studying a class of integral system{

gpα−1(x) =
∫

Σ K(x,y) f (y)dSy , x ∈ Mn,

f p̃α−1(y) =
∫
Mn K(x,y)g(x)dVx , y ∈ Σ,

where α ∈ (1,n) , pα = 2n
n+α , p̃α = 2(n−1)

n+α−2 , ( f ,g) ∈ Lp̃α (Σ)×Lpα (Mn) and the kernel function
K(x,y) ∈C∞(Mn ×Mn\{(x,x)}) satisfies K(x,y) ∼ |x−y|α−n

g as |x−y|g → 0. Since the system
is the Euler-Lagrange equations of extremal problem

NK(α ,M) = sup
{∣∣∣∫

Mn

∫
Σ
g(x)K(x,y) f (y)dSydVx

∣∣∣ : ‖ f‖Lp̃α (Σ) = ‖g‖Lpα (Mn) = 1
}

,

we will study the existence of the system by concentration-compactness principle. Firstly, we get
NK (α ,M) �Ce(n,α , p̃α ) , where Ce(n,α , p̃α ) is the best constant of Hardy-Littlewood-Sobolev
inequalities on the upper half space established by Dou and Zhu [6] and equals to NK (α ,M)
when (Mn,g,Σ) = (B1(0), | · |,∂B1(0)) and K(x,y) = |x− y|α−n . Secondly, if NK (α ,M) >
Ce(n,α , p̃α ) , we prove that NK(α ,M) is attained. Namely, under the criterion NK (α ,M) >
Ce(n,α , p̃α ) , we get the existence of the system. Lastly, a concrete example satisfying the
criterion is given. The example is closely related to the conformal problems studied by Escobar
[9, 10].

1. Introduction

In [15, 14], a class of conformal integral equations

u
Q−α
Q+α (x) =

∫
M

[Gx(y)]
Q−α
Q−2 u(y)dVy (1.1)

were studied. In [15], M is a compact Riemannian manifold without boundary, Q is
the geometric dimension and Gx(y) is the Green’s function with pole at x for the con-
formal Laplacian operator −Δg + n−2

4(n−1)Rg . So, (1.1) is equivalent to Yamabe equation
when α = 2. While in [14], M is a compact CR manifold without boundary, Q is the
homogenous dimension and Gx(y) is the Green’s function with pole at x for the CR
conformal Laplacian operator −bnΔθ

b +Rθ . Therefore, if α = 2, (1.1) is equivalent to
CR Yamabe equation studied by Jerison and Lee [20].
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Apart from their own research significance, as stated in [28], (1.1) is closed related
to the curvature problems such as Yamabe problem, Q-curvature problem, etc.. This
paper is mainly devoted to studying a class of integral equations with general kernel
K(x,y) on compact Riemannian manifold with boundary by concentration-compactness
principle.

Let (Mn,g) be a smooth Riemannian manifold with boundary Σ = ∂Mn, where g
is the Riemannian metric on Mn and n � 3. Denote by |x− y|g the geodesic distance
from x to y on Mn under metric g . We will concern with a class of integral system{

gpα−1(x) =
∫

Σ K(x,y) f (y)dSy, x ∈ Mn,

f p̃α−1(y) =
∫
Mn K(x,y)g(x)dVx, y ∈ Σ,

(1.2)

where pα := 2n
n+α , p̃α := 2(n−1)

n+α−2 , ( f ,g) ∈ Lp̃α (Σ)×Lpα (Mn) and the kernel function
K(x,y) ∈C∞(Mn ×Mn\{(x,x)}) satisfies

(K) K(x,y) ∼ |x− y|α−n
g as |x− y|g → 0.

It is easy to see that the system (1.2) is the Euler-Lagrange equations of extremal prob-
lem

NK(α,M) =sup

{∣∣∣∫
Mn

∫
Σ
g(x)K(x,y) f (y)dSydVx

∣∣∣ : ‖ f‖Lp̃α (Σ) = ‖g‖Lpα (Mn) = 1

}
=sup

{
‖Eα ,K f‖Lqα (Mn) : ‖ f‖Lp̃α (Σ) = 1

}
, (1.3)

where Eα ,K f (x) =
∫

Σ K(x,y) f (y)dSy and qα = 2n
n−α is the conjugate number of pα .

Particularly, when K(x,y) = |x− y|α−n
g , denote Eα ,K f (x) by Eα f (x) .

Let R
n
+ := {x = (x′,xn) ∈ R

n |xn > 0} , n � 2 be the upper half space and | · | be
the common Euclidean distance function. On (Rn

+, | · |) , Dou and Zhu [6] proved that,
for any 1 < α < n , 1 < p,q < +∞ satisfying 1

q = n−1
n ( 1

p − α−1
n−1 ) ,

Ce(n,α, p) =sup
{‖Eα f‖Lq(Rn

+) : ‖ f‖Lp(∂R
n
+) = 1

}
(1.4)

can be achieved. If ( f ,g)∈Lp̃α (∂R
n
+)×Lpα (Rn

+) is any solution of (1.2) with K(x,y)=
|x− y|α−n , they classified them and computed the best constant Ce(n,α, p̃α) .

Under the Möbius transformation T : x = (x′,xn) ∈ R
n
+ → x ∈ B1(0) defined as

T (x) =
4(x′,xn +2)
|(x′,xn +2)|2 − en, en = (0, · · · ,0,1), (1.5)

it holds that, if K(x,y) = |x− y|α−n , system (1.2) on (Rn
+, | · |) is equivalent to the

system on (B1(0), | · |) . So, if (Mn,g) = (B1(0), | · |) and K(x,y) = |x−y|α−n with 1 <
α < n , Dou and Zhu [6] also classified the solutions ( f ,g)∈Lp̃α (∂B1(0))×Lpα (B1(0))
of (1.2).

When (Mn,g) = (Ω, | · |) and K(x,y) = |x− y|2−n , where Ω ⊂ R
n(n � 3) is a

bounded smooth domain, Gluck and Zhu [13] studied the following extremal problem

E2(Ω) =sup
{‖E2 f‖

L
2n

n−2 (Ω)
: ‖ f‖

L
2(n−1)

n (∂Ω)
= 1
}
. (1.6)
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They proved

E2(Ω) � E2(B1(0)) = Ce

(
n,2,

2(n−1)
n

)
= n

n−2
2(n−1) ω

1− 1
n− 1

2(n−1)
n ,

and gave a criterion of the existence of extremal function of (1.6). Namely, if E2(Ω) >
E2(B1(0)) , the best constant E2(Ω) can be achieved by some extremal function f ∈
L

2(n−1)
n (∂Ω) . Moreover, for the annular domain Ar = B1(0) \Br(0) , they proved that

the criterion E2(Ar) > E2(B1(0)) holds if r is sufficiently small. So, for any bounded

smooth domain Ω , if E2(Ω)> E2(B1(0)) , there exists function pair ( f ,g)∈L
2(n−1)

n (∂Ω)
×L

2n
n+2 (Ω) satisfying (1.2) with (p̃α , pα) = ( 2(n−1)

n , 2n
n+2) .

If (Mn,g,Σ) is compact and the first eigenvalue λ1(Lg) of Lg = −Δg + n−2
4(n−1)Rg

is positive, we know that there exists the Green function G(x,y) with pole at y , which
satisfies {

−ΔgG(x,y)+ n−2
4(n−1)RgG(x,y) = δy(x), on Mn,

∂gG(x,y)
∂η +hgG(x,y) = 0, on Σ,

(1.7)

where Rg is the scalar curvature, η is the outward normal with respect to metric g ,
and hg is the mean curvature of Σ . Escobar [9, 10] showed G(x,y) ∼ |x− y|2−n

g as

|x− y|g → 0. We can prove routinely that (1.2) is conformal if K(x,y) = G(x,y)
n−α
n−2 .

A natural question is what about the existence of the solutions for (1.2) with kernel
function G(x,y)

n−α
n−2 .

In the sequel, assume always that (Mn,g,Σ) is compact. The main goal is to
study extremal problem (1.3) with general kernel K(x,y) satisfying (K) and to get the
existence of extremal functions.

Main results state as follows.

THEOREM 1.1. Assume 1 < α < n, 1 < p, t < ∞ with

n−1
n

· 1
p

+
1
t

+
n−α +1

n
= 2, (1.8)

and K(x,y) ∈ C∞(Mn ×Mn\{(x,x)}) satisfying (K). Then there is a positive constant
C = C(n,α, p,M) , such that Hardy-Littlewood-Sobolev (HLS) inequality∣∣∣∫

Mn

∫
Σ
g(x)K(x,y) f (y)dSydVx

∣∣∣� C‖ f‖Lp(Σ)‖g‖Lt(Mn) (1.9)

holds for all f ∈ Lp(Σ) and g ∈ Lt (Mn) . Define

NK(p,α,M) = sup
‖ f‖Lp(Σ)=‖g‖Lt (Mn)=1

∣∣∣∫
Mn

∫
Σ
g(x)K(x,y) f (y)dSydVx

∣∣∣. (1.10)

Then, NK(p,α,M) � Ce(n,α, p) and NK(p,α,M) can be attained if NK(p,α,M) >
Ce(n,α, p) . Moreover, if NK(α,M) = NK(p̃α ,α,M) > Ce(n,α, p̃α) , extremal pair of
(1.3) satisfies system (1.2).
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Since G(x,y)
n−α
n−2 ∼ |x− y|α−n

g as |x− y|g → 0, then as [15], it is sufficient to
discuss the following HLS inequality: for any f ∈ Lp(Σ) and g ∈ Lt(Mn) ,∣∣∣∫

Mn

∫
Σ
g(x)|x− y|α−n

g f (y)dSydVx

∣∣∣� C‖ f‖Lp(Σ)‖g‖Lt(Mn), (1.11)

which is equivalent to
||Eα f ||Lq(Mn) � C|| f ||Lp(Σ), (1.12)

where q satisfies
1
q

=
n−1

n

(1
p
− α −1

n−1

)
, (1.13)

and 1
q < n−1

n
1
p < 1

p . i.e., 1 < p < q . So, I will get the following result.

PROPOSITION 1.2. Assume that 1 < α < n, 1 < p < n−1
α−1 and q is given by

(1.13). Then there is a positive constant C = C(n,α, p,M) such that (1.12) holds for
any f ∈ Lp(Σ) . Moreover, for 1 � r < q, operator Eα : Lp(Mn) ↪→ Lr(Σ) is compact.

Define

Np,α ,M =sup
{||Eα f ||Lq(Mn) : || f ||Lp(Σ) = 1

}
. (1.14)

We have the following criterion for the existence of the extremal functions.

THEOREM 1.3. Np,α ,M � Ce(n,α, p) . Moreover, if Np,α ,M > Ce(n,α, p) , then
Np,α ,M can be attained.

REMARK 1.4. If (Mn,g,Σ)= (Ω, | · |,∂Ω) (where Ω⊂R
n is bounded and smooth),

α = 2, p = 2(n−1)
n and t = 2n

n+2 , the result of Theorem 1.3 is the main result of Gluck
and Zhu [13].

A more general example for Theorem 1.1 is given as follows. Assume that (Mn,g)
is a locally conformally flat compact Riemannian manifold with umbilic boundary Σ .
If λ1(Lg) > 0, Escobar [9, 10] showed that the Green function G(x,y) for conformal
Laplacian Lg has the following asymptotic expansion

G(x,y) = |x− y|2−n
g +A(y)+ α(x,y) (1.15)

for |x− y|g small, where A(y) is nonnegative, α(x,y) is a smooth harmonic function
near y ∈ Σ and α(y,y) = 0. Moreover, A = 0 if and only if Mn is conformally diffeo-
morphic to B1(0) .

Based on the above positive mass type result, we have

THEOREM 1.5. Let Mn be a locally conformally flat compact Riemannian mani-
fold with umbilic boundary Σ and K(x,y) = G(x,y)

n−α
n−2 . If λ1(Lg) > 0 and Mn is not

conformally diffeomorphic to B1(0) , then

NK(p̃α ,α,M) > Ce(n,α, p̃α),
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which implies the existence of solutions to (1.2) with K(x,y) = G(x,y)
n−α
n−2 by Theorem

1.1.

REMARK 1.6. When Mn is a bounded domain Ω ⊂ R
n with umbilic boundary

and isn’t conformally diffeomorphic to B1(0) , it holds NK

(
2(n−1)

n ,2,Ω
)

>

Ce

(
n,2, 2(n−1)

n

)
with K(x,y) = G(x,y) . For example, for any r ∈ (0,1) , annular do-

main Ar = Bn
1(0) \Br(0) satisfies the foregoing conditions. The result is not same as

the example given by Gluck and Zhu in [13].

Ngô [25] showed that the range (1,n) of parameters α of (1.4) is not necessary.
And an optimal HLS inequality with necessary range of α , which generalized the clas-
sical HLS inequality and the HLS inequality (1.4), was established by a new method
in [26]. Namely, their proofs do not make use the layer cake representation technique
nor the Marcinkiewicz interpolation inequality.

In Lemma 2.3, we will establish a subcritical type inequality with 0 < α < n .
So, applying the Marcinkiewicz interpolation theorem, we can give a new proof for the
HLS inequality on the upper half space.

PROPOSITION 1.7. Let 0 < α < n such that p̃α < qα . Then there exists a positive
constant C := C(n, p,α) such that∥∥∥∫

∂Rn
+

f (y)dy
|x− y|n−α

∥∥∥
Lqα (Rn

+)
� C‖ f‖Lp̃α (∂R

n
+) (1.16)

holds for any f ∈ Lp̃α (∂R
n
+) .

The paper is organized as follows. In Section 2, we first establish a subcritical type
inequality (see Lemma 2.3) and a ε -level inequality (see Lemma 2.6). Then, complete
the proof of Proposition 1.2. In Section 3, we present the concentration-compactness
principle. Section 4 is devoted to the proof of Theorem 1.3. Therefore, we can get our
main result – Theorem 1.1. Finally, conformal HLS inequality on the upper half space
(Proposition 1.7) are established in Section 5.

2. HLS inequality

This section is devoted to establishing a rough HLS inequality on a smooth com-
pact Riemannian manifold (Mn,g) with boundary Σ = ∂Mn .

For convenience, we introduce firstly some notations. For δ > 0 small enough,
write Mδ = {x ∈ Mn : dist(x,Σ) � δ} is a tubular neighborhood of Σ and π : Mδ → Σ
denotes the nearest point projection. For ξ ∈ Σ, choose a normal coordinate for Σ at
ξ , namely τ1, . . . ,τn−1 . Let Cδ = {x ∈ Mδ : dist(π(x),ξ ) � δ}. For δ small, we have
a coordinate near ξ for Mn as

φ : Cδ → Bn−1
δ (0)× [0,δ ] : x �→ (τ(π(x)),t(x)),
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where t(x) := dist(x,Σ) . It is usually called the Fermi coordinate at ξ . We will identify

Cδ with Bn−1
δ (0)× [0,δ ] through φ .

Note that g = gi jdxi⊗dx j +dxn⊗dxn . Under the Fermi coordinate (see e.g., [17]),
we know that for any ε > 0 and ξ ∈ Σ , there exists δ > 0 such that

(1− ε)I � g � (1+ ε)I in Cδ . (2.1)

2.1. Subcritical HLS inequality

Firstly, we recall the following Hausdorff-Young type inequality established in
[17].

LEMMA 2.1. (Lemma 2.3 in [17]) Assume X and Y be measure spaces, and 1 �
p,q0,q1,r � ∞ , p � r , q0 � r and 1

p + 1
q1

= q0
q1r

+1 . Define (K f )(x)=
∫
Y K(x,y) f (y)dy,

where K is defined in X ×Y and satisfies(∫
X
|K(x,y)|q0dx

) 1
q0 � A,

(∫
Y
|K(x,y)|q1dy

) 1
q1 � A.

then for a function f defined on Y ,

‖K f‖Lr(X) � A‖ f‖Lp(Y ). (2.2)

REMARK 2.2. By a careful study of the origin proof of Lemma 2.3 in [17], I find
that the condition of q0,q1 � 1 can be weakened to q0,q1 > 0.

As an application of the above Hausdorff-Young type inequality and Remark 2.2,
we have the following subcritical inequality.

LEMMA 2.3. Let α, p,q,r satisfy α ∈ (0,n) , 1 � p � r , q � 1 and

1
r

>
1
q

=
n−1

n

( 1
p
− α −1

n−1

)
. (2.3)

Then there is a positive constant C(α, p,Mn,g) , such that

||Eα f ||Lr(Mn) � C(n,α, p,Mn,g)|| f ||Lp(Σ) (2.4)

holds for all f ∈ Lp(Σ). Moreover, for 1 � r < q, operator Eα : Lp(Mn) ↪→ Lr(Σ) is
compact.

Proof. Let q1 > 0 and q0 = n
n−1q1 satisfy

1
r

+
q1

q0
=

q1

q0

(1
p

+
1
q1

)
. (2.5)

Then q0 � r , q0 ∈ (0, n
n−α ) and q1 ∈ (0, n−1

n−α ) .
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For any x ∈ Mn and y ∈ Σ , since (n−α)q0 < (n−α) n
n−α = n , we have∫

Mn
|x− y|(α−n)q0

g dV (x) � C(n,q0,α,Mn).

Using (n−α)q1 < (n−α) n−1
n−α = n−1 and the fact

|π(x)− y|g � |π(x)− x|g + |x− y|g � 2|x− y|g,
we have∫

Σ
|x− y|(α−n)q1

g dSg(y) � C
∫

Σ
|π(x)− y|(α−n)q1

g dSg(y) � C(n,q1,α,Mn).

Hence, the inequality (2.4) follows from Lemma 2.1 and Remark 2.2.
Now, we show the embedding Eα : Lp(Mn) ↪→ Lr(Σ) is compact. In fact, it is

sufficient to prove the result for the case p � r < q .
Let { fm(y)} ⊂ Lp(Σ) be a bounded sequence. Then there exists a subsequence

(still denoted by { fm(y)} ) and some function f ∈ Lp(Σ) such that

fm ⇀ f weakly in Lp(Σ).

For some constant ρ > 0 determined later, we write Eα fm(x) as

Eα fm(x) =
∫

Σ

fm(y)
|x− y|n−α

g
dSg(y)

=
∫

Σ∩{|x−y|g>ρ}
fm(y)

|x− y|n−α
g

dSg(y)+
∫

Σ∩{|x−y|g�ρ}
fm(y)

|x− y|n−α
g

dSg(y)

=: E1
α fm(x)+E2

α fm(x). (2.6)

For a given point x ∈ Mn , since |x− y|α−n
g χ{y:|x−y|g�ρ} ∈ Lp/(p−1)(Σ) , the weakly

convergence implies that

E1
α fm → E1

α f pointwisely a.e. in Mn,

and by Hölder inequality we deduce that

|E1
α fm| �

∫
Σ∩{|x−y|g>ρ}

| fm(y)|
|x− y|n−α

g
dSg(y)

�
(∫

{|x−y|g>ρ}
|x− y|

(α−n)p
p−1

g dSg(y)
) p−1

p ‖ fm‖Lp(Σ) � C(ρ).

Hence, by dominated convergence theorem, we have

E1
α fm → E1

α f strongly in Lr(Mn). (2.7)

Since q0 ∈ (0, n
n−α ) and q1 ∈ (0, n−1

n−α ) in (2.5), we have(∫
{Mn∩|x−y|g�ρ}

|x− y|(α−n)q0
g dV (y)

) 1
q0 � Cρα−n+ n

q0
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and (∫
{Σ∩|x−y|g�ρ}

|x− y|(α−n)q1
g dSg(y)

) 1
q1 � Cρα−n+ n−1

q1 .

Write A = Cmax

{
ρα−n+ n

q0 ,ρα−n+ n−1
q1

}
. Obviously, A → 0 as ρ → 0. From Lemma

2.1, it yields

‖E2
α( fm − f )‖Lr(Mn) � A‖ fm− f‖Lp(Σ). (2.8)

Choosing ρ small firstly in (2.8) and then sending m to infinity in (2.7), we arrive at

Eα fm → Eα f strongly in Lr(Mn).

Hence the embedding is compact. �

REMARK 2.4. Under the conditions of Lemma 2.3, we have 1 � p � r < q , p <
n−1
α−1 if 1 < α < n and p < 1

1−α if 0 < α < 1.

Define the extremal problem for inequality (2.4) as

Np,r,α ,M :=sup{‖Eα f‖Lr(Mn) : ‖ f‖Lp(Σ) = 1}. (2.9)

By the compactness of Lemma 2.3, we have

PROPOSITION 2.5. Np,r,α ,M can be attained. Namely, there exists some nonnega-
tive function f ∈ Lp(Σ) such that ‖ f‖Lp(Σ) = 1 and Np,r,α ,M = ‖Eα f‖Lr(Mn) . Moreover,
f satisfies the following Euler-Lagrange equation

Nr
p,r,α ,M f p−1(y) =

∫
Mn

(Eα f )r−1(x)
|x− y|n−α

g
dVx. (2.10)

Moreover, f ∈ L∞(Σ) .

Proof. Since the proof is standard, we omit the details in here. �

2.2. Roughly HLS inequality

We firstly establish the following ε -version inequality.

LEMMA 2.6. Let 1 < α < n, and 1 < p < n−1
α−1 and q satisfy (1.13). Then, for

any small ε > 0 , there is a constant C(ε) > 0 such that

||Eα f ||pLq(Mn) �
(
Ce(n,α, p)+ ε

)p|| f ||pLp(Σ) +C(ε)‖Eα+1 f‖p
Lq(Mn) (2.11)

holds for any f ∈ Lp(Σ) .
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Proof. Without loss of generality, we assume f � 0.
Using compactness of Σ , (2.1) and the HLS inequality established by Dou and Zhu

[6], for fixed ε > 0, we can choose δ > 0 small and take {ηi,ε}k
i=1 be a partition of the

unit covering of Mδ , such that 0 � ηi,ε � 1, supp{ηi,ε}∩Σ �= /0 for all i = 1,2, · · · ,k ,
∑k

i=1 η p
i,ε = 1, and for all i = 1,2, · · · ,k ,

||Eα(ηi,ε f )||Lq(supp{ηi,ε}) �
(
Ce(n,α, p)+ ε

)||ηi,ε f ||Lp(Σ∩supp{ηi,ε}). (2.12)

Thus, similar to the computation of Proposition 2.5 of [15], we have

||Eα f ||pLq(Mδ ) = ||(Eα f )p||Lq/p(Mδ )

= ||
k

∑
i=1

η p
i,ε (Eα f )p||Lq/p(Mδ ) �

k

∑
i=1

||η p
i,ε (Eα f )p||Lq/p(supp{ηi,ε})

=
k

∑
i=1

||ηi,εEα f ||pLq(supp{ηi,ε})

�
k

∑
i=1

(
||Eα(ηi,ε f )||Lq(supp{ηi,ε}) + ||ηi,εEα f −Eα(ηi,ε f )||Lq(supp{ηi,ε})

)p

�
k

∑
i=1

(
(Ce(n,α, p)+ ε)||ηi,ε f ||Lp(Σ∩supp{ηi,ε}) +C(ε)‖Eα+1 f‖Lq(Mn)

)p

�
k

∑
i=1

(Ce(n,α, p)+ ε)p(1+ ε)||ηi,ε f ||pLp(Σ∩supp{ηi,ε}) +C(ε)‖Eα+1 f‖p
Lq(Mn)

=(Ce(n,α, p)+ ε)p(1+ ε)|| f ||pLp(Σ) +C(ε)‖Eα+1 f‖p
Lq(Mn). (2.13)

On the other hand, if x ∈ Mn \Mδ , then

Eα f (x) � 1
δ

∫
Σ

|x− y|g f (y)
|x− y|n−α

g
dSy =

1
δ

Eα+1 f (x).

Thus, we arrive at

||Eα f ||pLq(Mn) �
(
||Eα f ||Lq(Mn\Mδ ) + ||Eα f ||Lq(Mδ )

)p

�
( 1

δ
||Eα+1 f ||Lq(Mn\Mδ ) + ||Eα f ||Lq(Mδ )

)p
,

Combining the above and (2.13) we get (2.11). �

PROPOSITION 2.7. Let 1 < α < n, and 1 < p < n−1
α−1 and q satisfy (1.13). Then,

there exists some positive constant C = C(α, p,Mn,g) such that, for any f ∈ Lp(Σ) ,

||Eα f ||Lq(Mn) � C|| f ||Lp(Σ). (2.14)

Proof. Combining Lemma 2.6 and Lemma 2.3, we complete the proof. �
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REMARK 2.8. For any bounded sequence { fm} ⊂ Lp(Σ) , there exists a subse-
quence (still denoted by { fm} ) and some function f ∈ Lp(Σ) such that

fm ⇀ f weakly in Lp(Σ),
Eα fm ⇀ Eα f weakly in Lq(Mn),
Eα fm → Eα f strongly in Lr(Mn)

for all r ∈ [1,q) . Furthermore, Eα fm → Eα f pointwisely a.e. in Mn .

3. Concentration-compactness principle

LEMMA 3.1. Assume that { fm} ⊂ Lp(Σ) are a bounded nonnegative sequence
and there exists some function f ∈ Lp(Σ) such that

fm ⇀ f weakly in Lp(Σ).

After passing to a subsequence, assume that |Eα fm|qdV (x) , | fm|pdSy converge weakly
in the sense of measure to some bounded nonnegative measures ν, μ on Mn . Then,

i). There exist some countable set J , a family {Pj : j ∈ J} of distinct points in Σ ,
and a family {ν j : j ∈ J} of nonnegative numbers such that

ν = |Eα f |qdV (x)+ ∑
j∈J

ν jδPj , (3.1)

where δPj are the Dirac-mass of mass 1 concentrated at Pj ∈ Σ;
ii). In addition,

μ � | f |pdSy + ∑
j∈J

μ jδPj (3.2)

for some family {μ j > 0 : j ∈ J} , where μ j satisfy

ν1/q
j � Ce(n,α, p)μ1/p

j for all j ∈ J. (3.3)

In particular, ∑ j∈J ν p/q
j < +∞ .

Proof. We firstly show i) . Let { fm}⊂ Lp(Σ) be a bounded nonnegative sequence.
It follows from Remark 2.8 that

Eα fm ⇀ Eα f weakly in Lq(Mn), (3.4)

Eα fm → Eα f strongly in Lr(Mn), (3.5)

Eα fm → Eα f pointwisely a.e. in Mn, (3.6)

where r ∈ [1,q) . Then, Brézis-Lieb Lemma leads that

0 = lim
m→+∞

∫
Mn

(|Eα fm|q −|Eα( fm − f )|q −|Eα f |q)dV(x)

=
∫

Mn
dν −

∫
Mn

|Eα f |qdV (x)− lim
m→+∞

∫
Mn

|Eα( fm − f )|qdV (x).
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So, it is sufficient to discuss the case f ≡ 0.
Let ϕ(x) ∈C∞

0 (Mn\Σ) . Since dist(supp{ϕ},Σ) > 0 and (3.6), we have∣∣∣∣ϕ(x)
∫

Σ

fm(y)
|x− y|n−α

g
dSy

∣∣∣∣� C
∫

Σ
| fm|dSy � C

and, as m → ∞ ,

ϕ(x)Eα fm → ϕ(x)Eα f pointwisely a.e. in Mn.

It follows from dominated convergence theorem that for any ϕ(x) ∈C∞
0 (Mn\Σ) ,

lim
m→+∞

∫
Mn

|ϕ(x)Eα fm|qdV (x) =
∫

Mn
|ϕ(x)Eα f |qdV (x).

Hence, ν|Mn\Σ = |Eα f |qdV (x).
Suppose that ϕ(x) ∈ C∞

0 (Mn) satisfies supp(ϕ)∩Σ �= /0 and supp(ϕ) ⊂ Mδ . By
the classical argument of Lions (see [22, 23]), it is sufficient to prove that there exists
some positive constant C such that(∫

Mn
|ϕ |qdν

)1/q � C
(∫

Σ
|ϕ |pdμ

)1/p
, ∀ϕ ∈C∞

0 (Mn). (3.7)

Indeed, (∫
Mδ

|ϕ ·Eα fm|qdV(x)
)1/q

�
(∫

Mδ
|Eα(ϕ fm)|qdV (x)

)1/q +
(∫

Mδ
|ϕ ·Eα fm −Eα(ϕ fm)|qdV (x)

)1/q

�C
(∫

Σ
|ϕ fm|pdSy

)1/p +
(∫

Mδ
|ϕ ·Eα fm −Eα(ϕ fm)|qdV (x)

)1/q
. (3.8)

Note that

|ϕ ·Eα fm −Eα(ϕ fm)|
=
∣∣∣∫

Σ
(ϕ(x)−ϕ(y))|x− y|α−n

g fm(y)dSy

∣∣∣
�
∣∣∣∫

Bn−1
δ (π(x))

(ϕ(x)−ϕ(y))|x− y|α−n
g fm(y)dSy

∣∣∣
+
∣∣∣∫

Σ\Bn−1
δ (π(x))

(ϕ(x)−ϕ(y))|x− y|α−n
g fm(y)dSy

∣∣∣
=:J1 + J2.

Write R(x,y) := (ϕ(x)−ϕ(y))|x− y|α−n
g . It is easy to check that R(x,y) ∈ Lr(Mn) , for

r � +∞ if α +1−n � 0 and r < n−1
n−α−1 if α +1−n < 0. Note that

J1 � C
∣∣∣∫

Bn−1
δ (π(x))

|x− y|α−n+1
g fm(y)dSy

∣∣∣.
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For α +1−n � 0, by dominated convergence theorem we have

lim
m→+∞

∫
Mδ

Jq
1dVx = 0. (3.9)

For α +1−n < 0, by the HLS inequalities (1.12), we obtain

J1 ∈ Ls(Mn),

where 1
s = n−1

n

(
1
p − α

n−1

)
< 1

q . Furthermore, repeating the proof process of Lemma

2.3, we have (3.9) again. Since R(x,y) is uniformly bounded for y ∈ Σ\Bn−1
δ (π(x)) , by

dominated convergence theorem, we arrive at∫
Mδ

Jq
2dV(x) =

∫
Mδ

∣∣∫
Σ\Bn−1

δ (π(x))
R(x,y) fm(y)dSy

∣∣qdV (x)

→
∫

Mδ

∣∣∫
Σ\Bn−1

δ (π(x))
R(x,y) f (y)dSy

∣∣qdV (x) = 0.

strongly in Lq(Mδ ) . Hence, we get

lim
m→+∞

(∫
Mn

|ϕ(x)Eα fm −Eα(ϕ fm)|qdVx
)1/q = 0. (3.10)

Letting m → +∞ in (3.8), and using (3.10) we deduce (3.7). Furthermore, by P.
Lion’s Lemma (see Lemma 1.2 in [23]), there exist some countable set J , a family
{Pj : j ∈ J} of distinct points in Σ such that

lim
m→∞

|Eα( fm − f )|qdV (x) = ∑
j∈J

ν jδPj ,

and
ν = |Eα f |qdV (x)+ ∑

j∈J
ν jδPj ,

where ν j = ν({Pj}) .
Next we show ii) . Since

fm ⇀ f weakly in Lp(Σ),

then, μ � | f |pdSy . So, we just have to show that for each fixed j ∈ J ,

ν1/q
j = ν({Pj})1/q � Ce(n,α, p)μ({Pj})1/p = Ce(n,α, p)μ1/p

j .

For point Pj ∈ Σ and δ > 0 small enough, we can choose a neighbourhood
Cδ ,Pj

:= {x ∈ Mδ : dΣ(π(x),Pj) � δ} ⊂ Mδ so that

(1− ε)I � g(x) � (1+ ε)I, ∀x ∈Cδ ,Pj
.
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Define ϕλ (x) = ϕ( x
λ ) , where ϕ(x) ∈ C∞

0 (Rn
+) satisfies 0 � ϕ(x) � 1, ϕ(0) = 1,

supp ϕ ⊂ Bn
1(0)∩R

n
+ and λ ∈ (0,δ ) . Then,

Eα((ϕλ ◦φ) · fm) =
∫

Σ
(ϕλ ◦φ(y) fm(y)|x− y|α−n

g dSg(y)

=
∫

Bn
δ (0)∩∂R

n
+

ϕλ (y)( fm ◦φ−1)(y)|x− y|α−n
g

√
detg(y)dy

� (1+ ε)n/2

(1− ε)
n−α

2

∫
Bn

δ (0)∩∂R
n
+

ϕλ (y)( fm ◦φ−1)(y)|x− y|α−ndy

and (∫
φ−1(Bn

δ (0)∩R
n
+)
|Eα((ϕλ ◦φ) · fm)|qdVx

)1/q

�(1+ ε)
n
2q
(∫

Bn
δ (0)

|Eα((ϕλ ◦φ) · fm)|qdx
)1/q

� (1+ ε)
n
2 (1+ 1

q )

(1− ε)
n−α

2

(∫
Bn

δ (0)

∣∣∣∫
Bn

δ (0)∩∂Rn
+

ϕλ (y)( fm ◦φ−1)(y)|x− y|α−ndy
∣∣∣qdx

)1/q

� (1+ ε)
n
2 (1+ 1

q )

(1− ε)
n−α

2
Ce(n,α, p)

(∫
Bn

δ (0)∩∂R
n
+

|ϕλ (y)( fm ◦φ−1)(y)|pdy
)1/p

� (1+ ε)
n
2 (1+ 1

q )

(1− ε)
n
2p + n−α

2
Ce(n,α, p)

(∫
φ−1(Bn

δ (0)∩∂R
n
+)
|(ϕλ ◦φ) · fm|pdy

)1/p
.

Combining the above we have(∫
Mn

|(ϕλ ◦φ) ·Eα fm|qdV (x)
)1/q

�
(∫

φ−1(Bn
δ (0)∩Rn

+)
|Eα((ϕλ ◦φ) · fm)|qdV (x)

)1/q

+
(∫

φ−1(Bn
δ (0)∩Rn

+)
|(ϕλ ◦φ) ·Eα fm −Eα((ϕλ ◦φ) · fm)|qdV (x)

)1/q

� (1+ ε)
n
2 (1+ 1

q )

(1− ε)
n
2p + n−α

2
Ce(n,α, p)

(∫
φ−1(Bn

δ (0)∩∂R
n
+)
|(ϕλ ◦φ) · fm|pdSy

)1/p + I, (3.11)

where

I :=
(∫

φ−1(Bn
δ (0)∩R

n
+)
|(ϕλ ◦φ) ·Eα fm −Eα((ϕλ ◦φ) · fm)|qdV (x)

)1/q
.

Arguing as (3.8), we have

I → (∫
φ−1(Bn

δ (0)∩R
n
+)
|(ϕλ ◦φ) ·Eα f −Eα((ϕλ ◦φ) · f )|qdV (x)

)1/q
, as m → +∞.
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Hence, letting m → +∞ leads

(∫
Mn

|ϕλ ◦φ |qdν
)1/q

� (1+ ε)
n
2 (1+ 1

q )

(1− ε)
n
2p+ n−α

2
Ce(n,α, p)

(∫
Σ
|(ϕλ ◦φ)|pdμ

)1/p

+

(∫
φ−1(Bn

δ (0)∩Rn
+)
|(ϕλ ◦φ) ·Eα f −Eα((ϕλ ◦φ) · f )|qdV (x)

)1/q

. (3.12)

Since ∫
φ−1(Bn

δ (0)∩R
n
+)
|(ϕλ ◦φ) ·Eα f |qdV (x) → 0 as λ → 0+

and

(∫
φ−1(Bn

δ (0)∩R
n
+)
|Eα((ϕλ ◦φ) · f )|qdV (x)

)1/q

�C
(∫

φ−1(Bn
δ (0)∩∂Rn

+)
|(ϕλ ◦φ) · f |pdSy

)1/p → 0 as λ → 0+,

the proof is complete by letting λ → 0+ and ε → 0+ . �

4. A criterion for the existence of extremal problems

In this section, we discuss the existence of extremal problems to (1.12) (Theo-
rem 1.3) and give an example for which the criterion NK(p̃α ,α,M) > Ce(n,α, p̃α) is
satisfied (Theorem 1.5).

4.1. Criterion for the existence of (1.12)

Because of the definition of Ce(n,α, p) (see (1.4)), we know that Ce(n,α, p) can
also be defined as

Ce(n,α, p) = sup
{∣∣∣∫

R
n
+

∫
∂R

n
+

f (y)g(x)
|x− y|n−α dydx

∣∣∣ : ‖ f‖Lp(∂Rn
+) = ‖g‖Lt(Rn

+) = 1
}
, (4.1)

where t = q′ = q
q−1 . Dou and Zhu [6] proved the best constant Ce(n,α, p) can be at-

tained by a pair of nonnegative functions ( f ,g) ∈ Lp(∂R
n
+)×Lt (Rn

+) . Hence, extremal
pair satisfies the Euler-Lagrange equations{

Ce(n,α, p) f p−1(y) =
∫
Rn

+
g(x)|x− y|α−ndx,

Ce(n,α, p)gt−1(x) =
∫

∂Rn
+

f (y)|x− y|α−ndy.
(4.2)
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Moreover, by scaling, we know that function pairs

fλ (y) = λ− n−1
p f (y/λ ), gλ (x) = λ− n

t g(x/λ ), ∀λ > 0 (4.3)

also satisfy (4.1) and (4.2).
Similar to (4.1), extremal problems to (1.14) is equivalent to the following form

Np,α ,M = sup
‖ f‖Lp(Σ)>0,‖g‖Lt (Mn)>0

∣∣∣∫Mn
∫

Σ f (y)g(x)|x− y|α−n
g dVxdSy

∣∣∣
‖ f‖Lp(Σ)‖g‖Lt(Mn)

. (4.4)

LEMMA 4.1. Np,α ,M � Ce(n,α, p) .

Proof. Let λ > 0 be small positive constant and δ > 0 be some fixed constant
selected later. Define

f̃ (y) =

{
fλ (y), in Bn−1

δ (0)
0, in ∂R

n
+\Bn−1

δ (0)
and g̃(x) =

{
gλ (x), in Cn

δ (0)
0, in R

n
+ \Cn

δ (0)

where fλ (x) , gλ (y) are given in (4.3) and Cn
δ (0) = Bn−1

δ (0)× [0,δ ] . Then, ( f̃ , g̃) ∈
Lp(∂R

n
+)×Lt(Rn

+) , and we have by (4.1)∫
Rn

+

∫
∂Rn

+

g̃(x)|x− y|α−n f̃ (y)dydx

=
∫

R
n
+

∫
∂R

n
+

gλ (x)|x− y|α−n fλ (y)dydx−
∫

R
n
+

∫
|y|>δ

gλ (x)|x− y|α−n fλ (y)dydx

−
∫

R
n
+\Cn

δ (0)

∫
∂R

n
+

gλ (x)|x− y|α−n fλ (y)dydx

+
∫

R
n
+\Cn

δ (0)

∫
|y|>δ

gλ (x)|x− y|α−n fλ (y)dydx

=Ce(n,α, p)−Ce(n,α, p)
∫
|y|>δ

f p
λ (y)dy−Ce(n,α, p)

∫
R

n
+\Cn

δ (0)
gt

λ (x)dx

+
∫

R
n
+\Cn

δ (0)

∫
|y|>δ

fλ (y)gλ (x)|x− y|α−ndxdy

:=Ce(n,α, p)− I− II+ III. (4.5)

and then ∫
R

n
+

∫
∂R

n
+

f̃ (y)g̃(x)|x− y|α−ndydx

‖ f̃‖Lp(∂R
n
+)‖g̃‖Lt(Rn

+)

� Ce(n,α, p)− I− II
‖ fλ‖Lp(∂R

n
+)‖gλ‖Lt(Rn

+)
= Ce(n,α, p)− I− II. (4.6)
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For fixed δ > 0, since ‖ f‖Lp(∂R
n
+) = ‖g‖Lt(Rn

+) = 1, we have for λ → 0+ ,

I := Ce(n,α, p)
∫
|y|>δ

f p
λ (y)dy = Ce(n,α, p)

∫
|y|>δ/λ

f p(y)dy → 0,

II := Ce(n,α, p)
∫

R
n
+\Cn

δ (0)
gt

λ (x)dx → 0.

So, for λ → 0+ ,

∫
R

n
+

∫
∂R

n
+

f̃ (y)g̃(x)|x− y|α−ndydx

‖ f̃‖Lp(∂Rn
+)‖g̃‖Lt(Rn

+)
� Ce(n,α, p)+o(1). (4.7)

For any given point P ∈ Σ , choose a neighbourhood ΩP ⊂ Mn so that for δ > 0
small enough, in the Fermi coordinate around P , Cδ (P) := φ−1(Cn

δ (0)) ⊂ ΩP , and

(1− ε)I � g(x) � (1+ ε)I, ∀ x ∈Cδ (P).

Thus,

(1− ε)
1
2 |φ(x)−φ(y)| � |x− y|g � (1+ ε)

1
2 |φ(x)−φ(y)|, ∀ x, y ∈Cδ (P).

Defining

u(y) =

{
fλ (φ(y)), in Cδ (P)∩Σ,

0, in Σ\Cδ (P)
and v(x) =

{
gλ (φ(x)), in Cδ (P),
0, in Mn\Cδ (P),

we have ∫
Mn

|v|t dV (x) � (1+ ε)
n
2

∫
Cn

δ (0)
|gλ (x)|t dx, (4.8)∫

Σ
|u|pdSy � (1+ ε)

n−1
2

∫
Bn−1

δ (0)
| fλ (y)|pdy, (4.9)∫

Mn

∫
Σ
u(y)v(x)|x− y|α−n

g dSydV (x)

=
∫
Cn

δ (0)

∫
Bn−1

δ (0)

u(y)v(x)
|x− y|n−α

g

√
detg(y)

√
detg(x)dydx

�
∫
Cn

δ (0)

∫
Bn−1

δ (0)

fλ (y)gλ (x)

(1+ ε)
n−α

2 |x− y|n−α
(1− ε)n− 1

2 dydx

=
(1− ε)n−1/2

(1+ ε)
n−α

2

∫
Cn

δ (0)

∫
Bn−1

δ (0)

fλ (y)gλ (x)
|x− y|n−α dydx. (4.10)
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It follows from (4.5)–(4.10) that

Np,α ,M �
∫
Mn
∫

Σ v(x)u(y)|x− y|α−n
g dSydV (x)

‖u‖Lp(Σ)‖v‖Lt(Mn)

�
(1−ε)n−1/2

(1+ε)
n−α

2

∫
Cn

δ (0)
∫
Bn−1

δ (0)
fλ (y)gλ (x)
|x−y|n−α dydx

(1+ ε)
n
2t +

n−1
2p ‖ fλ‖Lp(Bn−1

δ (0))‖gλ‖Lt(Cn
δ (0))

� (1− ε)n−1/2

(1+ ε)
n
2t +

n−1
2p + n−α

2

(Ce(n,α, p)− I− II) .

Sending ε and λ to 0, the estimate are obtained. �

Proof of Theorem 1.3. Letting p and q satisfy the conditions of Proposition 1.2
and taking r > p , then

1
q

>
n−1

n

(1
r
− α −1

n−1

)
.

Replacing r, p by q,r in Lemma 2.3 and Proposition 2.5, we obtain a function sequence
{ fr} which satisfy ‖ fr‖Lr(Σ) = 1 and Nr,q,α ,M = ‖Eα fr‖Lq(Mn) . It is easy to prove that
{ fr} is uniformly bounded in Lp(Σ) as r → p+ and

Np,q,α ,M = lim
r→p+

Nr,q,α ,M = lim
r→p+

‖Eα fr‖Lq(Mn)

‖ fr‖Lp(Σ)
. (4.11)

Then, there exists a subsequence of { fp} (denoted as { fm} ) and some function f ∈
Lp(Σ) such that

fm ⇀ f weakly in Lp(Σ).

From HLS inequalities (1.12), we know that

μm = | fm|pdSy, νm = |Eα fm|qdV (x) (4.12)

are two families of bounded measures. So, there exist two nonnegative bounded mea-
sures μ and ν on Σ and Mn such that

μm ⇀ μ , and νm ⇀ ν

weakly in the sense of measure.
Applying Lemma 3.1 we have

ν = |Eα f |qdV (x)+ ∑
j∈J

ν jδPj , μ � | f |pdSy + ∑
j∈J

μ jδPj , (4.13)

and ν1/q
j � Ce(n,α, p)μ1/p

j for all j ∈ J . Since
∫

Σ dμ = limm→+∞
∫

Σ | fm|pdSy = 1,

then
∫

Σ | f |pdSy � 1 and μ j � 1, j ∈ J .
We claim that μ j = 0, for j ∈ J , which implies that ν j = 0, for j ∈ J .
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In fact, otherwise, combining (4.13) and the fact q
p > 1, we have

Nq
p,α ,M = lim

m→+∞

∫
Mn

|Eα fm|qdVx =
∫

Mn
dν

=
∫

Mn
|Eα f |qdV (x)+ ∑

j∈J

ν j

� Nq
p,α ,M‖ f‖q

Lp(Σ) + ∑
j∈J

Ce(n,α, p)qμq/p
j

< Nq
p,α ,M

(∫
Σ
| f |pdVx

)q/p

+ ∑
j∈J

Nq
p,α ,Mμq/p

j

� Nq
p,α ,M

(∫
Σ
| f |pdSy + ∑

j∈J
μ j

)q/p

� Nq
p,α ,M

(∫
Σ
dμ
)q/p

= Nq
p,α ,M, (4.14)

which yields a contradiction.
Repeating the process of (4.14), we have that

Nq
p,α ,M =

∫
Mn

|Eα f |qdV (x) and
∫

Σ
| f |pdVSy = 1,

i.e., f is a maximizer. �

4.2. An example for which NK(p̃α ,α,M) > Ce(n,α, p̃α)

Assume that (Mn,g) is locally conformally flat and its boundary Σ is umbilic.
Now we will apply Theorem 1.1 to give the existence of the solutions for conformal
integral equations (1.2) with K(x,y) = G(x,y)

n−α
n−2 .

Proof of Theorem 1.5. By [6], we know that the solutions of (4.2) with p = p̃α ,
t = pα are smooth and there exists a positive constant μ such that

f p̃α−1(y) =
( μ
|y|
)n−α

f p̃α−1
( μy
|y|2
)
, gpα−1(x) =

( μ
|x|
)n−α

gpα−1
( μx
|x|2
)

for any α ∈ (1,n) , which implies that

lim
|y|→+∞

|y|n+α−2 f (y) = μn+α−2 f (0),

lim
|x|→+∞

|x|n+αg(x) = μn+αg(0).

Now, taking λ → 0+ , we have∫
|y|>δ

f p̃α
λ (y)dy =

∫
|y|>δ/λ

f p̃α (y)dy � C(δ/λ )−n+1,∫
R

n
+\Cn

δ (0)
gpα

λ (x)dx � C(δ/λ )−n



INTEGRAL EQUATIONS ON COMPACT MANIFOLD WITH BOUNDARY 179

and ∫
Cn

δ (0)

∫
|y|�δ

|x− y|α−2 fλ (y)gλ (x)dydx

=λ n−2
∫
Cn

δ/λ (0)

∫
|y|�δ/λ

|x− y|α−2 f (y)g(x)dydx � Cλ n−2.

Repeating the proof of Proposition 2.9 of [15], we can prove the existence of (1.2). �

5. HLS inequality on the upper half space

We firstly establish the HLS inequality on the (B1(0), | · |) .

PROPOSITION 5.1. Let α, p,q,r satisfy α ∈ (0,n) , 1 < p < q and 1
q = n−1

n

(
1
p −

α−1
n−1

)
. Then there is a positive constant C := C(n,α, p) , such that∥∥∥∫

∂B1(0)

f (y)dy
|x− y|n−α

∥∥∥
Lq(B1(0))

� C‖ f‖Lp(∂B1(0)) (5.1)

holds for all f ∈ Lp(∂B1(0)) .

Proof. If I can prove weak estimate, then the strong estimate can be deduced by
Marcinkiewicz interpolation theorem. So, I only need to prove the following weak type
estimate ∥∥∥∫

∂B1(0)

f (y)dy
|x− y|n−α

∥∥∥
Lq
W (B1(0))

� C‖ f‖Lp(∂B1(0)), (5.2)

namely,

meas

{
x :
∣∣∣∫

∂B1(0)

f (y)dy
|x− y|n−α

∣∣∣> λ
}

�
(

C‖ f‖Lp(∂B1(0))

λ

)q

, ∀λ > 0.

By homogeneity, we assume ‖ f‖Lp(∂B1(0) = 1 without loss of generality and will prove

meas

{
x :
∣∣∣∫

∂B1(0)

f (y)dy
|x− y|n−α

∣∣∣> λ
}

� Cλ−q, ∀λ > 0. (5.3)

For constant γ > 0 determined later, define

E1
α ,γ f (x) :=

∫
∂B1(0),|x−y|�γ

f (y)dy
|x− y|n−α

and

E2
α ,γ f (x) :=

∫
∂B1(0),|x−y|>γ

f (y)dy
|x− y|n−α .
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Then for any λ > 0,

meas

{
x :
∣∣∣∫

∂B1(0)

f (y)dy
|x− y|n−α

∣∣∣> 2λ
}

�meas{x : |E1
α ,γ f (x)| > λ}+meas{x : |E2

α ,γ f (x)| > λ}.
By Hölder’s inequality,

|E2
α ,γ f (x)| �

(∫
∂B1(0),|x−y|>γ

dy

|x− y|(n−α)p′

)1/p′

� C1γ
(α−n)p′+(n−1)

p′ = C1γ−n/q,

where p′ = p
p−1 . Choose γ = (λ/C1)−q/n and then meas{x : |E2

α ,γ f (x)| > λ} = 0.

Take q1 > 0 and q0 = n
n−1q1 satisfying 1

p + q1
q0

= q1
q0

( 1
p + 1

q1
) . Then, q1 ∈ (0, n−1

n−α ) ,
q0 ∈ (0, n

n−α ) , 1
p + p−q0

pq1
= 1 and q0 < p . By Hölder’s inequality,

|E1
α ,γ f (x)| �

∫
∂B1(0),|x−y|�γ

| f (y)|dy

|x− y|(n−α)(q0/p+(p−q0)/p)

�
(∫

∂B1(0),|x−y|�γ

| f (y)|pdy

|x− y|(n−α)q0

)1/p

·
(∫

∂B1(0),|x−y|�γ
|x− y|−(n−α)q1dy

) p−q0
pq1

� C2γ [(α−n)q1+(n−1)] p−q0
pq1

(∫
∂B1(0),|x−y|�γ

| f (y)|pdy

|x− y|(n−α)q0

)1/p

.

Then, ∫
B1(0)

|E1
α ,γ f (x)|pdx

�Cp
2 γ [(α−n)q1+(n−1)] p−q0

q1

∫
B1(0)

∫
∂B1(0),|x−y|�γ

| f (y)|pdydx

|x− y|(n−α)q0

�C3γ [(α−n)q1+(n−1)] p−q0
q1

+[(α−n)q0+n] = C3γ p(α−1)+1

and

meas{x : |E1
α ,γ f (x)| > λ} �

‖E1
α ,γ f (x)‖p

Lp(B1(0))

λ p � C3γ p(α−1)+1

λ p

� C4λ− q
n [p(α−1)+1]−p = C4λ−q.

So, I have

meas

{
x :
∣∣∣∫

∂B1(0)

f (y)dy
|x− y|n−α

∣∣∣> 2λ
}

� C5(2λ )−q

and complete the proof. �
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REMARK 5.2. Note that there are analytic differences between the case α ∈ (1,n)
and the case α ∈ (0,1) . In fact, If α ∈ (1,n) ,

∫
∂B1(0) |x−y|α−ndy is uniformly bounded

for any x ∈ B1(0) . While for the case α ∈ (0,1] ,
∫

∂B1(0) |x− y|α−ndy converges to ∞
as dist(x,∂B1(0)) → 0. The fact will bring some new difficulties. I will study the
inequality (5.1) with α ∈ (0,1) in the further work.

Proof of Proposition 1.7. By the Möbius transformation (1.5), I know that (1.16)
is equivalent to (5.1) with p = p̃α , q = qα . For conciseness, I omit the detailed
proof. �
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