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ON A STEVIC-SHARMA TYPE OPERATOR FROM
WEIGHTED-TYPE SPACES INTO BLOCH-TYPE SPACES

QINGHUA Hu, LIAN HU AND SONGXIAO L1*

(Communicated by J. Pecaric)

Abstract. The boundedness, compactness and essential norm of a Stevié-Sharma type operator
from weighted-type spaces into Bloch-type spaces are investigated in this paper.

1. Introduction

Let D be the unit disk in the complex plane C, dD the unit circle and H (D) be
the class of all functions analytic in . For a € D, let 6, be the automorphism of D
exchanging O for a. Then 0,(z) = {=.

We denote by S(ID) the set of all analytic self-maps of . Let ¢ € S(D). The

composition operator Cy, is defined by

Cof =foo, feHD).

The main subject in the study of composition operators is to describe operator theoretic
properties of Cyp in terms of function theoretic properties of ¢. See [2, 20, 36, 38] and
the references therein for the study of various properties of composition operators.

For n € Ny, the nth differentiation operator D" is defined by

D'f=f", feHD),

where f(O) = f. If n =1, it is the classical differentiation operator D and typically
unbounded on many holomorphic function spaces.

Products of composition and differentiation operators between spaces of holomor-
phic functions have been studied for almost two decades. Some of the first results in
the topic can be found, for example, in [4, 10, 18, 23].

Let w € H(D) and ¢ € S(D). We denote the generalized weighted composition
operator (also called weighted differentiation composition operator) by D

o
Vg 1€

Dyof=v-fMop, feH(D).
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When n =0, Dj, , is the well-known weighted composition operator which we denote
here by yCyp. The operator D}, , seems studied for the first time by Zhu in [43]. For
more results on the operator see, for example, [11, 22, 24, 25, 43, 44, 45, 46, 47]. For
some n-dimensional generalizations of the operator see [26, 27, 29, 30].

Let u > 0. The Bloch-type space, denoted by %*, is the space consisting of all
f € H(D) such that

£l = 1£(0)] +Slel]g(l —[z)H1f (2)] < oo

We write || f|| = sup.cp (1 — [z*)"|f'(z)|, #* is a Banach space with the above norm.
When u =1, %' = % is the classical Bloch space. For more about the Bloch space,
see [1, 9, 13, 14, 16, 17, 41, 42]. Let H* = H*(D) denote the set of all bounded
analytic functions on ) with the supremum norm ||f||. = sup_cp|f(z)|. Note that
H* C % andthat || f||z < || f|le if f € H*. For ¢ € S(D), ||¢]l% < [|@|le < 1. In[5],
under the assumption that yCyp : H” — % is bounded, Hu, Li and Wulan characterized
the essential norm of wC, : H” — % and showed that

| WCol|eti=— 2 ~ max {P,Q} ~ limsup || y¢"||

where

: (=P w()9' (2)]
P :=limsup(l —|z]*)|y/(z)|, Q:=limsup .
[p(z)|—1 o1 1=le@P

We say that a function v: D — R is a weight, if v is a continuous, strictly positive

and bounded function. The general weighted-type space, denoted by H,”, is the space
consisting of all f € H(ID) such that

I1£1ly = supv(z)| f(z)] < .
z€eD

H;” is a Banach space under the norm || - ||,. The weight v is called radial if v(z) =
v(|z]) for all z € D. The associated weight v of v is defined by

v=(sup{|f(@)|: f € H,|Ifly <1})7!, z€D.

When v =v4(z) = (1 —|2]*)* (0 < o < o), it iss easy to check that Vg (z) = vg(z). In
this case, we denote H,” by H,;, where,

Hy ={f € HD): |Ifllve = Sgﬂg\f(Z)l(l —[2)% < oo}

Composition operators, weighted composition operators and related concrete operators
from or into weighted-type spaces and their generalizations have been studied a lot, see,
for example, [6, 15, 19, 21, 22, 24, 25, 35, 39, 46].

Studying sums of generalized weighted composition operators have been proposed
by Stevi¢ and Sharma. The first paper in the topic was [32]. Soon after that the Stevié-
Sharma type operators have attracted some attention (see, for example, [8, 12, 33, 40]).
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For the case of holomorphic functions on the upper half-plane see [31]. In [34], Stevié
and his collaborators studied a more general operator. Soon after the publication of [34]
Stevi¢ proposed to his collaborators studying the following general operator

k
k, n
Tyol = X i /" o= ZDm fEHD),
j=0

where n,k € Ng, ¢ € S(D) and y; € H(D), j =0,1,...,k, which generalizes previ-
ously studied operators. He also proposed studying several n-dimensional generaliza-
tions. One of them can be found in [28]. The case n = 0 has been recently studied in
[37]. Here we also study the case n = 0, that is, the operator

k ko
Ty of = E()Wj'f(”)°¢= ZE)D{wf’ f € H(D),
J= J=

where k € Ny, ¢ € S(D) and y; e HD), j=0,1,...,k.

The purpose of this paper is to characterize the boundedness and compactness of
the operator Tg;_ 0" Hy — 2" . Moreover, we also give some estimates for the essential
norm of the operator Tﬂ CHy — BM.

Recall that the essentlal norm of a bounded linear operator 7' : X — Y is its dis-
tance to the set of compact operators .2 mapping X into Y, that is,

|T||ex—y =inf{||T — ||x—y : A is compact},

where X,Y are Banach spaces and || - || x_y is the operator norm.
Throughout this paper, we say that A < B if there exists a constant C such that
A < CB. The symbol A ~ B means that A <B S A.

2. Boundedness

In this section, we characterize the boundedness of the operator Tulj 0" Hy — "
For this purpose, we need some lemmas as follows.

LEMMA 2.1. [42] Assume that 0 < o < oo. Let n be a nonnegative integer and
f € Hy,. Then there is a positive constant C independent of f such that

W) < o Mlva
|f (Z)I = (1 _ ‘Z|2)a+"

LEMMA 2.2. [15] Let v and w be radial, non-increasing weights tending to zero
at the boundary of . Then the weighted composition operator YCy : H® — H} is
bounded if and only if

w(z)

Sup =——+<

S Sl V<
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Moreover, the following holds

lw(2)l-

w(z)
wC Hy—Hg = Sup —
IvCol S S0 ()

LEMMA 2.3. [6] Let v and w be radial, non-increasing weights tending to zero
at the boundary of . Then the weighted composition operator YCy : H® — H} is
bounded if and only if

W[l
sup
n=0 ”én”\/

with the norm comparable to the above supermum.

< oo,

LEMMA 2.4. [7] For a > 0, we have lim, . n®||E"1,,, = (22)%.

e

Now we are in a position to state and prove our main results in this paper.

THEOREM 2.1. Let min{a,u} >0, k € Ng, ¢ € S(D) and y; € HD), j=
0,1,...,k. Then the following statements are equivalent:
(a) The operator Tf[];.go tHy — P is bounded.

(b) supueDHTq’j@fm gn <oo, for j=0,1,...,k+ 1. Here

1—|af? j .
WGQ(Z), for ]:0717,k+1

fj,a:

. L
(c) (i) My=sup,cp %W <o

kP e @+ V)
(i) M; = sup = le@PFT
1—[z]})* !

i) Mo = sup U

(d) sup,;n®||yye" ], < oo

<oo, for j=1,2,....k;

< oo

supn® || (w19 + W)@ |y, <o, for j=1,2,...k

n>1

SupnaJrkJrl H l//k(P/(Pnil HVy < oo,
n>1

Proof. (a) = (b) Assume that Tlflj-q) :Hy — %* is bounded. For each a € D, it
is easy to check that f;, € Hy for j=0,1,...,k+ 1. Moreover ||fjllv, < 20+l for
j=0,1,...,k+ 1. By the boundedness of Tq’j_q) CHy — #%, we get

Sup “Tq§¢f/7a||%’“ < HTV‘]i(pH Suprjﬂ”Va g CHTV‘]i(pH < o,
acD ) acD
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for j=0,1,...,k+1, as desired.
(b) = (c) Assume that (b) holds. From the assumption we see that

SUp [T o il < . 2.1
acD

for j=0,1,...,k+ 1. We shall prove the conditions (#)—(iii) hold. Fix a € D. First,
we prove that the condition (iii) holds. It is easy to check that f; t1o() € Hy with

| fistgtalve <2940, ) (o (@(@)) =0 for i=0,1,....k and

(1) B (k+1)! (k)

it P = o~ @ ~ = @
Thus,

1T gl am > T8 g i g lon > (1 laHI(T g e i) @)

= (L—la)"

>
i(w 1, oo (0(@) + wila)e! (@ 55, <(a>>)|
) k+1q) J k+1,0(a

= (1~ |l | Wh(@)fe1 o0 (9(@) + vil@)g (@51 (9(a))

+Z( O+ Y1 @@ )1 (000)

= (1= laP)"|y(@)¢ (@I £ ) (9(@))]
(= P @) (@) (k+ 1)!
T U Je@p)ert 22
Therefore, by (2.1) we have
(- laP @ (@)
M = sup = fotpartet < ey 01 R I Taofkstota v
< oo, (2.3)
and
(- JaP) @)’ @)]
Moot =0 e S il Thalbe - @

Next, we will prove that the condition (ii) holds. For k > 1 and a € D, it is easy
to see that f o) € Hy With || fi p(a)llve < 2%, Moreover, f,ff()p(a)(go(a)) =0 for
i=0,1,....,k—1 and

k! k!

©  (ola)] — — .
Vo @D = T @i To@PF ~ T p@me?

(2.5)
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Using Lemma 2.1 and (2.5), we have

ITE otz 0 > T o ficota sz > (1- P (TE , fipw) (@)
><1—|a|2>“}w,z<a+wkl (@||fi ) (@(@)]
~(1=laP)|y(a) Hf,f*i (a))]
_ (1= [aP)[yi(@) + yi1(@)9'(@)[&!
g (1= [p(@)? >a+'<

 Clfep@llva(1 = lal) [yi(a)¢'(a)]

(2.6)
(1—|<P( )[2)rth
Thus, using (2.1), (2.3) and (2.6), we have
1 _
M, = sup L1 Wil +w/;+1k( a)¢'(a)|
aeD (I—]e(a)?)
1 (1=la)*|yx(a) @' ()|
p C
Sk (S“p wfkotwllon + O g e
S su PH ofko(a) ¢7¢fk+1,¢(a)
ac
Using (2.4) and (2.6), we have
1—- +
i = sup APV + vicr(@0'(@)
a€D (I—]e(@)?)
1 (1 —Iaz)“ll/k(a)q!”(a))
X 7, — +CSU
g1 (1% e+ o UM S
< ||T£7¢||H;ﬁ@#~ (2.8)
This proves condition (ii) for j = k. Further, fix 1 < j < k— 1 and assume that
Mi S|\ Ty ol (2.9)

fori=j+1,...,k. We will prove
k
M; STy ol — e

It is easy to see that f; 4, € Hg such that ||f; o) llv, <2%7, f;f(z,(a)(qo(a)) =0 for
all s < j and

CIONE j! = TeepEr ¢
9@ (= lp@P)*(1=To@P) ~ (1~ |p(a)P)**
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Using Lemma 2.1 and (2.10), we have

T Pe— f, ola qu > <1 - \a|2>“|< T4 o fr00) (@)

> (1= [aP)|y}(@) + yi-1(@@' @) |1, (0())]
(1 | yi(a) g Hf,"“ >>|

k .
= 2 (-l vl + yi (@' @] £, (9(a))]
i=j+
(1=laP)*|y(a) + yj-1(a)9'(a)| !
g (1= Tp(@)P)
_ § istalhall e |¥i(@ + i ()0’
i=j+1 (1 - |(P(a)|2)a+i
Cll S50t llva (1 = laP)¥ [y (@) ¢’ (@)
B (= 4D

Thus, by (2.1), (2.3), (2.7) and (2.11), we obtain

(=) |wHa) + (@) (a)]
A S R PP B
1 1 — |a )"y (a) @' (a
< i (i ofimolon g SR
L (=P @) + i (@)e' (@)
€ 2 sup (1~ [p(a))er )

< supl|Ty o ipa | +Csup|| ooz +C 2 SuP|| ofio |z
acD i= ,+1ae

< oo (2.12)

By (2.4), (2.8) and (2.11), we get

(1P @)+ yi(@)e' (@)
Mj = sup (- lp@P)*

L[k (1—al)*|yi(a)@'(a)]
< '_v<Tv7~,qu3?ﬁ%“+Csup (1— |p(a)[?)etki

J: acD
k 1— PAYIA NP . /
e 3 pUleP Vi@ v ><p<a>|>
i=j+1a€D (1_‘(/)(“)‘ )
STy ol 2.13)

This proves (if).
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Finally, we prove that (i) holds. It is easy to see that ||fy p(a)llve < < 2%+ for all
acD, and

1

|fo.o@)(@(a))| = A—le@P)

(2.14)
Using Lemma 2.1 and (2.14), we have
1T otz —an = T, o forp(allan = (1= 1al*)* (T p fo.pw@) (@)l

=u+#wk

2(wwmﬁwww»+ww><xw“<<»ﬂ

J=0

Y6(@) fo.o(a) (9(@)) + V(@) @' (0) fiot) (@)

= (1—a’)

+2(w, @+ <>%w)ﬁ@@wwﬂ

_ U—laPYws(@]  Cllfogialva (1 —1aP)[yi(@) ¢’ (a)]
T (-le(a)?)” (1—\<P( J[Pyoht
& Cllfopallve (1 —\alz)”|w§(a)+‘I/.H(a)q”(a)l.

-2

= (1 |g(a))a™]
Thus, using (2.1), (2.3), (2.12) and (2.15), we have

(= [aP )
Mo = S T lo@P)e
— |al?)m a) o' (a
< 50175 oo gt @”2‘;5((1|_||<3(a;’f§§a)ff+(l>'
(1—lal)*|yi(a) + wj—1(a) @' (a)
Fa wawwﬁﬂ |

j=1 acD

(2.15)

SsupH qu) HJ#—FZSHPH qua HJ#—FSUPH fk+1(p || n
acD j=lac

< oo,
Using (2.4), (2.8), (2.13) and (2.15), we have
(1—lal>)*|yg ()]
My = sup
" an (I=le(@P)e
(1—|aP)* yi(a)9'(a)]
ST gl S G
+3 sup LD Vi@ + i1 (@)'(@)
SlaeD (1=le(a)P?)*+
STl —cmm (2.16)
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This proves (7). Thus (c¢) holds.
(¢) = (a) Suppose that conditions (i)—(iii) hold. Let f € H;;. By Lemma 2.1
we have

k .
T oS lan = T o O+ Th o f 1 = | g w;(0)/Y (9(0))]

+sup(1 —|z[})*

zeD

k

2( (»+%0¢<VW“w@Q|
j=0

ZW/Hf 0(O)]+ sup(1 ~ 22 ) (0(2)

+sup(1l — |z “ZIIV, )+ 129 @Y (9(2))]

zeD
Hgﬂﬂdﬂw@w@WWmel
L y0) (1= ¥ w2
gcﬂ“(§, e PET R T R P)e

£ (1= P (9 @)+ v
P (=[0G

)2yt
(1—[z)"|y(2) @' (2)]
Tﬁ(kw@%wﬂ)
k+1
S S llve <C+ EM,) < oo, (2.17)
Jj=0

This proves that the operator Tq’;_ o He — 2" is bounded. Thus (a) holds.
(d) < (a) We have proved that TlT’j o Ho — 2" is bounded if and only if (c)
holds. Thus we know that the operator Tuﬁ. o Ho — 2" is bounded if and only if

(1= |z (2)]
LIS 2.18
W le@P < (219
(1= [z wj-1(2) ¢’ (2) + ¥j(2)] . ,
jlelg (= le@ P o, for j=1,2,....k (2.19)
1,12 /
Sup(l D' @) _ (2.20)

b (I=[o()P)or !

By Lemma 2.2, it is easy to see that (2.18) is equivalent to the operator yCy : Hy —
H{j; is bounded. By Lemma 2.3, this is equivalent to

H‘I/()(P" iy,

oo, 221
PoEm,, < (22D
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By Lemma 2.2, it is easy to see that (2.19) is equivalent to the operator (y;_1¢’ +
q/;»)Cq, tHy " H;’; is bounded. By Lemma 2.3, this is equivalent to

(Wi + i) ",

sup — <eo, for j=1,2,... k. (2.22)
n>1 1€" v,
By Lemma 2.2, we see that (2.20) is equivalent to the operator y;¢'Cy, : H, il H{j;

is bounded. By Lemma 2.3, this is equivalent to

lyi9 " |, 2.23)
n=l1 (I 5on ||Va+k+l
By Lemma 2.4, we see that Tuﬁ. 0 :Hy — 2" is bounded if and only if

n*[lyge" Iy
supn®||yo @™y, & sup —gr s < oo
n=1 0 " n=1 na”én lHVoc

n* (g9 +ye" s
supn®H||(yj-19'+ y)) " 1||vu~sup T £ <o,

n=1 naJrJ”é’n leaJrj

for j=1,2,...,k
and

n® 1y 0"y,

su na+k+l n—1 ~ su
n>Il) [R72ex ||vu /p na+k+l||§n71||le+k+l

As desired. The proof is complete. [

3. Essential norm

In this section, we give some estimates for the essential norm of the operator Tu7
Hy — %*. For this purpose, we first state some lemmas which will be used in the
proofs of the main results in this section.

LEMMA 3.1. [6] Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Suppose yCy : H;" — H is bounded. Then

n
|wColle,zz>—pz = limsup M
1€l

n—oo

LEMMA 3.2. [36] Let X,Y be two Banach spaces of analytic functions on D.
Suppose that

(1) The point evaluation functionals on Y are continuous.
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(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T :X —Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence {f,} in X such
that f, — O uniformly on compact sets, then the sequence {T f,} converges to zero in
the norm of Y .

LEMMA 3.3. Let min{a, /,L} >0, keNg, yje HD), j=0,1,....k and ¢ €
S(D) with ||@|| < 1 such that Tﬂ tHy — B* is bounded. Then TITI;.q) CHy — BH
is compact. '

Proof. Assume that the operator Tulj 0’ H; — %" is bounded, from Theorem 2.1,
we obtain

To := sup(1 — [z} [y (2)| <o,
z€eD

7y o= sup(1 = ) [9}(2) + ¥y (9 () <. for j=12.....k
S

and
Ti1 == sup(1 — |2*)*|yi(2) @' (2)] < ee.

zeD

Let {fu}nen be a bounded sequence in Hg, such that f, — O uniformly on compact

subsets of D as n — eo. Cauchy’s estimates imply that f,gj) —0, j=0,1,...,k+1
uniformly on compact subsets of D as n — e. Thus, for the compact subset K =

{o(@) o) < [[@ll} €D, we have

sup| /i’ (@(2))]| — 0 as n — eo. 3.1)
zeD
Fori=0,1,...,k+1, since { fn(i) tnen converges to zero uniformly on compact subsets

of D, it can be seen that |T£_(an (0)] — 0 as n — oo. Further, using (3.1) we have

1T o fullan = 1T o £, 0)]

M=

+sup(1—[z]*)¥

zeD

0(w,< 11 (0) + v ()9 >f<f“><<p<z>>)|
L= P @ a(02))

A\

k
< 1T (0)] +sup

+Esup — )W) + w1 (9 DA (9(2)

Jj= 126D

+sup(l - 2P (29 @A (0(2)]
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< 1T o (O)]+ Tosup £ (g D+ 3 Tsup A (00

j=1 zeD

+Tisrsup £ (@(2)] — Oasn — oo,
z€eD

This proves that T£ P Hy — %" is a compact operator. [

Next, we state and prove the main results in this section. For the simplicity, we set

for i=0,1,...,k+1;

— : k :
Ai = ‘ggllHTw,(pﬁ,a
2V 4y

By = lim sup LW;
=) (1= 19@)[)

B, —lim sup (1= lyi-1(2) ¢ (2) + Wi(2)]
"~Lp()[>r (1—lo(z)|2)ti )

_ (1= ) [y(2)' )
g (= [p@P*HT

for j=1,2,...,k

THEOREM 3.1. Let min{a,u} >0, k € Ng, ¢ € S(D) and y; € HD), j=
., k. If the operator Tll;_q) tHy — $" is bounded, then

H HeHaHA’liN max A;~ max B;.
0<i<k+1 0<i<k+1

Proof. When ||@|l. < 1. It is easy to see that Tﬂ .o Ho — P is compact by
using Lemma 3.3. In this case, the asymptotic relations vacuously hold. Now we
consider the case ||@||. = 1. First we prove that

k
oggliHAi ST glle g — -

Let a € D\{0}. It is easy to see that fi, (i=0,1,....,k+1) € Hy and fi, (i =
0,1,...,k+1) convergesto 0 uniformly on compact subsets of D as |a| — 1. Thus, for

any compact operator %" : Hy — %", by Lemma 3.2 we have lim, 1 || fia||4
0,fori=0,1,...,k+ 1. Hence, for i =0,1,... ,k+1,

15— g —zn Z limsup||(Ty; , — ) fiall s

la]—1

> limsup |7y , fiall s —limsup || fallan = A;

|a|~>l ‘u‘%
Therefore, from the definition of the essential norm, we obtain

k _ . x ) -
175, .t e l}f”Tw — K g -z 2 oéngaiﬁlA
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Next, let {z, }nen be a sequence in D with |@(z,)| — 1 as n — e such that

(L= 2P w2 @' @) 1 (L= Jz)* [Wi(2n) @' (z0)|
lim sup = lim .
—lpesr (T=[@E)P)OH nme (1= [@(za)[2)
L@@ k+1
(1—(1)(2,,')2)”‘+l G‘P(Zn)
v <200 £ (@(z0)) =0 for i=0,1,... .k and

(k+1)!
(1= lo(z)P)ortst

Clearly, {fi+1.}nen is a bounded sequence in H; and converges to zero uniformly on
each compact subset 0f D. Hence, if % : Hy — %" is a compact operator, then by
zn = 0. Further, we have

(3.2)

For each n, define fii1,(z) = (z), z€D. It is easy to see that

Sirin

(3.3)

fki*l?(w(zn))\

||Tl,7,q, — K iz > li;njgp H(Tlp,(p —X) > li;njotlp 1T o fitt.nll 0

and hence
1T oot —com = glgf||T£7¢ — K| g - > li;n_i:lp 15 pferinllan. 34
Using (3.3), (3.4) we get

1T plle i —an = limsup | T, fest nllan
n—>00

> limsup(1 — |z,)*)H

k .
3. (Vi (o) + e @il o) )

n—soo j=0
, (k+ 1)1 — [zn)* | ie(zn) @' (2n)|
R (e e L )
Since |¢(z,)| — 1 as n — oo, it follows from (3.2) and (3.5) that
1— 2\u !
H HeH - > hm sup ( ‘Z| ) ‘Wk(Z)(P (Z)| = Bii1. (3.6)

—lig)>r (1= l@(z)[2)erk!

Next, let {z, }nen be a sequence in D with |@(z,)| — 1 as n — o, such that

(1= [2*)*[yi-1(2)9' (2) +  (2)]

lim sup

=1 o(2)[>r (I—]o(z)[?)er*
e (=l W1 () @ (20) + W3 (20))|
i (- oGP | G
For each n, define f ,(z) = %G{;(M(z), z € D. It is easy to see that f, €
Hg and | fiallv <29, £ (@(z0) =0 for i=0,1,....k— 1 and
k k!
8 (p(2n))| = (3.8)

(1= lo(z)P)*+*
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Clearly, {fin}nen is a bounded sequence in Hy, and converges to zero uniformly on
compact subsets of . Hence, if .%Z : Hy, — %" is a compact operator, then by Lemma
3.2 we have lim, .. || # fi »| e = 0. Further, we have

175 = H = > imsup (TG = ") el on = limsup | Ty o fenl

and hence

175 gl = inf TG = A |1 om > limsup | Ty (3.9)
B n—oo

Using Lemma 2.1 and (3.8), (3.9) implies that

15 glle sz > limsup | T§,,

k X .
> timsup(1 2| 3 (W2 (0060 + vi(e)0' () ,E;if”<<p<zn>>)\

n—oo j=0
> limsup(1 — \Zn |l//;< Zn) + Wi—1(z0) @ Zn ka,, )’
—timsup(1 — [z,[2)* [ (z) @' (o) | fis " (@(z)]
i e KU P W) + Y1 (20) ' (@)
= P (1= [ (zn) )+
. Cll finllve (1= za*)* Wi (z0) @' (20)]
_hfis::p (1= Tp(z) ekt . (3.10)

Since |¢(z,)] — 1 as n — oo, it follows from (3.2), (3.7) and (3.10) that

HTq]j@He,Hg_gau = limsup||T£(P
n—oo

> limsup k(1 — |Zn|2)#|‘//1/c(zn) + V/kfl(zn)(l’/(zn”
- (1 —[@(zn)]?)t*
. (1= Jza)" Wi (20) @' (z0)|
—Cka,n”mthjot‘p (1= |@(zn) P)ethrl
> lim sup k(1= 2" [wi(2) + w1 (2) 9/ (2)|
T =g (1—[@(z)[>)*t*
1=zl ()¢’ (2)]
—C|| finllvg hm sup .
Wiallv 0 500 ooyt

Thus, applying (3.6),

i s LDV + Vi1 @9 @)

SU+OTY ez -
r=Lg@)|>r (I—|o(z)]?)+* v.0
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Therefore
1 (1= 12"y (2) + w1 (2) 9 (2) |
TS ollez—cn 2 lim sup ~ By. (3.11)
o ne 1+Cr=1140)>r (I—|p(z))x+*
Now we fix 1 < j < k—1 and assume that
z +yi "(z
T ez o 2 > lim sup (1= (2) + ¥i 1(2)9' (2)] _B. (.12

~Lip()|>r (I—[o(z)[?)et

foreach i=j+1,...,k. Now we show that (3.12) holds for i = j. For that, let {z,},en
be a sequence in D with |¢(z,)| — 1 as n — oo such that

(1= [2P)*yj-1(2)¢' () + ¥}(2)]

lim sup

i 0= @
ORI )6 @)+ )
—a =TGP o

For each n, define fj,(z) = %G& (@), z€D. Itis easy to see that fj, €

Hg and || fiallvg <29, £1)(0(z0)) =0 for i=0,1,...,j— 1 and

il
)| = J: (3.14)

(1=l

Clearly, {fjx}nen is a bounded sequence in Hy; which converges to zero uniformly on
compact subsets of ). Similarly, we have

£ (9(z0)

15 leiz—m =0T o = Nl —can > Himsup || Ty, o frall . (3.15)
Using Lemma 2.1, (3.14) and (3.15), similarly we get

(1_|Zn |‘I/, Zn) +Wi-1(zn) @ /(Zn)“(P(Zn)n‘

1T plle i —am > limSUP

neo (1= lo(z)?)*
. 1finllve (= [2al*)* W] (z) + Wim1 (2n) @' (zn)|
—C lim su Jn Vo o1 1 o1 ‘l n n
2 e (1= Tp(a) )
: 1 fjinllve (1= lzn*)* [ (2n) 9" (2n)|
_Czllirfoljp J (1 — ‘(p(zn)P)oﬁ-k-‘rl . (316)

Here Cy,C, are some positive constants. Since |@(z,)| — 1 as n — o, it follows from
(3.2), (3.13) and (3.16) that

1T gl 2 Tsup T4 .|

S i j!(l_‘Zn|2)”|‘l/}(zn)+Wj*l(zn)(/’/(zn”
Z e (1= @G P)oti
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1fjnl v (1 = Jzn[ ) Wi (2) @' (20)]

- hfﬁ‘ip (= Tp(z) Py
(1= Jza)* 19 (z0) + Vi1 (z0) @' (20)]
—C Finllve hmsup : .
%,Zﬂ”’ : (- lpG P
~lim sup J( =12 wi(2) + wj-1(2) ¢ (2)|
T TP (I—[o(z)[>)et

(1= (')
=G| finllve hm sup
L gl =TGP

(L= |zP)* 1w () + vi1(2)9' (2)]
(1=lo(z)P)** '

_C1||fjnHVa Z lim sup
i=j+1" o) >r

Thus, applying (3.6) and (3.12),

l_
— (1= |2P)H (2 +w,+1(><p (z)lsH
=1ip@)[>r (1—Jo(z)[>)*+i

Therefore, forall j =1,2,....k,

R

(L= P W) + vy 9 2|
e H 4 th su J =B;. (3.17)
IT5 gl an 2 fim sup 0 lp@P)* j

Let {z,}nen be a sequence in D with |@(z,)| — 1 as n — o such that

(=[P (= fal)H W )]
111'11 Su —:hm .
i A S Yo R C P PY R TS

(3.18)

For each 7, define fo,(z) = %, z € D. Itis easy to see that fy, € H;, and
HfO,nHva < 20£+1, and

b
(1=le(z)?)*

Clearly, {fo}nen is a bounded sequence in Hy; which converges to zero uniformly on
compact subsets of . So, similarly we have

| fon(@(zn))| = (3.19)

1T lle b — am zglgf||T£7¢—,%f\\H§_@u > 1iglsgp\\T§7¢fo7n\\@u. (3.20)

Using Lemma 2.1 and (3.19), (3.20) we get

175 gllet o0 > timsup | T,

> limsup(1 — |z,[*)*

n—o0

k .
Z(W}(zn>fé{,2(<p(zn>>+w,-(zn> ") 55 (9 (,1)))‘

J=0
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> limsup(1 — [za]*)* [ (@) fon (@ (20))]

n—oo

—thsupl—|zn }u/j Zn) +Wj—1(zn) @ "(zn) Hfo,, )}
j=1 e
—limsup(1 — |za[*)* | Wic(z0) @' (2n) HfokJrl (zn))|

. (1= |z )" W (zn)|
> limsu
P <1—\<p< SRk
(1= 2! W) (z0) + Wi 1(20) @' (z0)]
_C Wl li ] .
3] fo.nll ajz lfljw (1= @) [P)* ]

: (1= |zal®)* [y (20) @' (zn)
_C4||f0,n||\/a thLlp (1 — (P(Z}n)TZ)O‘JrkH }

Here C3,Cy are some positive constants. Since |@(z,)| — 1 as n — oo, it follows from
(3.2), (3.13), (3.18) and (3.21) that

(3.21)

15 leig—am > limsup T, o fo

(1= [zP)H v (@)l (1= ) yi(2) 9’ ()|

> lim sup —Cyl| fo.nlve hm sup
e T e R (S
(1= )*|wj() + vi1(2)¢' (2)]
=G5 fonllve 2, lim sup i
ol ZH%Mw (1= o))t

Hence, by (3.6) and (3.17),

(1= 2P v (@)

1T o lle.tig—on 2 lim sup = By. (3.22)
—Lig)>r (1—lo()]*)*
Therefore, (3.6), (3.17) and (3.22) imply that
15 plletiz—n Z  max B;. (3.23)

0<i<k+1

Finally, we prove that

H HeHa gn’ S max A;
0<i<k+1

and

CHE— B S Bi.

1Tl S S (Juax By

For r € [0,1), set % : HD) — H(D) by (Jf)(z) = f+(z) = f(rz), f € HD). It
is obvious that f, — f uniformly on compact subsets of D as r — 1. Moreover, the
operator .%; is compacton H; and ||| gz nz < 1. Let {r,} C (0,1) be a sequence
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such that r, — 1 as n — oo. Then for every positive integer n, the operator Tulj (p%n :
Hy — 2" is compact. By the definition of the essential norm, we get

15 lesiz—n < limsup T, — Ty 8o, 0. (3.24)

Therefore, we only need to prove that

li Tk % < A;
ISP [Ty = TypHinllz o < 202,

and

li Ty o~ Tio s < B;.
imsup||Ty, g o S max B

For any f € Hg such that ||f]],, < 1, we consider

k k
‘ (TIT/,(p - T]Ta(p%”n)fHe@”
= (T = Ty o) F O + (T, = T ) £

=\ﬁ0(wj<o>f<f><<p<o>> w0 )|+HZ% ) fPyeq|. @2s)

It is obvious that

hmsup\z(w, 0% (9(0)) ~ y3(0) £ (9(0)) ) | =o0. (3.26)

n—oo

Now we consider

o] v )00}

n—o0

= timsupsup(1 — |2 |W6(2)(f ~ ) (9(2)) + w20’ (2) (140 = £ ((2))

n—eo  zel

+2(W, D+ v10' @) (19 - 1) (0(0)|
Climsup sup (1~ P~ ) IV

n—=e fo(z)|<ry
+limsup sup (1 —[z>)|(f — f,)(0(2)| w5 (2)
n=ee [o(z)[>ry
k
+limsup sup (1—|z)? ”Z)
n=e fo(z)|<ry j=1
k .
limsup sup (1— )4 3| (19 = 17) (02| ¥ (0) + vi-1(2)9' @)

= lo(a)>ry =

(79 = 1) (02| Wj(2) + i1 ()9 2)
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+limsup sup (1—|z|2)”)< (k1) frerl) (P(Z)))Wk(Z)(P/(ZN

n=ee o)<y

+limsup sup (1—|z*)¥ ' (f (k1) fer ) <P(Z))‘ Wi (2) ¢’ (2)|

n—ee |o(z)[>ry

223

=01+02+ 03+ 04+ 05+ O, (3.27)
where N € N is large enough such that r,, > % foralln > N,
Qi :=limsup sup (1—[z)*|(f — f)(9()]lw5 ()],
n—e o(z)|<ry
0 :=limsup sup (1 —[z)*|(f — f,)(9(2)[lw5(2)],
n=ee o(2)[>rn
2y | () D)
03 i=timsup sup (1= [z X | (f9) = 1) (0(2))| W) (@) + wj-1(2)9' (2],
n—e |o(z)[<ry Jj=1
| 40) _ 40D
0y i=timsup sup (1= [z 3| (f9 = 1) (0(2))| W) (@) + wi-1(2)9' (2),
n=eo(g)[>rn j=1
0s:=timsup sup (1 [z | (r*V = 15 (9(2)| I we (2)9' (2)
n=e o(z)[<ry
and
Qo= tlimsup sup (1= [P | (/41 = £57V) (0(2))| lwi(2)9/ ().
n—e |o(z)[>ry
Since Té; 0" Hy — %" is bounded, from Theorem 2.1, we obtain
To := sup(1 — |z} [y (2)| <,
z€eD
Ty = sup(1— W) + ¥ (0@ <. for j=1.2.. .k
zZE€
and
Tiir = sup(1 — |2 [yi(2)9' (2)] < oo
zeD
Since fr(,f) — f(i)(i =0,1,...,k+ 1) uniformly on compact subsets of I as n — oo, we
have
Q1 < Tylimsup sup |f(w)— f, (w)| =0, (3.28)
n—ee |wl<ry
k .
2 slimsup sup |£Y) (w) — £ ()| =0 (3.29)

nee |wlsry
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and

05 < Tisy limsup sup |4 (w) — 5D ) = 0. (3.30)

= ol

Next we consider Qg. We have Qg = limsup,,_,., O¢1, Where

Qe1:= sup (1—[z)"|(f
lo(2)|>rn

(D — £ w(z))'lwk(z)<p’(z)|,

Using the fact that || f]|,, <1 and Lemma 2.1, we have
(1= zP)* vi(2)¢' (2)]
Q61 < C[f = frullve sup (3.3D
LSl S0 T R
b, G DO P R )
k+D! o@)>m (1 —[@(z)[>)rh

Hf_frn”va
S (k+1)! |¢<SZ;§,N(1_|Z|2)M|‘V"(Z) ()Ilfkﬁl(p (9(2))

!
(T ofisr0) QS sup T} ofesrallom. (3.32)

la|>rn

< sup (1 [P)*

lo(2)[>rn

Taking limit as N — oo we obtain

Qg = limsup Qg1 S hlﬁllsup [ ofirallar = Agar. (3.33)

From (3.31), we see that

(1= |zP)H vie(@)¢' (2)]

Qg = limsup Qg < hm sup =B (3.34)
e =i, (L= [@()P)FT T
Next we consider Q4. We have Q4 = limsup,,_,., Q41, where
k )
0= sup (=12 |(f9 = 1) (0| 1W}(@) + wi-1(2)9' ).
j=1le@)|>ry

Using the fact that || f]|,,, < 1, Lemma 2.1 and (3.32), we have

sup (1= P | (79 = 127) (0@ W)+ ¥ (9 )
o(z)|>rn

O =l RO =D VL) + 1 (9
SR et (1= lo@ )

< swp (1= P (Th p o) (0~ w29 DA (0()

lo(2)|>rn
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< s (kP (| (T o) @]+ @0 @A (001

[o(2)|>rn
/ V(29 (2)]
< sup 1—22“< T% fi z)| +Cll f va
s (1=P) | (7§ pfiot) )] +Cllfipiol o e

< s sup (1= 6| (1 pha) @]+ ] (7 i) @)

l@(2)[>ry la|>ry
< sup |ITy o frallan + sup [Ty o ficr1.allm- (3.35)

la|>ry la|>ry

Further, fix 1 < j <k —1 and assume that

sup (1= [z (19— 1) (02| W @) + Wit ()9 )

lo(2)|>ry
L—[z)*|{(2) + yi1(2)9' (=
<Clf=Ffollv  sup (1= 2w (2) + i1 ()9’ (2))

0(2)|>ry (I—|o(z)?)oi
k+1
S sup || Ty pfiallan + Y, sup [Ty o frallm (3.36)
la|>ry t=i+1l|a|>ry

foreach i= j+1,...,k. Now we establish (3.36) for i = j. Using the fact that || f||,, <
1, Lemma 2.1, (3.32) and (3.36), we have

o (1= (£9 = 1) (0| IW)2) + w1 ()9 (2)]
¢(z)|>rN
=Sl JHL =[P y(2) + yi-1(2) 9’ (2)|
J! o) [>ry (I—[o(z)[>)et
Cllf = frullv /
- ||f]7'f|| |<p<i§lwr>)m(1 - ‘ZW) (Thpti00) @
k .
- zl<w;<z>+wi_1<z><p’<z>)f}j;(z>< 0(2) ~ (@9 f 1) (0(2)|
i=j+
< s (EPP(] (7 pfi00) @)
k .
+ |w<z>+1m_1<z><p'<z>|f}j;<z)<<p<z>>|+|wk<z><p’<z>||f},";(;;<<p<z>>|)
i=j+1

< sup (1) (\ (75 o5000) )

lo(z |>rN
* 3 Wi TS

i=j+1

+Cllfj () Ive

(W (2)'(2)] )
(1—lp(z)P)rtt!
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< sup sup (1—[zP)¥ () (78 o) )

lp(2)[>rn |a|>ry

(3.37)

* il (\ (7§ ofia) ] + "i;) (Té;,(,,fr,u)’(z))) +| (Tgﬁqofkﬂ,a)’(z)))
=J t=i
< sup ||T an + HZI sup (|75, fiall
lal>ry i=j+1lal>ry

forevery j=1,2,... k. After a calculation, using (3.37), we have

J (1= [2*)H*w)(2) + wj1(2) ¢’ (2)]
04 < C f_frn ve SUp . -
j:zl 1=l 5. (1-lp@)[)**
k k+1
<Y, sup [Ty f/,a||Aﬂ+2 >, sup [Ty fiallzn
j=llal>rn j=li=j+1lal>ry

Taking limit as N — oo we obtain

k1 k1
04 —hmsupQ41§11msupZ|| ofiallan = Y AIS max A

Nn—soo la|—1 ; =1 1<i<k+1

From (3.38), we see that

E (1= 2! yi(2) + yi-1(2) 9’ (2)]
Q4 =limsupQy4; < hm sup J —
I e = (1=lo(z)P)*+

< max B;.
1<i<k+1

Finally we consider Q,. We have Q, = limsup,,_,., Q21, where

0= sup (1—[z)*|(f 1) (@)1 W5 (2)]-

lp@)[>rn

Using the fact that || f]],, < 1, Lemma 2.1, (3.32) and (3.37), we have

(1—[z)" |y (2)]
< — Jrallva (1—lo(2)]2)*
O < ||f = full l(p(i‘)“gm (1—o(z)]?)*

=1~ Fulbva swp (1= 22| (T o) ©

lp()[>rn

k ,
g( D+ Y19 () fy (@) — vi(2)e ()féf;;;)(«p(z))’

< sup (1—|Z|2)“(‘(Tv“lj,fpfov‘/’@)/(z)

lp ()\>r1v

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

+z|% )+ W19 @ (@) + (D)9 @I fy ) (@ <>>|)
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< s (=P (| (74 o) @

lo@)[>ry
lvi(2) + vj-1(2)¢'(2)] lvi(2)¢'(2)|
+~Z,1C||f0,<p(z)HVa (1= )Py +CHfO,<p(z)HVa (1— |(P(Z)|2)a+k+l)

A

+ ’ (lei(pkarl,u)/ (2)

sup  sup (1—|z?)H (’(Tl,*];,(pfo,a)/ (2)

lo(2)[>rw |a|>ry

k . , k+1 ) p
2 ('(Tw,wffv“) @+ 3 |(Foha) @ )
Jj=1 i=j+1
; k+1 k+1
S sup ||Tlp7¢f0,a||.%#+z sup || fJuH%’#"‘Z Z sup [T (pAfl-J/lHe@”-
la|>ry j=lla|>ry j=li=j+1lal>ry
Taking limit as N — co we obtain
k+1 k+1
0, = llfqusgp 0 S l‘ﬁi‘ip,z 1T o fiallz ZAz S,max Ai (343
From (3.42), we see that
1— 2\U |y
Q> =limsup Qo < hm sup M = By. (3.44)

n—see —Lig)>r (1=19(2)?)®
Hence by (3.25), (3.26), (3.27), (3.28), (3.29), (3.30), (3.33), (3.40) and (3.43) we get

limsup ||T£7(p - T£7¢%n |z e = limsup sup || (Tv!(?xp — Ty o r,)
n—soo

= [ flha <t
= limsup sup H i i (fV —fr(,{))oqu

= [ fllva <17 j=0

< max A;. (3.45)
O<t<k+l

Similarly, by (3.25), (3.26), (3.27), (3.28), (3.29), (3.30), (3.34), (3.41) and (3.44) we
get

limsup || TX Tk % _ogu < max B;. 3.46
n_mpH Ve il ™~ 0<i<k+1 (3.46)

Therefore, by (3.24), (3.45) and (3.46), we obtain

< <
1T plle.ti—n < OglgllﬁlAz, 1T plle.ti—mn < Oglg,g;lB

This completes the proof. [

Now, motivated by [3], we give another characterization for the essential norm of
the operator TlT’j o Ha — B
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THEOREM 3.2. Let min{a,u} >0, k € Ny, ¢ € S(D) and yj € HD), j=
., k. If the operator Tll;_q) tHy — $" is bounded, then

TE olletiz—om = Di
175, lle.pr—m 0<ick1 "

where

Do = limsupn®|[yo¢" [l Dis1 =limsupn® |y @™ |y, :
Nn—oo

n—o0
D; = limsupn®™*/||(yj—1¢' +y))@" |y, forall j=12,...k

Proof. According to Theorem 3.1, we known that the boundedness of the operator
Tulj :Hy — 2" is equivalent to the boundedness of the operators WOC(,, Hpy — H o

(V/,_up +W))Co  Hy,, — HE for j=1.2.....k, and y'Cy : H LHE

Vot j Vortk+1 Vi
The upper estimate. By Lemmas 2.4 and 3.1, we get

160" . _ oo P00y
167 e e G g

~ hmsupnaHWoQD" 1||vw
n—oo

1W0Colle.iz, i, = limsup g —

1(wj—19 + i) ",

I (l[/j_l(P/ + l/{;)C(p HeﬂgzﬁjﬂH;ﬁl = limsup

n—seo 1€ lvgs s

(g e,
= limsup T ——TE

n—oo n ,Hé ||Va+j

~ limsupn®* || (yj_1¢' + V{;)(Pn_l [

n—oo

for j=1,2,...,k

and

! an—1
||Wk(P C(p”eHL —H> th pw

atk+1 VR Nesoo ||§n 1||VD!+/~+1

n“H lyrg' "1y,
na+k+1 ||én—l ||Va+k+l

~ limsupn® |y’ ! v, -

n—o0

= limsup
n—oo
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It follows that

1T o lle.tiz—m < 11WGCo ez, + I Collenrg, ., s,

oo
vu

k
+ X (w19’ + W})CwHe,H;jHﬁH
=1

k+1
= ZD,- < max D;.
r 0<i<k+1

=

The lower estimate. From Theorem 3.1, Lemmas 2.4 and 3.1, we have

K - : g™l
HTlf/7(pH€~,Ha°—’33” ~ BO = ||W0C(PH€~,H§:;_’H§L = hmsup ||§n71||
Vo

n—oo

~ limsupn“HlI/(J)(Pn_lew

n—

1T plletiz—n 2 B = [(j-19"+ V/;)qu“eﬂ%j_”’@

(Wi + i) e"

= limsu
n—oo ||§n71||‘/a+j

~ limsupn®*/ || (y;_1¢ + W})‘PWI vy
n—soo

for j=1,2,...,k

and
! An—1
k> B = v Collene e = limsup PP
1T o lletig - 2 Brvr = |Wie C"’”“HVMHF’HVH llinj}:p e o
~ 1imsupn°‘+k+lHllkaDI(Pn_lew
n—soo
Therefore

Tk s D..
H W.’q)He,Ha—n@“ Noggzi_l !

This completes the proof of this theorem. [

From Theorems 3.1 and 3.2, we immediately get the following characterizations
for the compactness of Tll‘!}_q) CHy — A

COROLLARY 3.1. Let min{o,u} >0, k€ Ny, ¢ € S(D) and y; € HD), j=
0,1,....k. If TlT]j 0" Hy — 2" is bounded, then the following statements are equivalent.

(a) The operator Tg 0" Hy — 2" is compact.
(b) hm‘(p(u)‘%l ||T$’¢fj,(p(1/l) H@“ = Oa for .] = 07 17 s 7k+ L.
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(c)
. (1— )4 w(2)]
1 N =/ TrUARET
P o (- @E)P)

(1= |z lyj-1(x) ¢ (2) + W}(2)
=1o)|>r (1= lp(z)[?)t

: (1= [z v (2)9' (2)]|
lim sup =0.
r=Lpsr (1= @()[?)xteH

(d)

=0, for j=1,2,...,k

limsupn®|[yoe" 'y, =0 limsupn® |y’ 9" |, =0;

n—oo n—oo

limsupn®*/||(y; 19"+ W)™ !, =0, for j=12,.. .k

n—00
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