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NEW ORDERS AMONG HILBERT SPACE OPERATORS

MOHAMMAD SABABHEH ∗ AND HAMID REZA MORADI

Abstract. This article introduces several new relations among related Hilbert space operators. In
particular, we prove some Löewner partial orderings among T , |T | , RT , I T , |T |+ |T ∗| and
many other related forms, as a new discussion in this field; where RT and I T are the real and
imaginary parts of the operator T . Our approach will be based on proving the positivity of some
new matrix operators, where several new forms for positive matrix operators will be presented
as a key tool in obtaining the other ordering results. As an application, we present some results
treating numerical radius inequalities in a way that extends some known results in this direction,
in addition to some results about the singular values.
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