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DIRAC INEQUALITY FOR HIGHEST

WEIGHT HARISH–CHANDRA MODULES I

PAVLE PANDŽIĆ ∗ , ANA PRLIĆ, VLADIMÍR SOUČEK AND VÍT TUČEK

(Communicated by J. Pečarić)

Abstract. Let G be a connected simply connected noncompact classical simple Lie group of
Hermitian type. Then G has unitary highest weight representations. The proof of the classi-
fication of unitary highest weight representations of G given by Enright, Howe and Wallach
is based on the Dirac inequality of Parthasarathy, Jantzen’s formula and Howe’s theory of dual
pairs where one group in the pair is compact. In this paper we focus on the Dirac inequality
which can be used to prove the classification in a more direct way.

1. Introduction

In this introduction, we give an outline of the representation theory context for the
results in this paper. However, in each of the cases described in Tables 1 and 2, all
the notions become completely explicit and elementary, and the representation theory
context may be forgotten. Therefore, the reader who is not familiar with, or interested
in, representation theory can mostly ignore the rest of the introduction and only check
the concrete definitions given in Tables 1 and 2 before going to Sections 2 and 3 which
contain our main results.

Let G be a connected simply connected noncompact classical simple Lie group
of Hermitian type. (Exceptional Lie groups of Hermitian type are treated in [13]). Let
Θ be a Cartan involution of G and let K be the group of fixed points of Θ . If Z
denotes the center of G , then K/Z is a maximal compact subgroup of G/Z . Let g0

and k0 be the Lie algebras of G and K , respectively, and let g0 = k0⊕p0 be the Cartan
decomposition. Let t0 be the common Cartan subalgebra of g0 and k0 and let g , k ,
t and p be the complexifications of g0 , k0 , t0 and p0 . Let Δ+

g ⊃ Δ+
k denote fixed

sets of positive respectively positive compact roots. Since we assume that pair (G,K)
is Hermitian, we have a K -invariant decomposition p = p+ ⊕ p− and p± are abelian
subalgebras of p . Let ρ denote the half sum of positive roots for g .

A unitary representation of G such that the underlying (g,K)-module is an irre-
ducible quotient of a Verma module is called a unitary highest weight module. It is
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generated by a weight vector that is annihilated by the action of all positive root spaces
in g .

For λ ∈ t∗ which are Δ+
k -dominant integral (that means 2〈λ ,α〉

〈α ,α〉 has to be an integer

greater or equal to zero), let N(λ ) denote the generalized Verma module. By definition
N(λ ) = S(p−)⊗ Fλ , where Fλ is the irreducible k-module with highest weight λ .
The generalized Verma module N(λ ) is a highest weight module (λ is the highest
weight of the K -type Fλ but also a g-highest weight of N(λ )) which doesn’t have
to be irreducible or unitary. Our main goal in this paper is to determine those N(λ )
which correspond to unitary irreducible representation of G . We consider only real
highest weights λ since this is a necessary condition for unitarity. In case N(λ ) is
not irreducible, we will consider the irreducible quotient L(λ ) of N(λ ) and we will
determine those weights λ which correspond to unitarizable L(λ ) .

Harish-Chandra has shown that G admits non-trivial unitary highest weight mod-
ules precisely when (G,K) is a Hermitian symmetric pair and that is precisely when
the Lie algebra g0 is one of the Lie algebras listed in tables 1 and 2. To learn more
about highest weight modules see [1], [3], [5], [6], [7], [12].

In [5] (and independently in [12]), a complete classification of the unitary highest
weight modules was given using the Dirac inequality, Jantzen’s fomula and Howe’s
theory of dual pairs. They proved that L(λ ) is unitarizable if and only if the strict
Dirac inequality holds for all K -types occurring in L(λ ) . This criterion is useful, but it
is not easy to use because it is difficult to determine the K -types of L(λ ) . The purpose
of this and our future work is to show that the same result can be proved more directly
using the Dirac inequality in a more substantial way.

The structure of S(p−) is very well known (see [15]). The K -types of S(p−) are
called the Schmid modules. For each of the Lie algebras in Table 2, the general Schmid
module s is a nonnegative integer combination of the so called basic Schmid modules.
The basic Schmid modules for each classical Lie algebra g0 for which (G,K) is a
Hermitian symmetric pair are given in Table 2.

Let U(g) be the universal enveloping algebra of g and let C(p) be the Clifford
algebra of p . The Dirac operator is an element of U(g)⊗C(p) defined as D =

∑
i bi⊗

di where bi is a basis of p and di is the dual basis of p with respect to the Killing form
B . It is easy to show that D is independent of the choice of bi and that it is K -invariant
for the adjoint action on both factors. The Dirac operator acts on the tensor product
X ⊗S where X is a (g,K)-module, and S is the spin module for C(p) . The square of
the Dirac operator is very simple:

D2 = −(Casg⊗1+‖ρ‖2)+ (CaskΔ +‖ρ2
k‖),

where ρk is a half sum of the compact positive roots and kΔ is the diagonal embedding
of k into U(g)⊗C(p) defined on X ∈ k by Δ(X) = X ⊗ 1+ 1⊗α(X), where α is
the action map k → so(p) followed by the usual identifications so(p) ∼= ∧2p ↪→C(p) .
There are many applications of the Dirac operators in representation theory (see [2],
[4], [8], [10], [11], [9]).

The Dirac inequality is a very useful necessary condition for unitarity. More pre-
cisely, if a (g,K)-module is unitary, than D is a self adjoint with respect to an inner
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product, so D2 � 0. By the formula for D2 the Dirac inequality becomes explicit on
any K -type Fτ of L(λ )⊗S

‖τ + ρk‖2 � ‖λ + ρ‖2.

In [5] it was proved that L(λ ) is unitary if and only if D2 > 0 on Fμ ⊗
∧top p+ for

any K -type Fμ of L(λ ) other than Fλ , that is if and only if

‖μ + ρ‖2 > ‖λ + ρ‖2.

As we already said, it is difficult to determine the K -types of L(λ ) .

Table 1: ρ and Wk

Lie algebra ρ generators of Wk

sp(2n,R) (n,n−1, . . . ,2,1) sεi−ε j , 1 � i < j � n
so∗(2n) (n−1,n−2, . . . ,1,0) sεi−ε j , 1 � i < j � n

su(p,q) p � q,
` n−1

2 , n−3
2 , . . . , −n+3

2 , −n+1
2

´ sεi−ε j , 1 � i < j � p
or p+1 � i < j � n

so(2,2n−2) (n−1,n−2, . . . ,1,0) sεi±ε j , 2 � i < j � n

so(2,2n−1) (n− 1
2 ,n− 3

2 , . . . , 1
2 )

sεi±ε j , 2 � i < j � n,
sεi , 2 � i � n

Table 2: The weights of basic Schmid modules and the condition for the k -highest weights
λ = (λ1,λ2, . . . ,λn)

Lie algebra basic Schmid modules highest weights

sp(2n,R)
si = (2, . . . ,2| {z }

i

,0, . . . ,0),

i = 1, . . . ,n

λ1 � λ2 � . . . � λn,
λi−λ j ∈ Z,
1 � i, j � n

so∗(2n)
si = (1, . . . ,1| {z }

2i

,0, . . . ,0),

i = 1, . . . , [n/2]

λ1 � λ2 � . . . � λn,
λi−λ j ∈ Z,
1 � i, j � n

su(p,q) p � q,
si = (1, . . . ,1| {z }

i

,0, . . . ,0 |0, . . . ,0,−1, . . . ,−1| {z }
i

),

i = 1, . . . , p

λ1 � . . . � λp;
λp+1 � . . . � λn,

λi−λ j ∈ Z,
1 � i < j � p

or p+1 � i < j � n

so(2,2n−2)
s1 = (1,1,0, . . . ,0),
s2 = (2,0,0, . . . ,0)

λ2 � λ3 � . . . � λn−1 � |λn|,
λi−λ j ∈ Z, 2 � i, j � n

so(2,2n−1)
s1 = (1,1,0, . . . ,0),
s2 = (2,0,0, . . . ,0)

λ2 � λ3 � . . . � λn � 0,
λi −λ j ∈ Z and 2λi ∈ Z,

2 � i, j � n

The results of this paper provide examples for the following theorem:
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THEOREM 1.1. Let us assume that g,ρ ,λ ,s are as in tables 1 and 2.
(1) Let s0 be a Schmid module such that the strict Dirac inequality

‖(λ − s)+ + ρ‖2 > ‖λ + ρ‖2 (1.1)

holds for any Schmid module s of strictly lower level than s0 , and such that

‖(λ − s0)+ + ρ‖2 < ‖λ + ρ‖2.

Then L(λ ) is not unitary.
(2) If

‖(λ − s)+ + ρ‖2 > ‖λ + ρ‖2 (1.2)

holds for all Schmid modules s, then N(λ ) is irreducible and unitary.

In Theorem 1.1, (λ −s)+ is the unique k-dominant Wk -conjugate of λ −s , which
means (λ − s)+ is as in the third column of Table 2.

The proof of the above theorem requires some tools from representation theory, so
we will omit it in this paper and prove it in [14].

Another possible reason to provide this detailed study of the Dirac inequality is
that [5] prove a relationship between the norms of certain K -types in which the eigen-
value of the Dirac operator appears. Together with results of the current paper this
could be potentially used to study convergence of K -type decompositions / series in
the Hilbert spaces involved.

In Table 1, sα(λ ) = λ − 2〈λ ,α〉
〈α ,α〉 α is the reflection of λ with respect to the hyper-

plane orthogonal to a root α , Wk is the Weyl group of k generated by the sα .
Here λ and ρ are elements of t∗ which is identified with Cn , and εi denotes

the projection to the i-th coordinate. The roots are certain functionals on t∗ and the
relevant ones are those in the subscripts of the reflections s in Table 1, like εi − ε j or
εi + ε j .

The rest of this paper is devoted to analyzing the Dirac inequality (1.2) for various
choices of s . Our analysis will be case by case for the Lie algebras as in the above
tables but first we need two auxiliary results that are going to help us in each of the
cases.

2. Some technical lemmas

LEMMA 2.1. Let g be one of the Lie algebras listed in the above tables. Let μ
and ν be weights as in the last column of Table 2. Let w1,w2 ∈Wk . Then

‖(w1μ −w2ν)+ + ρ‖2 � ‖(μ −ν)+ + ρ‖2.

In Lemma 2.1, (w1μ −w2ν)+ is the unique dominant Wk -conjugate of w1μ −
w2ν , which means (w1μ −w2ν)+ is as in the third column of Table 2. The proof
requires some representation theory and we leave it for [14].

In the computations needed to prove the Dirac inequality, we will repeatedly use
the following elementary lemma.
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LEMMA 2.2. Let μ and ν be two n-tuples with strictly decreasing coordinates
and let ρ be as in Table 1.

(1) Suppose there are u,v, 1 � u < v � n, such that

μu = νu, . . . ,μv−1 = νv−1; μv < νv.

Let μ ′,ν ′ be obtained from μ ,ν by moving the v-th coordinate to the u-th place and
shifting the coordinates in between to the right, i.e.,

μ ′ = (μ1, . . . ,μu−1,μv,μu, . . . ,μv−1,μv+1, . . . ,μn)

and likewise for ν ′ . Then

‖μ + ρ‖2−‖ν + ρ‖2 > ‖μ ′ + ρ‖2−‖ν ′ + ρ‖2. (2.1)

(2) Suppose there are u,v, 1 � u < v � n, such that

μu > νu; μu+1 = νu+1, . . . ,μv = νv.

Let μ ′,ν ′ be obtained from μ ,ν by moving the u-th coordinate to the v-th place and
shifting the coordinates in between to the left, i.e.,

μ ′ = (μ1, . . . ,μu−1,μu+1, . . . ,μv,μu,μv+1, . . . ,μn)

and likewise for ν ′ . Then

‖μ + ρ‖2−‖ν + ρ‖2 > ‖μ ′ + ρ‖2−‖ν ′ + ρ‖2. (2.2)

(3) Let μ be a n-tuple, such that for some s,t � 1 and for some u between 1 and
n− s− t ,

μ = (μ1, . . . ,μu,x+1︸︷︷︸
s

, x︸︷︷︸
t

,μu+s+t+1, . . . ,μn).

Let
μ ′ = (μ1, . . . ,μu, x︸︷︷︸

t

,x+1︸︷︷︸
s

,μu+s+t+1, . . . ,μn).

Then
‖μ + ρ‖2 > ‖μ ′ + ρ‖2

Proof. (1) The difference of the two sides of (2.1) is

[(μv + ρv)2− (νv + ρv)2]− [(μv + ρu)2 − (νv + ρu)2]
= (μv −νv)(μv + νv +2ρv)− (μv−νv)(μv + νv +2ρu)
= (μv −νv)(2ρv−2ρu)
= 2(νv − μv)(ρu −ρv).

Since νv > μv by assumption, and since ρu > ρv , the claim follows.
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The proof of (2) is analogous to the proof of (1).

(3) We prove the required inequality by successively switching pairs x+ 1, x as
follows. Let

μ ′′ = (μ1, . . . ,μu,x,x+1︸︷︷︸
s−1

, x︸︷︷︸
t−1

,x+1,μu+s+t+1, . . . ,μn).

Then we see, factoring the differences of squares, that

‖μ + ρ‖2−‖μ ′′+ ρ‖2

= (x+1+ ρu+1)2− (x+ ρu+1)2 +(x+ ρu+s+t)2 − (x+1+ ρu+s+t)2

= (2x+1+2ρu+1)− (2x+1+2ρu+s+t)
= 2(ρu+1−ρu+s+t) > 0.

Now we continue with the next pair until we reach μ ′ . The claim follows. �

3. Dirac inequalities

3.1. Dirac inequality for sp(2n,R) , n � 1

The basic Schmid k-submodules of S(p−) have lowest weights −si , where

si = (2, . . . ,2︸ ︷︷ ︸
i

,0, . . . ,0), i = 1, . . . ,n.

The highest weight (g,K)-modules have highest weight of the form λ = (λ1,λ2, . . . ,λn) ,
where λi−λ j ∈ N0, i > j . Here N0 denotes the set consisting of all non-negative inte-
gers.

In this case ρ = (n,n−1, . . . ,2,1). The basic necessary condition for unitarity is
the Dirac inequality

‖(λ − s1)+ + ρ‖2 � ‖λ + ρ‖2. (3.1)

To understand this inequality better, let q � r be integers in [1,n] such that

λ = (λ1, . . . ,λ1︸ ︷︷ ︸
q

,λ1−1, . . . ,λ1−1︸ ︷︷ ︸
r−q

,λr+1, . . . ,λn), (3.2)

with λ1−2 � λr+1 � . . . � λn . Then

(λ − s1)+ = (λ1, . . . ,λ1︸ ︷︷ ︸
q−1

,λ1−1, . . . ,λ1 −1︸ ︷︷ ︸
r−q

,λ1−2,λr+1, . . . ,λn) = λ − (εq + εr).

The inequality (3.1) now becomes equivalent to ‖λ + ρ − γ‖2 � ‖λ + ρ‖2 , or to

2〈λ + ρ ,εq + εr〉 � ‖γ‖2,
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where γ = εq +εr . If q �= r , then λq = λ1 , λr = λ1−1 and ‖γ‖2 = 2, and the inequality
becomes

λ1 � −n+
r+q

2
. (3.3)

If q = r , then λq = λr = λ1 and ‖γ‖2 = 4, and the inequality is again (3.3).
Now we are going to see in which cases the Dirac inequality holds for si, i ∈

{2, . . . ,n} . We start by examining what happens for the first q basic Schmid modules
s = s1, . . . ,sq . We have

(λ − si)+ = ( λ1︸︷︷︸
q−i

,λ1−1︸ ︷︷ ︸
i

,λ1 −1︸ ︷︷ ︸
r−q−i

,λ1−2︸ ︷︷ ︸
i

,λr+1, . . . ,λn)

λ = ( λ1︸︷︷︸
q−i

, λ1︸︷︷︸
i

,λ1−1︸ ︷︷ ︸
r−q−i

,λ1−1︸ ︷︷ ︸
i

,λr+1, . . . ,λn),

so
‖(λ − si)+ + ρ‖2 � ‖λ + ρ‖2, (3.4)

is equivalent to non-negativity of

q∑
u=q−i+1

[
(λ1−1+ ρu)2 − (λ1 + ρu)2]+

r∑
v=r−i+1

[
(λ1−2+ ρv)2 − (λ1−1+ ρv)2] ,

where ρu = n−u+1, ρv = n− v+1. Factoring the differences of squares this expres-
sion becomes

−
q∑

u=q−i+1

(2λ1−1+2ρu)−
r∑

v=r−i+1

(2λ1−3+2ρv)

= −i(2λ1−1)−2[(n−q+ i)+ . . .+(n−q+1)]− i(2λ1−3)
−2[(n− r+ i)+ . . .+(n− r+1)]

= −4iλ1 +4i−2i(n−q)−2i(n− r)−4(i+ . . .+1)
= −2i(2λ1 +2n−2−q− r)−2i(i+1).

Dividing by (−2i) , we see that (3.4) is equivalent to

2λ1 +2n−2−q− r+ i+1� 0,

or

λ1 � −n+
r+q− i+1

2
. (3.5)

Moreover, it is clear from the above argument that (3.4) holds strictly if and only if (3.5)
holds strictly. Note also that for i = 1, (3.5) is exactly our basic inequality (3.3), while
for i = q we get

λ1 � −n+
r+1

2
.
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THEOREM 3.1. Let λ be as in (3.2). Then:

1. If for some integer i ∈ [1,q]

λ1 < −n+
r+q− i+1

2
,

then the Dirac inequality holds strictly for any Schmid module s = (2b1, . . . ,2bn) ,
b j ∈ Z , b1 � · · · � bn � 0 with at most i nonzero components, i.e.

‖(λ − s)+ + ρ‖2 > ‖λ + ρ‖2. (3.6)

2. If

λ1 < −n+
r+1

2
,

then the Dirac inequality holds strictly for any Schmid module s.

Proof. Let
s = (2b1, . . . ,2b j,0, . . . ,0), j � i. (3.7)

If s = s j is a basic Schmid module, then we have already seen that strict (3.4) holds
for s , because strict (3.4) holds by assumption. So let us assume that s is not a basic
Schmid module, i.e., b1 � 2. We will show how to reduce the claim to the same claim
for s′ with smaller b1 and then use induction.

Let k , 1 � k � j , be such that b1 = . . . = bk > bk+1 ; so

s = (2b1, . . . ,2b1︸ ︷︷ ︸
k

,2bk+1 . . . ,2b j,0, . . . ,0).

Let
s′ = s− sk = (2b1−2, . . . ,2b1−2︸ ︷︷ ︸

k

,2bk+1 . . . ,2b j,0, . . . ,0).

We claim that
‖(λ − s)+ + ρ‖2 � ‖(λ − s′)+ + ρ‖2. (3.8)

If we prove this, then we can do induction on b1 and conclude that (3.4) holds strictly
for all s as in (3.7) (b1 = 1 corresponds to s = s j , the case already handled).

To prove (3.8), we first note that

(λ − s)+ = ( λ1︸︷︷︸
q− j

,λ1−1︸ ︷︷ ︸
r−q

,λ1−2b j, . . . ,λ1−2bk+1,λ1−2b1︸ ︷︷ ︸
k

,λr+1, . . . ,λn)+;

(λ − s′)+ = ( λ1︸︷︷︸
q− j

,λ1−1︸ ︷︷ ︸
r−q

,λ1−2b j, . . . ,λ1−2bk+1,λ1−2b1 +2︸ ︷︷ ︸
k

,λr+1, . . . ,λn)+,

where the first r coordinates in each expression are already arranged in descending
order, and λr+1, . . . ,λn have to be put into proper places.
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By Lemma 2.2, to prove (3.8) it is enough to prove

‖η + ρ‖2 � ‖η ′ + ρ‖2, (3.9)

where

η = ( λ1︸︷︷︸
q− j

,λ1−1︸ ︷︷ ︸
r−q

,λ1 −2b j, . . . ,λ1 −2bk+1,λ1−2b1︸ ︷︷ ︸
k

,λr+1, . . . ,λn);

η ′ = ( λ1︸︷︷︸
q− j

,λ1−1︸ ︷︷ ︸
r−q

,λ1 −2b j, . . . ,λ1−2bk+1,λ1−2b1 +2︸ ︷︷ ︸
k

,λr+1, . . . ,λn).

In more detail, to see that (3.8) follows from (3.9), we first use Lemma 2.2(3) to
move the coordinates λ1 − 2b1 of (λ − s)+ to the left past those of λr+1, . . . ,λn that
are equal to λ1 − 2b1 + 1. Now the coordinates λ1 − 2b1 of (λ − s)+ are positioned
exactly above the coordinates λ1−2b1+2 of (λ − s′)+ , and we can use Lemma 2.2(1)
to move these coordinates simultaneously to the left of those of λr+1, . . . ,λn that are
� λ1−2b1 +2.

To prove (3.9), we compute factoring the differences of squares,

‖η + ρ‖2−‖η ′+ ρ‖2 =
r∑

j=r−k+1

[(λ1−2b1 + ρ j)2 − (λ1−2b1 +2+ ρ j)2]

=
r∑

j=r−k+1

(−2)(2λ1−4b1 +2+2ρ j)

= −2k(2λ1−4b1 +2)−4[(n− r+ k)+ . . .+(n− r+1)]
= −2k(2λ1−4b1 +2+2n−2r+ k+1).

This expression is positive if and only if

2λ1 +2n−4b1−2r+ k+3 < 0. (3.10)

Since by assumption

λ1 < −n+
r+q− i+1

2
,

and since b1 � 2, we see that (3.10) will follow if we prove

r+q− i+1−8−2r+ k+3< 0,

or
−r+q− i+ k−4< 0.

The last inequality is however obvious since q � r and k � i .
So we have proved (3.9), and as explained above, this finishes the proof of Theo-

rem 3.1(1).
We now prove Theorem 3.1(2). If we take i = q in the already proved Theorem

3.1(1), we see that (3.6) holds strictly for all s having at most q nonzero components.
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Assume now that q < r , and that

s = (2b1, . . . ,2bi,0, . . . ,0), bi � 1, q < i � r. (3.11)

Let s′ = (s− sq)+ and let λ ′ = (λ − sq)+ , where sq is the q th basic Schmid module.
We claim that

‖(λ − s)+ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2 (3.12)

and that
‖λ + ρ‖2 < ‖λ ′+ ρ‖2. (3.13)

If we prove these two inequalities, then it follows that

‖(λ − s)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ ′ − s′)+ + ρ‖2−‖λ ′+ ρ‖2, (3.14)

so the strict inequality (3.6) for λ and s will follow if we can prove the strict (3.6) for
λ ′ and s′ .

Since
λ ′ = (λi−1︸ ︷︷ ︸

r−q

,λi−2︸ ︷︷ ︸
q

,λr+1, . . . ,λn),

the analogue r′ of r for λ ′ satisfies r′ � r . Moreover,

λ ′
1 = λ1−1 < λ1 < −n+

r+1
2

� −n+
r′ +1

2
.

Furthermore, the analogue q′ of q for λ ′ satisfies q′ = r− q < r � r′ , and the
number of nonzero coordinates of s′ is � i � r′ . Also, the sum of coordinates of s′
is smaller than the sum of coordinates of s , and as we keep reducing as above, the
number of nonzero coordinates will also become smaller. So we can use induction and
keep reducing s until we come to the situation i � q , which we already handled. Thus
to prove Theorem 3.1(2) for s as in (3.11), it suffices to prove (3.12) and (3.13).

To prove (3.12), we apply Lemma 2.1 as follows. Let

μ = λ ′ = (λ − sq)+, ν = s′ = (s− sq)+.

Let w1,w2 ∈Wk be such that λ −sq = w1μ and s−sq = w2ν . Then Lemma 2.1 implies

‖(λ − s)+ + ρ‖2 = ‖(w1μ −w2ν)+ + ρ‖2 � ‖(μ −ν)+ + ρ‖2 = ‖(λ ′ − s′)+ + ρ‖2,

and this is exactly (3.12).
To prove (3.13), we compute

‖λ + ρ‖2−‖λ ′+ ρ‖2

=
q∑

j=1

(λ1 + ρ j)2 +
r∑

j=q+1

(λ1−1+ ρ j)2 −
r−q∑
j=1

(λ1−1+ ρ j)2−
r∑

j=r−q+1

(λ1−2+ ρ j)2
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= qλ 2
1 +

q∑
j=1

(2λ1ρ j + ρ2
j )+ (r−q)(λ1−1)2 +

r∑
j=q+1

[2(λ1−1)ρ j + ρ2
j ]

− (r−q)(λ1−1)2−
r−q∑
j=1

[2(λ1−1)ρ j + ρ2
j ]−q(λ1−2)2−

r∑
j=r−q+1

[2(λ1−2)ρ j + ρ2
j ]

= q[λ 2
1 − (λ1−2)2]−2

r∑
j=q+1

ρ j +2
r−q∑
j=1

ρ j +4
r∑

j=r−q+1

ρ j

= q(4λ1−4)−2
r∑

j=q+1

ρ j +2
r∑

j=1

ρ j +2
r∑

j=r−q+1

ρ j

= 4q(λ1−1)+2
q∑

j=1

ρ j +2
r∑

j=r−q+1

ρ j

= 4q(λ1−1)+ [2q(n−q)+2(q+ . . .+1)]+ [2q(n− r)+2(q+ . . .+1)]
= 2q[(2λ1−2)+ (n−q)+ (n− r)+(q+1)]= 2q(2λ1 +2n− r−1).

Since λ1 <−n+ r+1
2 , the last expression is clearly < 0, and this implies (3.13). So we

have proved Theorem 3.1(2) for s as in (3.11).
Finally, suppose that r < n and that

s = (2b1, . . . ,2bi,0, . . . ,0), bi � 1, i > r. (3.15)

Let s′ = s−2εi and let λ ′ = (λ −2εi)+ . We claim that

‖(λ − s)+ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2 (3.16)

and that
‖λ + ρ‖2 � ‖λ ′+ ρ‖2. (3.17)

These two equations imply that

‖(λ − s)+ + ρ‖2−‖λ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2−‖λ ′+ ρ‖2.

Moreover, since λ ′ has the same r as λ , and also λ ′
1 = λ1 , we have λ ′

1 < −n+ r′+1
2 .

Now we can use induction and keep decreasing the last nonzero coordinate of s until we
come to the situation i � r . In this case, we already proved the strict Dirac inequality.
So it suffices to prove (3.16) and (3.17).

To prove (3.16), we use Lemma 2.1. Namely, we set μ = λ ′ and ν = s′ , and
choose w ∈Wk such that wμ = λ −2εi . Then Lemma 2.1 for w1 = w , w2 = 1 implies

‖(λ −2εi− s′)+ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2.

This is equivalent to (3.16) because clearly λ −2εi− s′ = λ − s .
To prove (3.17), we first note that

λ ′ = (λ −2εi)+ = λ − ε j − εk
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for some j,k satisfying i � j � k � n . So (3.17) becomes

‖λ + ρ‖2 � ‖λ + ρ − (ε j + εk)‖2 = ‖λ + ρ‖2−2〈λ + ρ ,ε j + εk〉+‖ε j + εk‖2,

and this is equivalent to

2〈λ + ρ ,ε j + εk〉 � ‖ε j + εk‖2.

We claim that in fact the left side of the last inequality is negative, i.e., that

λ j + λk + ρ j + ρk < 0.

Since λ j and λk are both � λ1 − 2, and since ρ j and ρk are both � n− r (because
j,k � r ), it is enough to prove that

2λ1−4+2n−2r < 0.

By assumption, λ is in the continuous part of its line, i.e., 2λ +2n < r +1, so the last
inequality is obvious. This finishes the proof of Theorem 3.1(2). �

3.2. Dirac inequality for so∗(2n) , n � 4

The basic Schmid k-submodules of S(p−) have lowest weights −si , where

si = (1, . . . ,1︸ ︷︷ ︸
2i

,0, . . . ,0), i = 1, . . . , [n/2].

Moreover, all irreducible k-submodules of S(p−) have lowest weights −s , where

s = (b1,b1,b2,b2, . . . ,b j,b j,0, . . . ,0) (3.18)

for some j , 1 � j � [n/2] , and some positive integers b1 � b2 � . . . � b j .
The highest weight (g,K)-modules have highest weights of the form

λ = (λ1,λ2, . . . ,λn), λ1 � λ2 � . . . � λn, λi−λ j ∈ Z, 1 � i, j � n.

In this case ρ = (n−1,n−2, . . .,1,0).
The basic necessary condition for unitarity is, as before, the Dirac inequality

‖(λ − s1)+ + ρ‖2 � ‖λ + ρ‖2. (3.19)

To make this inequality more precise, we as before write

(λ − s1)+ = λ − γ.

Then (3.19) becomes
‖λ − γ + ρ‖2 � ‖λ + ρ‖2,

and since ‖γ‖2 = 2, this is equivalent to

〈λ + ρ ,γ〉� 1.
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There are two basic cases:

Case 1: λ1 > λ2 . Let q ∈ [2,n] be such that λ2 = . . . = λq and, in case q < n ,
λq > λq+1 . Then γ = ε1 + εq , and since λq = λ2 , the basic inequality becomes

λ1 + λ2 � −2n+q+2. (3.20)

Case 2: λ1 = λ2 . Let p ∈ [2,n] be such that λ1 = λ2 = . . . = λp and, in case
p < n , λp > λp+1 . Then γ = εp−1 +εp , and since λp−1 = λp = λ1 , the basic inequality
becomes

λ1 � −n+ p. (3.21)

THEOREM 3.2. Let λ be as in Case 1, and suppose that (3.20) holds strictly. Let
s �= 0 be as in (3.18). Then

‖(λ − s)+ + ρ‖2 > ‖λ + ρ‖2.

To prove the theorem, assume first that 2 j � q . Let k � j be the largest integer
such that b1 = . . . = bk . Let

s′ = (b1−1, . . . ,b1−1︸ ︷︷ ︸
2k

,bk+1,bk+1, . . . ,b j,b j,0, . . . ,0).

We claim that
‖(λ − s)+ + ρ‖2 > ‖(λ − s′)+ + ρ‖2.

The claim implies the theorem for 2 j � q by induction on b1 + . . .+b j .
To prove the claim, we first note that (λ − s)+ and (λ − s′)+ both contain coordi-

nates
λ2, . . . ,λ2︸ ︷︷ ︸

q−2 j

,λ2 −b j, . . . ,λ2−bk+1,λq+1, . . . ,λn.

The remaining coordinates of (λ − s)+ are

λ1−b1,λ2−b1, . . . ,λ2−b1︸ ︷︷ ︸
2k−1

,

while the remaining coordinates of (λ − s′)+ are

λ1−b1 +1,λ2−b1 +1, . . . ,λ2−b1 +1︸ ︷︷ ︸
2k−1

.

Using Lemma 2.2 (1), we can move the equal coordinates to the right. We use that
to move λq+1, . . . ,λn all the way to the right, and to move those of λ2, . . . ,λ2,λ2 −
b j, . . . ,λ2−bk+1 that are left of λ1−b1 to the right of λ1−b1 . Note that λ2, . . . ,λ2,λ2−
b j, . . . ,λ2−bk+1 are left of λ2−b1 or λ2−b1 +1 and we leave them in this position.
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Thus we conclude that it is enough to prove that

‖μ + ρ‖2 > ‖ν + ρ‖2, (3.22)

where

μ = (λ1−b1, λ2︸︷︷︸
q−2 j

,λ2−b j, . . . ,λ2−bk+1,λ2 −b1︸ ︷︷ ︸
2k−1

,λq+1, . . . ,λn);

ν = (λ1−b1 +1, λ2︸︷︷︸
q−2 j

,λ2−b j, . . . ,λ2−bk+1,λ2−b1 +1︸ ︷︷ ︸
2k−1

,λq+1, . . . ,λn).

Proving (3.22) is equivalent to proving that the expression

[(λ1−b1 + ρ1)2 − (λ1−b1 +1+ ρ1)2]+ [(λ2−b1 + ρq−2k+2)2

− (λ2−b1 +1+ ρq−2k+2)2]+ . . .+[(λ2−b1 + ρq)2− (λ2−b1 +1+ ρq)2]

is positive. Factoring each difference of squares, we see this is equivalent to the expres-
sion

(2λ1−2b1 +1+2ρ1)+ (2λ2−2b1 +1+2ρq−2k+2)+ . . .+(2λ2−2b1 +1+2ρq)

being negative. Dividing by two and simplifying we see that we should prove

λ1 +(2k−1)λ2−2kb1 + k+ ρ1 + ρq−2k+2 + . . .+ ρq < 0. (3.23)

We compute

ρq−2k+2 + . . .+ ρq = (n−q+2k−2)+ . . .+(n−q)
= (2k−1)(n−q)+1+2+ . . .+(2k−2)
= (2k−1)(n−q)+ (k−1)(2k−1).

On the other hand, since (3.20) holds strictly for λ and since λ1 > λ2 , we see that

λ1 +(2k−1)λ2 < k(λ1 + λ2) < k(−2n+q+2).

Thus we see that to prove (3.23) it is enough to prove that

k(−2n+q+2)−2kb1+ k+n−1+(2k−1)(n−q)+(k−1)(2k−1)� 0.

Simplifying and taking into account that b1 � 1, we see that the last inequality follows
if we prove

(q−2k)(−k+1) � 0,

but this is obvious since 2k � 2 j � q and since k � 1.
It remains to prove the theorem when 2 j > q . In that case we set

λ ′ = (λ − s j)+; s′ = s− s j.
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We are going to prove

‖(λ − s)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ ′ − s′)+ + ρ‖2−‖λ ′+ ρ‖2. (3.24)

This implies that the statement of the theorem holds for λ and s if it holds for λ ′ and
s′ . On the other hand, since λ ′ starts with coordinates

λ1−1,λ2−1, . . . ,λ2−1︸ ︷︷ ︸
q−1

,

we see that λ ′
1 < λ1 , λ ′

2 < λ2 and q′ � q , so (3.20) holds strictly for λ ′ . Now if
2 j′ � q′ we already proved the theorem for λ ′ and s′ , and if 2 j′ > q′ we note that s′
has last coordinate lower than s and so we can assume the theorem holds for λ ′ and s′
by induction.

To prove (3.24), we first note that Lemma 2.1 immediately implies

‖(λ − s)+ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2,

by setting μ = λ ′ and ν = s′ , and picking w1 such that λ − s j = w1μ and w2 = 1. So
it is enough to prove that

‖λ + ρ‖2 < ‖λ ′+ ρ‖2. (3.25)

The difference ‖λ + ρ‖2−‖λ ′+ ρ‖2 is the sum of expressions

(λi + ρi)2− (λi−1+ ρi)2 = 2λi−1+2ρi,

where i runs over 1,2, . . . ,q and over some 2 j− q values greater than q . For i > q ,
we use the strict (3.20) and λ1 > λ2 to conclude

2λi−1+2ρi < 2λ2−1+2ρq < (−2n+q+2)−1+2n−2q= −q+1 < 0.

Furthermore, we claim that

q∑
i=1

(2λi−1+2ρi) = 2λ1 +(2q−2)λ2−q+2(ρ1 + . . .+ ρq)

is also negative; this will then imply (3.25). Using the strict (3.20) and λ1 > λ2 , we see
that

2λ1 +(2q−2)λ2 < q(λ1 + λ2) < q(−2n+q+2)= −2qn+q2+2q.

On the other hand,

2(ρ1 + . . .+ ρq) = 2qn−2(1+ . . .+q) = 2qn−q(q+1).

So
q∑

i=1

(2λi−1+2ρi) < (−2nq+q2 +2q)−q+(2qn−q2−q) = 0.

This finishes the proof of Theorem 3.2.
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We now turn to Case 2, i.e.,

λ = (λ1, . . . ,λ1︸ ︷︷ ︸
p

,λp+1, . . . ,λn)

for some p ∈ [2,n] , with λ1 > λp+1 if p < n . Besides the basic inequality (3.21), we
also examine when

‖(λ − si)+ + ρ‖2 � ‖λ + ρ‖2 (3.26)

for a basic Schmid module si with 2i � p . Since (λ − si)+ = λ − (εp−2i+1 + . . .+εp) ,
(3.26) is equivalent to

2〈λ + ρ ,εp−2i+1 + . . .+ εp〉 � ‖εp−2i+1 + . . .+ εp‖2 = 2i. (3.27)

Furthermore,

〈λ + ρ ,εp−2i+1 + . . .+ εp〉 = 2iλ1 +2i(n− p)+ (1+ . . .+(2i−1))

= 2i

(
λ1 +n− p+ i− 1

2

)
.

We substitute this into (3.27) and divide the resulting inequality by 4i . It follows that
(3.26) is equivalent to

λ1 � −n+ p− i+1. (3.28)

In particular, for i = 1 this is the basic inequality (3.21).

THEOREM 3.3. Let λ be in Case 2, i.e.,

λ = (λ1, . . . ,λ1︸ ︷︷ ︸
p

,λp+1, . . . ,λn)

for some p ∈ [2,n] , with λ1 > λp+1 if p < n. Then:

1. If for some integer i ∈ [1, [ p
2 ]]

λ1 < −n+ p− i+1,

then the inequality
‖(λ − s)+ + ρ‖2 > ‖λ + ρ‖2 (3.29)

holds for any Schmid module s with at most 2i nonzero components.

2. If

λ1 < −n+ p−
[p
2

]
+1 = −n+

[
p+1

2

]
+1, (3.30)

then (3.29) holds strictly for any Schmid module s.
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Proof. (1) Let i ∈ [1, [ p
2 ]] be an integer such that

λ1 < −n+ p− i+1, (3.31)

and let
s = (b1,b1, . . . ,b j,b j,0, . . . ,0)

with j � i and b1 � . . . � b j > 0.
We need to show that (3.29) holds strictly for λ and s .
Let k ∈ [1, j] be such that

b1 = . . . = bk > bk+1.

Let s′ = s− sk . It is enough to prove

‖(λ − s)+ + ρ‖2 > ‖(λ − s′)+ + ρ‖2; (3.32)

the statement then follows by induction on b1 . (If b1 = 1, then s′ = 0, and (3.32) is
the same as the strict (3.29).)

We first note that (λ − s)+ contains coordinates

λ1, . . . ,λ1︸ ︷︷ ︸
p−2 j

,λ1−bi, . . . ,λ1 −bk+1︸ ︷︷ ︸
2 j−2k

,λ1−b1, . . . ,λ1−b1︸ ︷︷ ︸
2k

in that order, and then also λp+1, . . . ,λn , which may be interlaced with these coordi-
nates. Similarly, (λ − s′)+ contains coordinates

λ1, . . . ,λ1︸ ︷︷ ︸
p−2 j

,λ1 −bi, . . . ,λ1 −bk+1︸ ︷︷ ︸
2 j−2k

,λ1−b1 +1, . . . ,λ1−b1 +1︸ ︷︷ ︸
2k

in that order, and then also λp+1, . . . ,λn , which may be interlaced with these coordi-
nates.

Using Lemma 2.2 (1), we may assume that λp+1, . . .λn are all the way to the right
in both (λ − s)+ and (λ − s′)+ . Thus it suffices to show that

p∑
r=p−2k+1

[
(λ1−b1 + ρr)2 − (λ1−b1 +1+ ρr)2] > 0.

By factoring differences of squares, this is equivalent to

p∑
r=p−2k+1

(2λ1−2b1 +1+2ρr) < 0. (3.33)

Since
p∑

r=p−2k+1

ρr = (n− p+2k−1)+ . . .+(n− p)

= 2k(n− p−1)+ (2k+ . . .+1) = 2k(n− p−1)+ k(2k+1),
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(3.33) is equivalent to

2k(2λ1−2b1 +1)+4k(n− p−1)+2k(2k+1)< 0,

which upon dividing by 4k becomes

λ1−b1 +n− p+ k < 0.

Since b1 � 1 and since k � j � i , this follows from our assumption (3.31). This finishes
the proof of (1).

(2) If s has at most p nonzero components, then the statement follows from (1)
by specializing to i = [ p

2 ] . So we can assume that

s = (b1,b1, . . . ,bi,bi,0, . . . ,0),

with 2i > p .
Let λ ′ = (λ − si)+ . Then λ ′

1, . . . ,λ
′
p are all equal to λ1−1, while for r > p , λ ′

r
is equal to either λr or λr −1. In particular, λ ′ is still in Case 2, with p′ � p and with
λ ′

1 = λ1−1, and so we have

λ ′
1 < −n+

[
p′ +1

2

]
+1.

We claim that

‖(λ − s)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ ′ − s′)+ + ρ‖2−‖λ ′+ ρ‖2. (3.34)

If we prove (3.34), then we can use induction. Namely s′ either has at most p and
hence at most p′ nonzero coordinates, so the statement is true by Theorem 3.3 (1), or
we can use the fact that the first coordinate b′1 of s′ is strictly smaller than the first
coordinate b1 of s and do induction on b1 . (As before, if b1 = 1, then s′ = 0 and
(3.34) is the same as the strict (3.29).)

To prove (3.34), we first note that

‖(λ − s)+ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2.

This follows from Lemma 2.1, if we set μ = λ ′ , ν = s′ and w2 = 1, and pick w1 such
that λ − si = w1λ ′ . It thus suffices to prove that

‖λ + ρ‖2 < ‖λ ′+ ρ‖2. (3.35)

To prove (3.35), we note that ‖λ + ρ‖2 −‖λ ′ + ρ‖2 is the sum of expressions of the
form

(λr + ρr)2 − (λr −1+ ρr)2 = 2λr −1+2ρr,

with summation over r = 1, . . . , p and over some r > p . Note that since 2i > p , there
is at least one summand with r > p .
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Since λ1, . . . ,λr are all equal to λ1 , and since

p∑
r=1

ρr = (n−1)+ . . .+(n− p) = pn− p(p+1)
2

,

we see that

p∑
r=1

(2λr −1+2ρr) = 2pλ1− p+2pn− p(p+1)= p(2λ1−2+2n− p).

Since λ satisfies (3.30), it follows that

p∑
r=1

(2λr −1+2ρr) < p
[(

−2n+2p−2
[p
2

]
+2

)
−2+2n− p

]

= p
(

p−2
[ p
2

])
� p. (3.36)

On the other hand, for any r > p we have

λr � λ1−1 < −n+ p−
[p
2

]
,

and ρr � ρp+1 = n− p−1. It follows that

2λr −1+2ρr < −2n+2p−2
[p
2

]
−1+2(n− p−1)= −2

[ p
2

]
−3 < −p. (3.37)

Since ‖λ +ρ‖2−‖λ ′ +ρ‖2 is the sum of expressions 2λr −1+2ρr over r = 1, . . . , p
and over some (at least one) r > p , we see from (3.36) and (3.37) that

‖λ + ρ‖2−‖λ ′+ ρ‖2 < p− p = 0,

as claimed. �

3.3. Dirac inequality for su(p,q) , p � q , p � 1 , q � 1

The basic Schmid k-submodules of S(p−) have lowest weights −si , where

si = (1, . . . ,1︸ ︷︷ ︸
i

,0, . . . ,0 |0, . . . ,0,−1, . . . ,−1︸ ︷︷ ︸
i

)

for i = 1, . . . , p . Moreover, all irreducible k-submodules of S(p−) have lowest weights
−s , where

s = (b1, . . . ,bp |0, . . . ,0,−bp, . . . ,−b1), (3.38)

where b1 � . . . � bp � 0 are integers.
The highest weight (g,K)-modules have highest weights of the form

λ = (λ1, . . . ,λp |λp+1, . . . ,λn),
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where components λ1, . . . ,λn satisfy

λ1 � . . . � λp; λp+1 � . . . � λn,

and λi−λ j is an integer for any i, j ∈ {1, . . . , p} or i, j ∈ {p+1, . . . ,n} .
In this case ρ = 1

2 (n−1,n−3, . . .,−n+3,−n+1).
The basic necessary condition for unitarity is, as before, the Dirac inequality

‖(λ − s1)+ + ρ‖2 � ‖λ + ρ‖2. (3.39)

To understand this inequality better, let p′ � p and q′ � q be the maximal positive
integers such that

λ1 = . . . = λp′ and λn−q′+1 = . . . = λn.

Then
(λ − s1)+ = λ − (εp′ − εn−q′+1).

The inequality (3.39) now becomes equivalent to ‖λ +ρ − γ‖2 � ‖λ +ρ‖2 , or to
2〈λ +ρ ,γ〉� ‖γ‖2 = 2, or to 〈λ +ρ ,εp′ −εn−q′+1〉� 1. Since λp′ = λ1 , λn−q′+1 = λn ,
and since ρp′ −ρn−q′+1 = n−q′+1− p′ , we see that (3.39) is equivalent to

λ1−λn � −n+ p′+q′. (3.40)

As in the other cases, we start by examining the condition on λ which ensures
that the Dirac inequality

‖(λ − si)+ + ρ‖2 � ‖λ + ρ‖2 (3.41)

holds, where i = 1, . . . ,min(p′,q′) . We already know that for i = 1 this is just the basic
inequality (3.39), or equivalently (3.40).

To examine when (3.41) holds, we first note that

(λ − si)+ = λ − ti, where ti = (εp′−i+1 + . . .+ εp′)− (εn−q′+1 + . . .+ εn−q′+i).

Since ‖ti‖2 = 2i , it follows that (3.41) is equivalent to

〈λ + ρ ,ti〉 � i. (3.42)

We note that λp′−i+1, . . . ,λp′ are all equal to λ1 while λn−q′+1, . . . ,λn−q′+i are all equal
to λn , and that ρp′−i+ j −ρn−q′+ j = n− p′ −q′+ i for any j ∈ [1, i] . Plugging this into
(3.42) and dividing by i , we see that (3.42) (and hence (3.41)) is equivalent to

λ1−λn � −n+ p′+q′ − i+1. (3.43)

THEOREM 3.4. Let

λ = (λ1, . . . ,λ1︸ ︷︷ ︸
p′

,λp′+1, . . . ,λp |λp+1, . . . ,λn−q′ ,λn, . . . ,λn︸ ︷︷ ︸
q′

).

Then:
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1. If λ satisfies (3.43) strictly for some integer i ∈ [1,min(p′,q′)] , then the inequal-
ity

‖(λ − s)+ + ρ‖2 � ‖λ + ρ2‖ (3.44)

holds strictly for any Schmid module

s = (b1, . . . ,b j,0, . . . ,0 |0, . . . ,0,−b j, . . . ,−b1) (3.45)

with j � i .

2. If

λ1−λn < −n+ p′+q′ −min(p′,q′)+1 = −n+max(p′,q′)+1, (3.46)

then (3.44) holds strictly for any Schmid module s.

Proof. Both parts of the theorem follow from the following discussion. Let s be
any Schmid module:

s = (b1, . . . ,bp | −bq, . . . ,−bp+1,−bp, . . . ,−b1)

where b1 � . . . � bp � 0 are integers, not all of them zero, and bp+1 = . . . = bq = 0.
Let k ∈ [1, p] be the maximal integer such that b1 = . . . = bk , and define

s′ = s− sk = (b1−1︸ ︷︷ ︸
k

,bk+1, . . . ,bp | −bq, . . . ,−bk+1,−b1 +1︸ ︷︷ ︸
k

).

For both parts of the theorem, it will suffice to prove

‖(λ − s)+ + ρ‖2 > ‖(λ − s′)+ + ρ‖2. (3.47)

The statements then follow by induction on b1 ; if b1 = 1, then s′ = 0, and (3.47) is the
same as the strict (3.44).

To prove (3.47), we examine separately the two sides of all expressions involved,
the left respectively right side (of the bar).

If k � p′ , the left side of (λ − s)+ contains coordinates

λ1−bp′, . . . ,λ1−bk+1︸ ︷︷ ︸
p′−k

,λ1−b1, . . . ,λ1−b1︸ ︷︷ ︸
k

(3.48)

in that order, and also λp′+1 − bp′+1, . . . ,λp − bp , arranged in descending order and
appropriately interlaced with the coordinates (3.48).

On the other hand, the left side of (λ − s′)+ contains the same coordinates, except
that it contains k coordinates equal to λ1 − b1 + 1 in place of k coordinates equal to
λ1−b1 .

Using a version of Lemma 2.2, we may assume that λp′+1−bp′+1, . . . ,λp−bp are
all the way to the right in the left sides of both (λ − s)+ and (λ − s′)+ .
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Thus the contribution of the left sides to ‖(λ − s)+ + ρ‖2−‖(λ − s′)+ + ρ‖2 is

p′∑
u=p′−k+1

[
(λ1−b1 + ρu)2 − (λ1−b1 +1+ ρu)2]

= −
p′∑

u=p′−k+1

(2λ1−2b1 +1+2ρu) = −
⎛
⎝2kλ1−2kb1 + k+

p′∑
u=p′−k+1

2ρu

⎞
⎠

� −2kλ1 + k−
p′∑

u=p′−k+1

2ρu (3.49)

(for the last inequality we used b1 � 1).

If k > p′ , the left side of (λ − s)+ contains coordinates

λ1−b1, . . . ,λ1−b1︸ ︷︷ ︸
p′

,λp′+1−b1, . . . ,λk −b1 (3.50)

in that order, and also λk+1 − bk+1, . . . ,λp − bp , arranged in descending order and ap-
propriately interlaced with the coordinates (3.50).

On the other hand, the left side of (λ − s′)+ contains coordinates

λ1−b1 +1, . . . ,λ1 −b1 +1︸ ︷︷ ︸
p′

,λp′+1−b1 +1, . . . ,λk −b1 +1 (3.51)

in that order, and also λk+1 − bk+1, . . . ,λp − bp , arranged in descending order and ap-
propriately interlaced with the coordinates (3.51). These last coordinates are the same
as in (λ − s)+ , and also at the same places.

Using (the extension of) Lemma 2.2, we may assume that λk+1−bk+1, . . .λp−bp

are all the way to the right in the left sides of both (λ − s)+ and (λ − s′)+ . Thus the
contribution of the left sides to ‖(λ − s)+ + ρ‖2−‖(λ − s′)+ + ρ‖2 is

p′∑
u=1

[
(λ1−b1 + ρu)2− (λ1−b1 +1+ ρu)2]

+
k∑

u=p′+1

[
(λu−b1 + ρu)2 − (λu−b1 +1+ ρu)2]

= −
p′∑

u=1

(2λ1−2b1 +1+2ρu)−
k∑

u=p′+1

(2λu−2b1 +1+2ρu). (3.52)

Since λu � λ1 −1 for u > p′ , and since b1 � 1, we conclude that the expression
(3.52) is

� −2kλ1 +3k−2p′−
k∑

u=1

2ρu. (3.53)
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We now consider the right sides. We first assume k � q′ . Then the right side of
(λ − s)+ contains coordinates

λn +b1, . . . ,λn +b1︸ ︷︷ ︸
k

,λn +bk+1, . . . ,λn +bq′, (3.54)

in that order, and also λp+1 + bq, . . . ,λn−q′ + bq′+1 , arranged in descending order and
appropriately interlaced with coordinates (3.54). On the other hand, the right side of
(λ − s′)+ contains the same coordinates, except that it contains k coordinates equal to
λn +b1−1 in place of k coordinates equal to λn +b1 .

Using (the extension of) Lemma 2.2, we may assume that λp+1 +bq, . . . ,λn−q′ +
bq′+1 are all the way to the left in the right groups of both (λ − s)+ and (λ − s′)+ .
Thus the contribution of the right sides to ‖(λ − s)+ + ρ‖2−‖(λ − s′)+ + ρ‖2 is

n−q′+k∑
v=n−q′+1

[
(λn +b1 + ρv)2− (λn +b1−1+ ρv)2]

=
n−q′+k∑

v=n−q′+1

(2λn +2b1−1+2ρv) = 2kλn +2kb1− k+
n−q′+k∑

v=n−q′+1

2ρv

� 2kλn + k+
n−q′+k∑

v=n−q′+1

2ρv (3.55)

(for the last inequality we used b1 � 1).

If k > q′ , the right side of (λ − s)+ contains coordinates

λn−k+1 +b1, . . . ,λn−q′ +b1,λn +b1, . . . ,λn +b1︸ ︷︷ ︸
q′

, (3.56)

in that order, and also λp+1 + bq, . . . ,λn−k + bk+1 , arranged in descending order and
appropriately interlaced with coordinates (3.56).

On the other hand, the right side of (λ − s′)+ contains coordinates

λn−k+1 +b1−1, . . . ,λn−q′ +b1−1,λn +b1−1, . . . ,λn +b1−1︸ ︷︷ ︸
q′

, (3.57)

in that order, and also λp+1 + bq, . . . ,λn−k + bk+1 , arranged in descending order and
appropriately interlaced with the coordinates (3.57). These last coordinates are the
same as in (λ − s)+ , and also at the same places.

Using (the extension of) Lemma 2.2, we may assume that λp+1 + bq, . . . ,λn−k +
bk+1 are all the way to the left in the right groups of both (λ −s)+ and (λ −s′)+ . Thus
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the contribution of the right sides to ‖(λ − s)+ + ρ‖2−‖(λ − s′)+ + ρ‖2 is

n−q′∑
v=n−k+1

[
(λv +b1 + ρv)2− (λv +b1−1+ ρv)2]

+
n∑

v=n−q′+1

[
(λn +b1 + ρv)2 − (λn +b1−1+ ρv)2]

=
n−q′∑

v=n−k+1

(2λv +2b1−1+2ρv)+
n∑

v=n−q′+1

(2λn +2b1−1+2ρv). (3.58)

Since λv � λn+1 for v � n−q′ , and since b1 � 1, we conclude that the expression
(3.58) is

� 2kλn +3k−2q′+
n∑

v=n−k+1

2ρv. (3.59)

Let us now assume that k � min(p′,q′) ; this is always true under the assumptions
of the first part of the theorem. Using (3.49) and (3.55), we see that to prove the required
inequality (3.47) it is enough to prove that

2k(λ1−λn)−2k+
p′∑

u=p′−k+1

2ρu−
n−q′+k∑

v=n−q′+1

2ρv < 0. (3.60)

Since for any integer t ∈ [1,k] we have

ρp′−k+t −ρn−q′+t = n− p′ −q′+ k,

we see that
p′∑

u=p′−k+1

2ρu−
n−q′+k∑

v=n−q′+1

2ρv = 2k(n− p′ −q′+ k).

We substitute this into (3.60) and divide by 2k . It follows that (3.60) is equivalent to

λ1−λn−1+n− p′−q′+ k < 0. (3.61)

Under the assumptions of the first part of the theorem, it follows that the left side of
(3.61) is

< (−n+ p′+q′ − i+1)−1+n− p′−q′+ k = −i+ k � 0,

so this finishes the proof of Theorem 3.4 (1).

Under the assumptions of the second part of the theorem, and our current assump-
tion that k � min(p′,q′) , it follows that the left side of (3.61) is

< (−n+max(p′,q′)+1)−1+n− p′−q′+k � max(p′,q′)− p′ −q′+min(p′,q′) = 0,
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so this finishes the proof of Theorem 3.4 (2) in case k � min(p′,q′) .

Let us now assume that p′ < k � q′ . Using (3.53) and (3.55), we see that to prove
the required inequality (3.47) it is enough to prove that

2k(λ1−λn)−4k+2p′+
k∑

u=1

2ρu−
n−q′+k∑

v=n−q′+1

2ρv < 0. (3.62)

Since for any integer t ∈ [1,k] we have

ρt −ρn−q′+t = n−q′,

we see that
k∑

u=1

2ρu−
n−q′+k∑

v=n−q′+1

2ρv = 2k(n−q′).

We substitute this into (3.62). It follows that (3.62) is equivalent to

2k(λ1−λn)−4k+2p′+2k(n−q′) < 0. (3.63)

Under the assumptions of Theorem 3.4 (2), remembering that in the present case
max(p′,q′) = q′ , we see that the left side of (3.61) is

< 2k(−n+q′+1)−4k+2p′+2k(n−q′) = −2k+2p′,

and this is < 0 since in the present case k > p′ . This finishes the proof of Theorem 3.4
(2) in case p′ < k � q′ .

Let us now assume that q′ < k � p′ . Using (3.49) and (3.59), we see that to prove
the required inequality (3.47) it is enough to prove that

2k(λ1−λn)−4k+2q′+
p′∑

u=p′−k+1

2ρu−
n∑

v=n−k+1

2ρv < 0. (3.64)

Since for any integer t ∈ [1,k] we have

ρp′−k+t −ρn−k+t = n− p′,

we see that
p′∑

u=p′−k+1

2ρu−
n∑

v=n−k+1

2ρv = 2k(n− p′).

We substitute this into (3.64). It follows that (3.64) is equivalent to

2k(λ1−λn)−4k+2q′+2k(n− p′) < 0. (3.65)
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Under the assumptions of Theorem 3.4 (2), remembering that in the present case
max(p′,q′) = p′ , we see that the left side of (3.65) is

< 2k(−n+ p′+1)−4k+2q′+2k(n− p′) = −2k+2q′,

and this is < 0 since in the present case k > q′ . This finishes the proof of Theorem 3.4
(2) in case q′ < k � p′ .

Finally, let us assume that k > max(p′,q′) . Using (3.53) and (3.59), we see that to
prove the required inequality (3.47) it is enough to prove that

2k(λ1−λn)−6k+2p′+2q′+
k∑

u=1

2ρu−
n∑

v=n−k+1

2ρv < 0. (3.66)

Since for any integer t ∈ [1,k] we have

ρt −ρn−k+t = n− k,

we see that
k∑

u=1

2ρu−
n∑

v=n−k+1

2ρv = 2k(n− k).

We substitute this into (3.66). It follows that (3.66) is equivalent to

2k(λ1−λn)−6k+2p′+2q′+2k(n− k) < 0. (3.67)

Under the assumptions of the second part of the theorem, it follows that the left side of
(3.67) is

< 2k(−n+max(p′,q′)+1)−6k+2p′+2q′+2k(n− k)
= 2k(max(p′,q′)− k)−4k+2p′+2q′,

and this is < 0, since in the present case k > max(p′,q′) . This finishes the proof
of Theorem 3.4 (2) in case k > max(p′,q′) , and hence the proof of Theorem 3.4 is
completed. �

3.4. Dirac inequality for so(2,2n−2) , n � 3

The basic Schmid k-submodules of S(p−) have lowest weights −s1 or −s2 ,
where

s1 = (1,1,0, . . .0), s2 = (2,0,0, . . .0).

Moreover, all irreducible k-submodules of S(p−) have lowest weights −sa,b ,
where sa,b = (2b+a,a,0, . . .0).

The highest weight (g,K)-modules have highest weights of the form λ=(λ1, . . . ,λn)

λ2 � λ3 � · · ·λn−1 � |λn|.
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where components λ1, . . . ,λn satisfy λi−λ j ∈ Z for 2 � i, j � n.
In this case ρ = (n−1,n−2, . . .,0) .
The basic necessary condition for unitarity is, as before, the Dirac inequality

‖(λ − s1)+ + ρ‖2 � ‖λ + ρ‖2. (3.68)

The basic Dirac inequality for a Schmid module s is

‖(λ − s)+ + ρ‖2 � ‖λ + ρ‖2. (3.69)

This is equivalent to
2〈γ |λ + ρ〉� ‖γ‖2 (3.70)

where γ is defined by (λ − sa,b)+ = λ − γ.

LEMMA 3.1. The basic Dirac inequality for s = s1 is given by

λ1 � 0 for λ = (λ1,0, . . . ,0)
λ1 � 3/2−n for λ = (λ1,1/2, . . . ,±1/2)

λ1 + λ2 � 2+ p−2n for λ = (λ1,λ2, . . . ,λp, . . . ,λn)
where 1 � λ2 = · · · = λp > λp+1 and 2 � p � n.

(3.71)

Proof. Case 1: λ = (λ1,0, . . . ,0)
In this case we have

(λ − s1)+ = (λ1−1,−1,0, . . . ,0)+

= (λ1−1,1,0, . . . ,0)
= λ − (ε1− ε2)

which shows that γ = ε1 − ε2 and (3.69) reduces to λ1 +n−1− (n−2) � 1 which is
equivalent to λ1 � 0.

Case 2: λ = (λ1,1/2, . . . ,±1/2)
In this case we have

(λ − s1)+ = (λ1−1,−1/2,1/2, . . .,1/2,±1/2)+

= (λ1−1,1/2,1/2, . . .,1/2,∓1/2)
= λ − (ε1± εn).

Plugging γ = ε1 ± εn into (3.69) we obtain λ1 +n−1+1/2� 1 which gives

λ1 � 3/2−n. (3.72)

Case 3: 1 � λ2 = · · · = λp > λp+1

The basic Dirac inequality (3.69) for s = s1 has γ = ε1 + εp and

2(λ1 +n−1+ λp+n− p) � 2

λ1 + λ2 � 2+ p−2n. �
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We will refer to the first case as to the scalar case, the second case is the spinor
case and the remaining one is the general case. In the scalar and spinor case we can
actually prove Dirac inequalities directly.

THEOREM 3.5. (Scalar case) Let λ = (λ1,0, . . . ,0) such that λ1 < 2− n. Then
the Dirac inequality (3.69) holds for any Schmid module s.

Proof. The Dirac inequality for the second basic Schmid s2 = 2ε1 yields λ1 �
2−n.

Now we have

(λ − sa,b)+ = (λ1 −2b−a,−a,0, . . .,0)+

= (λ1 −2b−a,a,0, . . .,0)
= λ − [(2b+a)ε1−aε2]

which we will plug into the Dirac inequality (3.69)

2[(2b+a)(λ1 +n−1)−a(n−2)]� (2b+a)2 +a2

(2b+a)(λ1 +n−1)−a(n−2)� 2b2 +2ab+a2

Using λ1 � 2−n we see that it is sufficient to prove that

(2b+a)(2−n+n−1)−a(n−2)� 2b2 +2ab+a2

2b+(3−n)a� 2b2 +2ab+a2

0 � 2b(b−1)+2ab+a(a+n−3).

Since a,b � 0 and n � 3 we are done. �

THEOREM 3.6. (Spinor case) Let λ = (λ1,1/2, . . . ,±1/2) such that λ1 � 3/2−
n. Then the Dirac inequality (3.69) holds for any Schmid module s.

Proof. We have

(λ − sa,b)+ = (λ1−2b−a,1/2−a,1/2, . . .,±1/2)+

= (λ1−2b−a,a−1/2,1/2, . . .,∓1/2)
= λ − [(2b+a)ε1− (a−1)ε2± εn]

for a � 1.
Dirac inequality for the case a = 0 reads

2[2b(λ1 +n−1)] � 4b2

λ1 +n−1 � b

λ1 � (b+1)−n
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which is satisfied (strictly) whenever b � 1 due to (3.71). In the general case we get

2[(2b+a)(λ1 +n−1)− (a−1)(1/2+n−2)+1/2]� (2b+a)2 +(a−1)2 +1

and using (3.71) it is sufficient to show

2[(2b+a)(3/2−n+n−1)− (a−1)(1/2+n−2)+1/2]� (2b+a)2 +(a−1)2 +1.

This is in turn equivalent to showing nonnegativity of

a2 +2ab+an−3a+2b2−b−n+2� 0

(a+b)2 +b(b−1)+a(n−3)+2−n� 0

This is clearly decreasing in b and so we just need to prove that

a2 +(n−3)a−n+2� 0.

The roots of this quadratic polynomial are 1 and 2−n which finishes this case. �

LEMMA 3.2. Let sa,b = (2b+a,a,0, . . . ,0) be a Schmid module with a � 0 and
b � 0. Let λ satisfy (3.71) in the case λ2 �= 0 and λ1 � 2−n in the scalar case. Then
we have

‖(λ − sa,b+1)+ + ρ‖2−‖λ + ρ‖2 � ‖(λ − sa,b)+ + ρ‖2−‖λ + ρ‖2. (3.73)

Proof. Since the weights differ only in the first coordinate, the difference of the left
hand side and the right hand side is just the difference of squares on the first coordinate:

(λ1−2b−2−a+n−1)2− (λ1−2b−a+n−1)2 � 0

−2[2(λ1−2b−a+n−1)−2]� 0

λ1−2b−a+n−1−1� 0

λ1 � a+2b+2−n

For scalar λ we immediately get λ1 � 2−n � a+2b+2−n. In the spinorial case we
get λ1 � 3/2−n � a+2b+2−n. In the remaining case we actually have λ2 � 1 and
so (3.71) implies λ1 � 1+ p−2n which is indeed less than or equal to a+2b−n. �

THEOREM 3.7. (General case) Let λ be as in case 3 and let (3.71) hold. Then
the Dirac inequality (3.69) holds for any Schmid module s.

Proof. Thanks to the previous lemma we only have to prove that for a � 1 we
have

‖(λ − sa,0)+ + ρ‖2−‖λ + ρ‖2 � 0,

with strict inequality if (3.71) is strict. It follows by induction from combining the
following two inequalities

‖(λ − sa,0)+ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2

‖λ ′ + ρ‖2 � ‖λ + ρ‖2
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where
λ ′ = (λ − s1)+ s′ = sa,0− s1 = sa−1,0.

The first one immediately follows from the Lemma 2.1 for μ = (λ − s1)+ and ν =
(sa,0 − s1)+ and the second one is the Dirac inequality for s1 which is nothing but
(3.71).

What remains is to check that λ ′ satisfies the Dirac inequality for s′ = sa−1,0. It
can happen that λ ′ falls into the spinor or scalar case. For λ = (λ1,1,0, . . . ,0) the
inequality (3.71) takes the form λ1 + 1 � 2 + 2− 2n which means that λ ′

1 = λ1 − 1
satisfies λ ′

1 � 2−2n. Looking back at the Theorem 3.5 we see that λ ′ satisfies the Dirac
inequality with any Schmid module. Analogously, for λ = (λ1,3/2,1/2, . . . ,±1/2) we
have λ1 + λ2 = λ1 + 3/2 � 2+ 2− 2n which gives λ ′

1 = λ1 − 1 � 3/2− 2n which is
below the unitarizability bound 3/2−n for the spinor case.

In all other cases λ ′ is of general type. If p > 2, then λ ′
1 + λ ′

2 = λ1 − 1 + λ2

and using (3.71) and p′ = p− 1 we see that this is less than or equal to 2 + p′ − 2n.
Hence the Dirac inequality is satisfied by the induction hypothesis. For p = 2 we have
similarly λ ′

1 + λ ′
2 = λ1 + λ2−2 � 2+2−2n � 2+ p′ −2n since p′ � 2. �

3.5. Dirac inequality for so(2,2n−1) , n � 2

The basic Schmid k-submodules of S(p−) have lowest weights −s1 or −s2 ,
where

s1 = (1,1,0, . . .0), s2 = (2,0,0, . . .0).

Moreover, all irreducible k-submodules of S(p−) have lowest weights −sa,b ,
where sa,b = (2b+a,a,0, . . .0).

The highest weight (g,K)-modules have highest weights of the form λ=(λ1, . . . ,λn) ,
where

λ2 � λ3 � · · ·λn � 0,

λi−λ j ∈ Z and 2λi ∈ N0 for all 2 � i, j � n.
In this case ρ = (n−1/2,n−3/2, . . .,1/2) .
The basic necessary condition for unitarity is, as before, the Dirac inequality

‖(λ − s1)+ + ρ‖2 � ‖λ + ρ‖2. (3.74)

The basic Dirac inequality for a Schmid module is

‖(λ − s)+ + ρ‖2 � ‖λ + ρ‖2 (3.75)

This is equivalent to
2〈γ |λ + ρ〉� ‖γ‖2 (3.76)

where γ is defined by (λ − s)+ = λ − γ.

LEMMA 3.3. The basic Dirac inequality for s = s1 is given by

λ1 � 0 for λ = (λ1,0, . . . ,0)
λ1 � 1−n for λ = (λ1,1/2, . . . ,1/2)

λ1 + λ2 � 1+ p−2n for λ = (λ1,λ2, . . . ,λp, . . . ,λn)
where 1 � λ2 = · · · = λp > λp+1 and 2 � p � n.

(3.77)
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Proof. Case 1: λ = (λ1,0, . . . ,0)
In this case we have

(λ − s1)+ = (λ1−1,−1,0, . . . ,0)+

= (λ1−1,1,0, . . . ,0)
= λ − (ε1− ε2)

which shows that γ = ε1−ε2 and (3.75) reduces to λ1 +n−1/2−(n−3/2)� 1 which
is equivalent to λ1 � 0.

Case 2: λ = (λ1,1/2, . . . ,1/2)
In this case we have

(λ − s1)+ = (λ1−1,−1/2,1/2, . . .,1/2,1/2)+

= (λ1−1,1/2,1/2, . . .,1/2,1/2)
= λ − ε1

Plugging γ = ε1 into (3.75) we obtain 2(λ1 +n−1/2)� 1 which gives

λ1 � 1−n. (3.78)

Case 3: 1 � λ2 = · · · = λp > λp+1

The basic Dirac inequality (3.75) for s = s1 has γ = ε1 + εp and

2(λ1 +n−1/2+ λp+n− p+1/2)� 2

λ1 + λ2 � 1+ p−2n. �

THEOREM 3.8. (Scalar case) Let λ =(λ1,0, . . . ,0) such that λ1 < 3/2−n. Then
(3.75) holds for any Schmid module s.

Proof. The Dirac inequality for the second basic Schmid yields λ1 � 3/2−n.

General Schmid module has highest weight sa,b = (2b+a,a,0, . . .0) and similarly
as before we get that the Dirac inequality is equivalent to

(2b+a)(λ1 +n+1/2−1)−a(n+1/2−2)� 2b2 +2ab+a2.

Using λ1 � 3/2−n we see that it is sufficient to prove that

(2b+a)(3/2−n+n+1/2−1)−a(n+1/2−2)� 2b2 +2ab+a2

2b+a+(3/2−n)a� 2b2 +2ab+a2

0 � 2b(b−1)+2ab+a(a+n−5/2).

Since a,b � 0 and n � 2 we are done. �
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LEMMA 3.4. Let sa,b = (2b+a,a,0, . . . ,0) be a Schmid module with a � 0 and
b � 0. Let λ satisfy (3.77) in the case λ2 �= 0 and λ1 � 3/2− n in the scalar case.
Then we have

‖(λ − sa,b+1)+ + ρ‖2−‖λ + ρ‖2 � ‖(λ − sa,b)+ + ρ‖2−‖λ + ρ‖2. (3.79)

Proof. Since the weights differ only in the first coordinate, the difference of the left
hand side and the right hand side is just the difference of squares on the first coordinate:

(λ1−2b−2−a+n−1/2)2− (λ1−2b−a+n−1/2)2 � 0

−2[2(λ1−2b−a+n−1/2)−2]� 0

λ1−2b−a+n−1/2−1� 0

λ1 � a+2b+3/2−n

For scalar λ we immediately get λ1 � 3/2−n� a+2b+3/2−n. In the spinorial case
we get λ1 � 1−n � a+2b+3/2−n. In the remaining case we actually have λ2 � 1
and so (3.77) implies λ1 � p−2n which is indeed less than or equal to a+2b−n. �

THEOREM 3.9. Let λ be as in case 2 or as in case 3 and let (3.77) holds. Then
the Dirac inequality (3.75) holds for any Schmid module s.

Proof. Thanks to the previous lemma we only have to prove that for a � 1 we
have

‖(λ − sa,0)+ + ρ‖2−‖λ + ρ‖2 � 0,

with strict inequality if (3.77) is strict. It follows by induction from combining the
following two inequalities

‖(λ − sa,0)+ + ρ‖2 � ‖(λ ′ − s′)+ + ρ‖2

‖λ ′ + ρ‖2 � ‖λ + ρ‖2

where

λ ′ = (λ − s1)+ s′ = sa,0− s1 = sa−1,0.

The first one immediately follows from the Lemma 2.1 for μ = (λ − s1)+ and ν =
(sa,0− s1)+ and the second one is the Dirac inequality for s1.

If λ is in the spinor case, then λ ′ is also in the spinor case. In the general situation
λ ′ can fall into all three cases. For λ = (λ1,3/2,1/2, . . . ,1/2) we have spinorial λ ′
with λ ′

1 = λ1−1 and since our λ satisfies (3.77) we have λ1 � 3/2−2n which means
that λ ′

1 � 1/2− 2n. For λ ′ of general type the exactly same reasoning as in the even
case (so(2,2n−2)) finishes the proof. �



DIRAC INEQUALITY 265

RE F ER EN C ES

[1] J. ADAMS, Unitary highest weight modules, Adv. Math. 63 (1987), 113–137.
[2] C.-P. DONG, On the Dirac cohomology of complex Lie group representations, Transform. Groups, 18

(1) (2013), 61–79
[3] M. DAVIDSON, T. ENRIGHT, R. STANKE, Differential operators and highest weight representations,

Memoirs of AMS, 455, 1991.
[4] C.-P. DONG, J.-S. HUANG, Dirac cohomology of cohomologically induced modules for reductive Lie

groups, Amer. J. Math. 137 (1) (2015), 37–60
[5] T. ENRIGHT, R. HOWE, N. WALLACH, A classification of unitary highest weight modules, in Repre-

sentation theory of reductive groups, Park City, Utah, 1982, Birkhäuser, Boston, 1983, 97–143.
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