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WEIGHTED HARDY INEQUALITY WITH TWO-DIMENSIONAL
RECTANGULAR OPERATOR: THE CASE ¢ < p

VLADIMIR D. STEPANOV* AND ELENA P. USHAKOVA

(Communicated by L. E. Persson)

Abstract. A criterion is obtained for the boundedness of the two—dimensional rectangular inte-
gration operator from a weighted Lebesgue space L (Ri) to Lﬁ(Ri) for 1 < g < p <o, which
is a supplement to E. Sawyer’s theorem [8] and its extension [9] given for 1 < p < g < eo.

1. Introduction

A weight is a locally integrable function on Ri := (0,0)2, positive almost every-
where (a.e.). We study the Hardy integral operator

(LNe: = [ [ fendsa, () eR,

in weighted Lebesgue spaces. For a real parameter p > 1 and a weight v the Lebesgue
space LY (Ri) consists of all measurable functions f on Ri satisfying

1
P
Hprv:: </2 |f(xa}’)|p\’(x,y)dxdy) < oo,
) R2
The dual to I, operator is

B)y): = [ /y T f(s.0)dsdr,  (x,y) €R2.

We begin with the remarkable characterisation by E.T. Sawyer given in 1985 for
the weighted two—dimensional Hardy inequality [8].

THEOREM 1. [8, Theorem 1A] Let 1 < p < g < oo. Suppose v and w are
/
weights. Denote p' := p/(p—1) and 6 :=v' =P . The inequality

[@Hl,.. <l (1)
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holds for all measurable non-negative functions f on Ri if and only if

A1 :=A1(p,q) = ( S;JI])RZ [(Lw)(u,z)] g [(Lo)(u,2)] ” < oo,

hoi=dalp.a)i= s [(Rlt=0yw] ) @) " [(ho)w,2)] 7 <,
U,z ERi

ha=talpaa) = (517 0] ) w2)] " (W) 7 <=,

and C = Ay + Ay + A3 with equivalence constants depending on parameters p and q.

The Sawyer theorem above gives an explicit boundedness criterion in terms of v
and w for I : LY(R%) — L},(R?) in the case 1 < p < g < . For p < g this result
was refined in [9] by providing an easier characterisation of (1) by the only functional
A= A1 .

THEOREM 2. ([9, Theorem 2]) Let 1 < p < g < oo, and suppose v and w are
pa=1)

weights. Put o, := o/(p,q) := 55 o =o(q,p') and denote
24\ 4 q op=1 N4 111
Cor =3[ ) max{s.20(6)7 } (577r—5) " +37 707,

The inequality (1) holds if and only if A < eo. Besides, the following estimate is true
for the best constant C in (1):

ALC< (Coc,a’A- (2)

Since lim, 4o 0t(p,q) = limp_4_o 0/(¢', p") = o= then the sufficient part of The-
orem 2 and the right hand side of the inequality (2) has blow—up effect.

If (1) holds then A} < C, actually, for all p,q > 1. Therefore, (I,6)(u,z) < oo
and (I3w)(u,z) < e at any (u,z) € R, and we may and shall assume these prop-
erties throughout the paper. In particular, o € LL .(R%2) and w € L\ (R%). From
(Io)(u,z) < e it follows that ( [y o(s,z)ds) (Ji o (u,t)dt) < e for almost all (u,z) €
R3 . Analogously, ([ w(s,y)ds) ([ w(x,t)dr) <o ae.on R} .

The case g < p was also discussed in [9]. In particular, the authors provided
separate necessary and sufficient conditions for the validity of (1).

THEOREM 3. ([9, Theorem 3]) Let 1 <g<p <o, 1/r:=1/q—1/p, and v, w
be weights. If the inequality (1) is true then B < oo, where

<

Bi=B(p.q) = ( [, a0 i~ [(w)5) ))

+

=

RN LIS TREN)

+
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L
7

— </Rz [(120)()6»)’)] 7 dxdy [(lfw)()ﬁy)] ;)

+

N
3|~

:< /. [ 5] ey [10) ) )

The inequality (1) holds if

1

B, = (/}RZ o(u,z) Klj [(Izc)qfle(u,z)} ‘ dudz) " < ool

Moreover, B< C < B,.

History and other results related to multi-dimensional Hardy inequalities may be
foundin [1,2,3,4,6, 11,12, 13].

In this paper we continue the study of the problem in the case 1 < g < p < oo
and provide a criterion for L to be bounded from LJ(R%) to L{,(R%) under some
conditions on v and w. More precisely, we require the existence of parameters y €
[q/p,1) and y* € [p'/q/,1) such that for almost all (x,y) € R

9*([(ho)(x,))]")
dxdy

< (o) wy)ot) 1= [ otnas) ([ otnar) ) =0 @

= ¥[(ho)(x,y)]"

and

2([(Iw) (x,»)]7)
oxdy

< () =) ([“wisas) ([Twiwnar) ) 0.

=y [(Bw) (x, )]

For instance, product type weights [7] are covered by (3) and (4) provided y > O,
Y* > 0. Examples of non—product weights satisfying (3) and (4) are given at the end of
§3.

Our main result is Theorem 4. We complement it by the compactness criterion for
L: LY (RY) — LI(R2) if g < p (see Theorem 6). Analogs of Theorems 4 and 6 are
also valid for the dual operator /5 and mixed Hardy operators (see [8, Remark 1] for
details). Some important sufficient boundedness conditions for the Hardy operator are
found in Theorem 5 to connect our results with Saywer’s theorem in the case p = gq.

Throughout the work, the notation of the form ® <YW means that the relation
@ < ¥ holds with some constant ¢ > 0, independent of @ and ¥. We write ® ~ ¥
in the case of @ <W < ®. The symbol Z is used for integers. The characteristic
function of the subset E C R’} is denoted by yg. Symbols := and =: are used to
define new values.
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2. The E. Saywer partitioning scheme and technical statements

Denote 1/r:=1/q—1/p and

33¢+1 3%4‘211 324—%+2—c 2.33¢
I 8] =3 ) ) [ - 36_2]
Blp.g.c) max{ 4 X 4c l—c

for some 0 < ¢/p < ¢ < 1. We define also B (p,q) = B(p,q)

= B,, = B}, where

Bl = l:j] u(x,r) (/t [(12(7)()6 y)] [(12 w)(x, y)] ! (/xm w(s,y) ds) dy) dxdt
, 1) [(120) )] 7 [(E30) ()] e
( [(Lo)(x,y)] (s y)ds) [(Bw)(x,)] ‘ dy) dxdt
/ () [(120)(,)] 7 [(12w>< >] ‘dxdy
and
B =Bi(p.q) = [ (o)) F ey ([(hoyw] ) (e)] =B,
B =B (pa) = [ )] 7 ey (5105w o] ) )] = B
where
B =;—2q [ [(0)5)] uls.) ( [ 1oy F [ (o] )]
X </Oy [(IgO‘)()C,t)]qw(x,t)dt) dx) dsdy
1 [ 1500 0)" Fute) [ ([(0)%] ) ()] s,
Bl = [ [3w)6) s

/O [Izw xy] 7 [(I;[(Igw)p/GD(x,y)}ﬁ_l

B [(Ié‘w) (x,t)] p,G(xJ) dt) dx) dsdy

(W) @) Tutey) [ (B[ 0] ) (x)] 7 dxdy.

+
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Our proof is based on E. Saywer’s scheme of partitioning of Ri and several aux-
iliary technical statements (see Lemmas 1 —4).

To describe the E. Saywer scheme [8, Theorem 1A] we reduce our consideration
to the subclass M C L} (Ri) of all functions f > 0 bounded on R%r with compact
supports contained in the set {/,0 > 0}. Further, we fix f € M and define the domains

: :{12f>3k}, ke

Then, by our assumptions on f, there exists K € Z such that Q; # @ for k < K
Q=@ for k > K, Upez Q& = R? and

C< L)y <3 k<K, () € (Qu\ Qi)

Y1
3%
W\ UK T~
3 —— Iy
o0,
Fig. 1
We write
/ (Lf)Iw=Y, / (Lf)w <3 Y 340 5\ Qs
k<K —2 7 Q2 \ i3 k<K—2

where |Q 12\ Qi3 = ka+2\Qk+3 w and Qg \ Qg1 = Qg, since Qg1 is empty.
Next, we introduce rectangles. For a fixed k such that Q.| # @ we choose
points (x’j‘-, y’j‘-), 1 < j < N =Ny, lying on the boundary d€; in such a way to have
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(x’j‘-,yl;fl) belonging to 9, for 2 < j < N and Qi C U?’:lS’j‘-, where S’j‘- is a

rectangle of the form (x’j‘-,oo) X (y’j‘-,oo). We also define rectangles §’j‘ = (x’j‘-,xlj‘- 41) X

(OK,5%_,) for 1< j <N and RS = (0,5, ) x (0,%), RE = (&, ) x (5% | ,»%) and
Tf = (o, },00) X (1,00) for 1 <j <N —1.Put yj = xy, | = o (see Figure 1).
Now we choose the sets Ej C T} so that EfNEf = @ for j # i and U;E} =

(Qu2\ 13) N <Uj T,k> - Since Qg2 \ Qi3 C Q1 C (Uj T,k> u <Uj g’,‘) , then
3*3‘1/ (Lf)Tw < Y 3M|EY| + 334|850 (Qiio \ Qiys)|, = I+11. (5)
R} ¥ Ay "
We are ready to state technical lemmas, which provide upper estimates on

b rd
Vi(ap)x(ea)(0,w) 3=/a /L w(x,y) [(Lo)(x,y)]dxdy

and
b rd /
Wiaspetea0) = [ [ ol [(5w) ()] dxdy

for some 0 <a <b < oo and 0 < ¢ <d <. We shall use notation wy := WX (a.b)x (c.d) -
Notice that Lemmas 1 and 2 have the same auxiliary meaning for obtaining our
main result as Lemmas 1 and 2 had in [9], where the case p < g was characterised.

LEMMA 1. Let 0 <a<b <o, 0<c<d<ooand 1 <q< p <-oo. Suppose that
the weight 6 := v~ satisfies the condition (3) for almost all (x,y) € Ri. Then

q
V(a,b)x(c,d)(av W) < ﬁ (P:C]; Y) [(126) (bad)] pB:’IVX(a,b)x(c,d) .

Proof. We apply a scheme of partitioning (a,b) x (¢,d) C R2 = J; € of the E.
Sawyer type for f = 0, where Q; := {(x,y) € R%: (Lo)(x,y) > 3¢}.

According to that scheme, we define RY = (0,x4,)) x (0,)5), 85 = (x,e0) x
(y’j‘-,oo), S’j‘- = (x’j‘-,xlj‘-ﬂ) x (y’j‘-,yl;fl) and observe that |R’j‘-\(7 = 3% Then

Viap)x(ea)(0.w) =,

- /Qk+2\Qk+3 (Lo)Twy < 32q§3(k+1)q|£2k+2 \ Qi3 |WV7

where for each k

N

k ~
|2\ Q3| = X “Eﬂw\y +|$5n (Qk+2\9k+3)|w] :
=1

More precisely, Ef = T/ N (Qya \ Quy3) i= (85, 1,00) X (55,90) N (Qey2 \ Qir3) . We

put z’J‘- as intersection of y = y’J‘- and 0Qy 3 (or z’J‘- = b if there is no intersection) and

suppose that E} C (], ,25) x (5,4 _)).
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All the pairs (k, j), where k € Z and j=1,..., Ny, can be split into two groups.
We say that (k,j) € I if S’; N (2 \ Qi3) # . Therest (k, j) are assigned to the
group II. We have ’

Vb (ea)(0,w) < 32y 3040 [|Eﬂwv +185n (Qk+2\9k+3)|w]
k7j

= 3311 Z 31“1 [|E]/<’wv + |§I;ﬂ (Qk+2 \Qk+3)|ww}
(k,j)el

+ Y 3k gk| (6)
(k.j)€ll o

To estimate the sum over (k, j) € I we denote D’j‘- = :5’7; \ Q43 and observe that
32 < () 3) + () (51 + () (11.3)) = (BF) (4),5)
= (RO f)) (ey) +2:31 =34 i (0y) €550 ( Q2 \Quss), (D)
from which it follows with f =o:
(R(2x0)) (x.y) > 43¢ for (x,y) €851 (Qur2\ Quss). ®)

Further, on the strength of Holder’s inequality,

4. 3k|§’j€. N ( Q2 \ Qey3)|,. < /~k (Iz(ka o)) (x,y)wy(x,y)dxdy
v SN2\ 43)

/ // () dxdy

:/ o(s,1)(I5( wvka))(s,t)dsdt

( ) < (S’t)[(IE(WVfo))( )]édsd’>z.

Besides, by integration by parts on :97‘-,

S%Akc(s7t)[(15(wvka))( 0] dsdt

J

Q0

_37 / Kot (5:0)0 5,0) (5 O ) s.0)]  dsl

:r3q7 /@(/X;G(x,t)%Dﬁz(x,t)da (/tw WVXD/;_(S,y)dy> [(If(waD,;))( )]Zrzdsdt
<r3q‘r7 /@(/X;G(x,t)%Dﬁz(x,t)da (/tw waD/Jc_(s,y)dy> [(Bw)(s,1)] b dsdt
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B ([ wotgtor) sl asa( [ [ o)

| J
:rzﬁé{£<[wwvxD§(s,y)dy) (/S‘”W(X’de) )5, 0] "

sty s [aswn] ([ [ o) dsar

S L5 ) ([ st

q

r

—l—wv(s,t)xD;;(s,t)[(Ié‘w)(s,t)]’,’}[(126)( 07 dsdr = Bty

Therefore, on the strength of the estimate 3 ; ¥px < 2 Xo,\Q,; < 3 and by Holder’s
J
inequality with p/q and r/q,

q
1
> 3kq’§;ﬂ(9k+2\9k+3)|w <12</Dk G) vaw k
(k,j)el k,j i

3 q
433"%,1/; x(c.d) [<I2G)(b d)] ’ 9

To evaluate Y. jje1 3k |E§‘|W we shall exploit (8) with some (&% ¥, j) € dQ,». Since

§’j‘ are disjoint for a fixed &, then

DXL e} S D S2 (10)
k.j

We also write

kok ,

Yo 5[V q

|Ek|w (/ / x/vi) / ( U / X k,WV] )
! )‘k+l by g ¥y xS Ei

k
Yj-1 b y -1
/)J( / § %E/vi} <y§ )(Ef(X,t)wv(x,t)dt>dx

k
J
y,

ST

/Hl/yjl ( (Lw)(x,y)]” (/yy leﬁ(x,t)wv(x,t)dQ)dx

Xk (x,t)wv(x,t)dt)dx
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:2/ / { (Lw)(x,y)]? ! (/xww(s,y)ds)

y,l I
([ ety 4 [(3)00)) P (e 5) by
— A e ) (filamen) ([ wisas)as )ar

/ / [(w)(x,y)] xE]k,(x,y)Wv(x,y)dxdy (11)

Therefore,

r(k+1) .- r(k+1) 72 t r_q oo
37 |Ef r— [ wy(x,t / Lw)(x,y)|” / w(s,y)ds)d )dt
bty <37 7 [t [T ([ wts )

rktl)
#3577 [ [aw) )] Fw

J

ﬁl\

v (x,y) dxdy
< o) ( /y ; (o) (e )] 7 [(w) )] 7~ ( / s,y ds) dy)dt

pq JEt

+ - / (Lo) xy)]L’[(Izw)(x y)ﬁ v (x, y)dXdy<BWVXk (12)

Thus, on the strength of (10) and by Holder’s inequality,

s sl < (3’ wwEk</ /y’ ) ) (o) b)) 1,

(k,j)el

By combining this with (9), we obtain

33q Z 3kq |:|E]/<’WV + |§]; m (Qk+2 \ Qk+3) |Wv]
(k,j)el

33q+1 %+2q

< 2 [(h0) (b,)] T BY, + T [(1h0) (b,d)] "B, (13)

Consider the sum over (k, j) € II in (6). One can write for any (p,7) € R2
=30 [F Y
[(Lo)(p,7)] / / { (Lo)(x,y)] (/0 G(s,y)ds) </0 G(x,t)dt)

~[(00)6)) ot baxdy = [ [“@yasas an

provided (I,6)(e0,T) = (Lo )(p,o0) = (Io0)(e0,00) = oo, that can be achieved by letting

o (s,t) = On(s,t) 1= 0(5,2) X (0 2 (5:1) +sz+\(0’n]z(s,t), n > max{b,d}.
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_ -1
Itholds 3 = (Lo) (¥, ), therefore, 37% = [(Lo)(x},)5)] . We have
(5, 00) (5, 00) = SEU{ (0, 00) x (Y_1,00) FU{ (. 1,00) X (3,00}
\{(x];+17w) X (yl;_l7oo)}.
Notice that 3-(*+2) < f;,f fy‘f (@< 3-(+1) because (k,j) € II. Therefore, there ex-
J
3—(k+1+e;?).

1sts0<£ < 1 such that ka f°° =
jl

We can write, by v1rtue of (14), that

R N R A R A A
x5 ) Sj X Vi i Y e Vi

:/Nk q)_|_2 . 37(/(4’1) _ 37(k+1+8}()'
Sk

Thus, for (k, j) € II
@ =37k .37 () 3 3k 3 4 370 3-3*". (15)
S

We have

[ [20)6)] oty dxdy (16)

J

-/, ( / (o), t)]2>>6(x,y)dxdy

_2/ (/N (Lo)(x,t) 3(/()X0'(s,t)ds> dt)G(x,y)dxdy

_, Sk([/y,;‘ +/y’jj [(10) (6,0)] (/Oxa(s,t)ds> dt)c(x,y)dxdy
_2/ /y - 126)(x,t)]_3 (/Oxa(s,t)ds> (/y;C G(x,y),dy) dxdt

+ / [(10) (xs-)] /yy o(x,y)dy) dx. (17)

Therefore,

/ d=2 /xkﬁl /0 (x,y), dy) /y,;l [(Lo)(x, t)]_3 (/Oxc(s,t)ds> dxdt

[ (o) (k)] g o(x,y dy (18)
ik

J
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By combining (16)—(18), we obtain in view of (15),

4 3rks3) _ 3(1epktdy / @
9 5

:2.3(1+7/)k+37/);’(*1 (/Oy’ (x,y), dy) z, l[(lzc)(x,t)]_3 (/Oxc(s,t)ds> dxdt

j
. -
_3(1”)“3)//)/{# [(IQG)(X,)’];—I)] 2( ;
J

It holds

Kk * .
2-3<1+7>’<+3Y/ ” (/’a(x,y),dy)/’ (o) (x,1)] (/ 0(s.1)ds) dxdi
4 Mo % 0
233 [ ([0 d [ N2 [ o(s.1)ds) dxd
<2 / (/ o(x,y), y/ (Lo) xt (/Gs,t s)xt

XX 0 y 0

7

and

3“*”"*”/};+l [(ho)(x,y}1)] - (/y:,;l (x y)dy> d
2372 [ o)k ] ([ oty s

J Vi

Besides,

2.33 /xk ’?’*' ( /O ) o(x.y)dy) /y :51 [(0) ()] /0 XG(s,t)ds) dxdt
= 2.337/S [(Lo)(x, t)]y_2 (/Ox (s, t)ds) (/(:G(x,y)dy> dxdt
_2.337/ /yj 1 (Lo)(x,1)] 2(/()X0'(s,t)ds> (/: G(x,y)dy) dxdt, (20)

where
XX yk.i -
/J+l ! l[(lzc)(x,t)]y 2(/ )( o(x,y dy) dxdt
xk. yk k
J J I
Aok o
:/I+1 ! IG(x,y)/j [(Lo)(x,1)] / o(s,1) ds dtdxdy
y ) :

= [ ot o) dvas

i P
[ ot 7 [ ot

J Vi
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Therefore, we can continue (20) as follows:

2.33y/j+' (/()ylfa(x,y)dy) /yzﬁl [(ho)(x,1)]" (/Oxa(s,t)ds> dxd

_o. 33Y/S (o) (0] 2(/()xc(s,t)ds> (/(:G(x,y)dy> dxd

237
1—vy sk
2.3 (¥ vyl [V
+ / Lo)(x,y5_ / o(x,y)dydx
7 Ju [(ho)(x,}_1)] y (x,y)dy

2337 1
= /kj [(120)(xaylj€'_1)]y /k] o (x,y)dydx
i y

J

[, o) [(120)(x))" dvay

2 37 /dd (ho)(x.y)]".

From this and (19),

4 2.3 ha 1
5 3 < [T -3 [ o)t ) [ o) dya

J Vi

3
i 237 /dd (ho)(x.y)]",

where [5 dudy [(16)(x,y)]” > 0 on the strength of (3). It also holds
J

k k
Xit1 —1 [Yj-1
L o) 0l [ oteydyas
Y i
e x ko Y=k
</1H (/ /] IG) /] 1G(x,y)dydx
o NG Y
q k
- [ o) = L3
(AN A Y

Therefore,

Jre3) 9 {2_337 3R,

w1y 21

Now we can evaluate the sum over (k, j) € IT in (6). To this end we write, by making
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use of (11) and (12),
Z 3(k+3)q }Ek| Z 3(k+3)q
(k,j)€ll ( J)€Ell

<pq/+1 /yj lek (x,)wy (x,1) (/y,i [(Bw)(x,y)] iil(/xmw(s7y)ds> dy)dt

/ / [(w) xy]’_xEjk_(x,y)wV(x,y)dxdy)
j+1

k+3
D Y Ll
VAgk*
(k J)ell £

S

According to (21) and in view of 3*+2)(a/P=7) |§’j‘-|[é/p7y, (k, j) €11,

2q q(k+3) X

3 2 3733vx,5k=3"_ 2 3(k+3)Y3(k+3)(—7Y)Bngk
(k.j)€Il 7 (k,j)€ll
49 2.3% -2 k+3)(4 - g
<3 Z[E5 -3 T s,
(k,j)ell
2q+ —Y9 2.33Y s
<3 TS 3 Y (S,
drtl=y (ke e

Therefore, by Holder’s inequality with /g and p/q,

32— F+2-y [21 337 _ 3772} [(o)(b,d)] "B B

2 3 (k+3)g | Ek } , <
(k.j)€ll o 4y "
By combining this with (13) we approach the required estimate through the inequality

33q+1 g
V(u ) (C d)(G W) = B‘[/IVXHI)) x(c.d) [(126)(b7d):| r

4
949 2g—14+2—
T )
20 4y -y

1
X [(IZG)(bvd)] pBWX(a.b)x(c.d)' U

+ max{

A similar to Lemma 1 statement holds with the (inner) integral of w.
LEMMA 2. Let 0<a<b<eo, 0<c<d<eoand 1< qg<p<e. Assume that
the weight w satisfies the condition (4) a.e. on Ri. Then

/
/

Wity (cay0.0) < Bld' -7 1) () (@] 7 (B, -
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For proving some complementary results we shall use the following
LEMMA 3. Let 0<a<b<oo, 0<c<d<ooand 1 <q<p <eco. Then

Viap)x(ca)(0,w) < [(L0)(b, d)]pB‘vvaa,X@ e

Proof. We can write

Vfu /(// (ho qw> /ab [(16)(s,y)]? (sy)d)dy
" e Pt
- e

(/ [(120)(5,9)]" (sy)ds)}dy

=2 [ [ [(elom) 0] ([ o)) wis.nas)
(/ [(126)( 0] (XI)dt>dxdy
5 e oo

:%/a~/c (B20)(s,y)] "wls.y (/S [(12[(126)%])(16,}’)]%71
X (/Oy [(120)(x,t)]‘1w(x,t)dt> dx)dy
Y A O

Therefore

Viany(ea) (0,) [(10) (b,d)] ? [(10) (b, d)]*%

120' |: // 12(5 sy q
L1

« ( / b[(zzo><x,y>] [ (nlhoy ])<x,y>] "
X ( / ’ [(126)(x,t)]qw(x,t)dt> dx) dy

q

0
+2 ab/cd[(126)(x’y)]q_'r’w(x’y)[(12[(126)qw]>(x,y)]’_r’dxdy]

q
< [(120_)(177‘1)] p]B‘[’{VX(a.b)x(c.d)' u
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Analogous to Lemma 3 statement holds for W, 4 (¢.)(w,0).

LEMMA 4. Let 0 <a<b<oo, 0<c<d<ooand 1 <q<p<oo. Then

/

s

W o) x ()W, 0) < [(Iw)(a,c)] (B*

)P
OX(ab)x(cd)/

3. Main result

Let B*:=B(q,p',v") and

2\4 /9N } PN T B T N
.13 / 1 P 7
o= o5 {20 () () 5o ()
The main result of the work is the following.

THEOREM 4. Let 1 < g < p < oo. Assume that weights ¢ and w satisfy a.e. on
Ri the conditions (3) and (4), respectively. Then the inequalty (1) holds if and only if
B < . Moreover,

2fﬁ(€)$<%>#3<cgcw*3. 22)

r

Proof. (Sufficiency) Similarly to how it was done in E. Sawyer’s paper [8] for the
case 1 < p < g < oo, we show that the conditions of the theorem are sufficient, limiting
ourselves to proving the inequality (1) on the subclass M (see §2). Then the inequality
(1) for arbitrary 0 < f € LY (R%) follows by the standard arguments.

Suppose B < e and fix f € M. By analogy with the proof of [8, Theorem 1A],
we apply the E. Saywer scheme of partitioning of Ri, where

Q= {(x,y) €RL: (Lf)(x,y) > 3"}
To estimate 7 in (5) we denote D’j‘- = :97]‘ \ Qi3 and, similarly to (7), we have
(12(%D§:f)) (xy) =435 if  (x,y) € S5M (Quya \ Qi)

Therefore, one can write, by applying Holder’s inequality,

4850 (g2 \ Qi3] <3*"/ O 3)( (DAf))( y)w(x,y)dxdy

<37k / / w(x,y)dxdy
DA

_3 /D : F5.0) (1)) (5,0 dsds

1

<3+ (/D§ fl’v) ’ (/Dk o (s.0) [(Bw)(5.1)] dsdt)

J
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By applying Lemma 2 to (a,b) x (¢,d) = :97]‘ with o,y instead of o, we obtain that
J

Wi (0.0 70) = /D o(s.0)[(Bw)(s.0)) dsdi < B ( - A)"’.

J

Then it follows from Holder’s inequality with ¢ and ¢’ that

LSRR A (/Df) Bz |5

k.j

<@wwwﬂyyw>waw?

On the strength of [8, (2.6)] we have Z 4 xsk 3~ xgklz f for all k. Then

k
> 345t =234y [ g
k j=1/Rs

k,j
Ne
N Ak
< Z3k 9-1) / Xy I2f Z3k L / Xin\Qm+l(12f)

m=k

_23mq 1) / XQm\QmH sz Z3k m)(g—1)

k<m
39-1

< ﬁ23m(‘1*1)/ﬂ§2 %Qm\Qerl(sz)W
m T+

and, therefore,

3345k < 2 / [ (1) 341 1 / L)

k.j

Holder’s inequality with p/q, r/q and the estimate Y ; XD’;. <Xk Xo\@.; < 3 entail

B (31 (5 (L)

Thus,
1

1< %(ﬁ*)#(%)*}g(/ﬂﬁf@)ﬁ(/Ri(zzf)qu. (23)

To estimate [ in (5), similarly to the proof of [8, Theorem 1A, pp. 8-9], we put
g0 := f and write:

q (k4+1)q | k k I k k|4 1 !
=33 ;Ej|w:%;5j|w</R§f) =§j|EjIWIRJ-IG(’Rk| /80)- @)
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For an integer /, by T; we denote the set of pairs (k, j) such that |E%| >0 and
1
2 < G / go <2 (kj)er

and observe that Ty NTyw = @, I #1”. For fixed [ the family {U} }i(=l)1 consists of
maximal rectangles from the collection {Rf;}(,g j)er, » that is, each R§ with (k,j) € T}
is contained in some Ul-l (or coincides with it). In [8, p. 8] it was shown that l7il are
disjoint for fixed /, where we denote (7; = ﬁf if U =

Let x! be the characteristic function of the union of the sets E’; overall (k,j) €T
such that R’j‘- C U!. Further, following [8, (2.13)], we arrive to

i(l)

Y ELIRE =Y X [ w06 )

(k. J)€T =1 (k,j): REcU!
i(l) . .
<X [, vy o))" (25)
i=1/RS !
Let U} = (0,a) x (0,b!). By analogy with [8, (2.8)], we need to confirm that
! q na-1(4\" 1%
Jop 2wty 00)* < aman {20t () Bl o

We have R% = U/ U {(al,00) x (bl,00)} U{(0,dl] x [bl,00)} U{[al,e0) x (0,5]}. On
Ul-l, on the strength of Lemma 1,

a |rlE
/ xiw(ho)? =Vyi(o, xiw) < ﬁ'Bx;w’Ui’f;'
On the rectangle (a},00) x (b, o0)

Lo — |prl|e I
~/(a§=°°)><(b§=°°) XiW|Ui |O' B }Ul |0—/(af7°<>)><(bf7oo) %lw’

and, since

7
</ oo) x (b0 %’)

= [, (-l >)<x,bﬁ>]5)

r [ l L Ry
5/a ) (x, b)) 7 /l 20wl n)di ) dx

/ (I;w)(x,bl) IL’/)(lxt (xt)dt)dx

p
g
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//b’ ( (Lw)( xy IL’ / xlxt (XI)dt>>dx
— //bl{ (Lw) xy)]ﬁ*(/:w(&y)ds /yxf(xﬁ)w(x,t)dt)

) )] P <x,y>w<x,y>}dxdy

/ bl Xl (x,0)w xl)</ [(12W)(X y)]’ 1(/:)W(s,y)ds> dy)dtdx
5~/af /bg (I3w) (x,)] 7 ! (x.)w(x,y) dxdy,

then

[ 114
wa%wmﬂwb

< }Uf}?,(f [ ] eyt )y

q

/ bl x’ X5 Ewlx1) (/t [(I2W)(x y)] ’ 1(/;)w(s,y)ds> dy>d1>rdx

| f};;(— [ )] 020) ) syt s
o [ H xt>(/ (5w ()]
X (/x w(s, y)ds) dy)dxdt) }U |§B;IC "

In the first of the two mixed cases — (0,al] x [b!, ) and [a},0) x (0,b!] — we ob-
tain, by applying the criteria for the validity of the one—dimensional weighted Hardy

!
inequality for f7(x) = fé)" o (x,y)dy (see [5, §1.3.2]):

-1 /17q/ Lol
q () mmn%w%W|J“

r

(o) ()7

10

g n1— l [

= [ ) (o) )] sy

') [ ([, M av) [(0) (6] dx

< ( sz D) [0 )7 ( [, (s )ar)aa o

[

<</Oui[(lgw)(x,bf)]§[(IQG)(xb L’ / 2 (e, ) w(x, t)dt)dx) |Ul|

~
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/Oué [(120) (x.6)] ¥ /b;dy [— [(Bw)(x.y)] 7 (/ymxil(x,t)w(x,t)dtﬂ dx) ’ }Uil}c%r

[ 0 wt] 7| [ (0000 P et

ol ( [ wisas) ( /y % (xJ)w(x,t)dt)} dx> % ol
<wllb(f [ [(lzw )] [(20)(5.9)] 7 2} eyt ) dy

+p [(Bw) ()] 7

x [(Lo)(x,y)] v </xww(s7y)ds> (wail(x,t)w(xj)dt)]dxdy)z < |Ul|gB;1( W

The second mixed case can be estimated in a similar way. So, (26) is proven. Continu-
ing (25), we obtain, using [8, (2.11)] and Hélder’s inequality with r/q, p/q:

Y [Ej], IRl

(k,j)€T;
<4maX{ﬁ 2 (1) }zB, Ul
DRy Ok

q q
D) (52 )

q
ya-! A\ \5—lq/ppa v
B.,2q(p 27 PBY go |
r ! {g>21-3}

where x; =Y j: u () €T Xk - The last estimate is valid due to the fact that for fixed
' ” J

B.2q(p")"!

max{
<4max{[3,2q )it
{

[ the rectangles l7il do not intersect (see [8, p. 8]). Combining it with (24), we obtain,
taking into account the relation

- 2r-! -
221(1’ I)X{g>2l—3} < ﬁg” ! for p>1,
1

Holder’s inequality with /g and p/q and the fact that all E’; are disjoint:

2\4
<332 3 IR

(k. j)ET;

(3 {20 (1) )32 (27 o)’
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() manfpanr (1)) (£, (3200 [ o)’
o mfp i () Y2 (o) e

,
Combining (27) with (23) we arrive at the required upper bound. In detail, the estimate

L, (sz)qwgc</]Rz f%)'l’(/Rz (12f)4w>;/+cq</R2 f%)z

follows from (5) combined with (23) and (27), where C := B,,- Cg g~ .
(Necessity) The lower bound for C was established in [9, Theorem 3]. [

SR

REMARK 1. (i) The necessity part of Theorem 4 and, therefore, the lower bound
for C, is valid for all weights independently of the conditions (3) and (4).

(i1) Similarly to the case p < g, the sufficient part of Theorem 4 and the right hand
side of the inequality (22) has blow—up effect because

lim B(p,q,y)= lim B*(¢,p',y")=ce.
q—p—0 q—p—0
Below we give examples of weight functions satisfying (3) and (4).

EXAMPLE 1. A function o(x,y) = (x+y)? satisfies (3). One can take -5 <

2 S
y < 1. Indeed, since [j(s+y)"ds = W, Jo(x+1)tdr = (”y)xlfxm and
(Lo)(x,y) = (Hl)lw [(x +y)TH2 X2 y”z} then, to satisfy (3), we must have

(h0)(x)oy) > (1= 7)( [ ot as) ([ oten)ar)
that is

(x—|—y)T [(x+y)r+2 _xr+2 _yr+2}
T+2

This is the same as

T+2 T+2
e () ()
Xty X+Yy

> (1 —2/1(1;4—2) [1_ (x_);yyﬂ} [1_ (XXT))TH}. 28)
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Suppose that y < x. Then
T+1 T+1

J:l_L<L> _L(L>

X+y\x—+y X+y\x—+y
:1_<L>T+I+L[<L>T+l_<i>r+l:|

Xty x+yl\x+y Xty

X T+1

()7

x+y

and (28) follows from 1 > =02 Thys y> L with 7> 1.

EXAMPLE 2. A weight w(x,y) = (x+y) " satisfies (4) for p > 2, since [;"w(s,y)

0o x+ty)l=P " X+v)2P . .
ds= [[w(x,t)dt = % and (Lw)(x,y) = %,that is, automatically,

oo oo

1w 3wy > (=) ([ wis)ds) ([ winyar).

x y
4. A sufficient boundedness condition and the compactness criterion

In this part we find an independent of Theorem 4 sufficient condition for the va-
lidity of (1), which consists of three functionals B;, i = 1,2,3 tendingto A; as g T p.

THEOREM 5. Let 1 < q < p <. The inequality (1) holds if ¥;_, Bi(p,q) < =,
besides, C < Cl,lz?lei(nyJ)‘

Proof. The proof is analogous to Theorem 4. The only difference is that instead
of Lemmas | and 2 one should apply the estimates from Lemmas 3 and 4. [

Observe that the lower estimate on C found by E. Sawyer in Theorem 1 is valid
forall 1 < p,q < eo. This fact entails in combination with Theorem 5 the inequality:

3

Ai(p,q) <C < C11 Y Bi(p,q). (29)
1 i=1

W | =
-Mw

1

Moreover,
limB;(p,q) = Ai(p,p), i=1,2,3,
qlp

and, unlike the sufficient part of Theorem 4, there is no blow—up effect in the right hand
side of the inequality (29) (see also [9, Remark 1]).
In conclusion, let us state the compactness criterion for I: : L} (R%) — Li(R2).

THEOREM 6. Let 1 < g < p < oo. Assume that weights ¢ and w satisfy a.e. on
]R?|r the conditions (3) and (4), respectively. Then the Hardy operator I, : L (Ri) —
LI(R2) is compact if and only if B < o.
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Details of the proof of Theorem 6 can be found in [10, Theorem 5]. Compactness

criteria for L: : LI (R%) — L},(R?) in the case 1 < p < g were found in [10].
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