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CHARACTERIZATIONS OF LIPSCHITZ FUNCTIONS

VIA THE COMMUTATORS OF MAXIMAL FUNCTION

IN ORLICZ SPACES ON STRATIFIED LIE GROUPS

VAGIF S. GULIYEV

(Communicated by J. Soria)

Abstract. We give necessary and sufficient conditions for the boundedness of the maximal com-
mutators Mb , the commutators of the maximal operator [b,M] and the commutators of the sharp
maximal operator [b,M� ] in Orlicz spaces LΦ(G) on any stratified Lie group G when b be-
longs to Lipschitz spaces Λ̇β (G) . We obtain some new characterizations for certain subclasses
of Lipschitz spaces Λ̇β (G) .

1. Introduction

The aim of this paper is to study the maximal commutators Mb , the commutators
of the maximal operator [b,M] and the commutators of the sharp maximal operator
[b,M�] in the Orlicz spaces LΦ(G) on any stratified Lie group G .

Let G be a stratified Lie group, f ∈ L1
loc(G) and 0 � α < Q , where Q is the

homogeneous dimension of G . The fractional maximal function Mα f is defined by

Mα f (x) = sup
B�x

|B|−1+ α
Q

∫
B
| f (y)|dy,

and the sharp maximal function of Fefferman and Stein M� f is defined by

M� f (x) = sup
B�x

|B|−1
∫

B
| f (y)− fB|dy,

where the supremum is taken over all balls B ⊂ G containing x , and |B| is the Haar
measure of the G -ball B . When α = 0, we simply denote by M = M0 .

The maximal commutator generated by b ∈ L1
loc(G) and M is defined by

Mb( f )(x) = sup
B�x

|B|−1
∫

B
|b(x)−b(y)|| f (y)|dy.
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The commutators generated by b ∈ L1
loc(G) and M , M� are defined by

[b,M] f (x) = b(x)M f (x)−M(b f )(x)

and

[b,M�] f (x) = b(x)M� f (x)−M�(b f )(x).

In 1978, Janson [15] gave some characterizations of the Lipschitz space Λ̇β (Rn)
via commutator [b,T ] and the author proved that b ∈ Λ̇β (Rn) if and only if [b,T ] is
bounded from Lp(Rn) to Lq(Rn) , where 1 < p < n/β , 1/p− 1/q = β/n and T is
the classical singular integral operator (see also [18]). The mapping properties of Mb ,
[b,M] and [b,M�] have been studied extensively by many authors. See, for instance,
[2, 7, 12, 24]. The operator Mb plays an important role in the study of commutators of
singular integral operators with BMO symbols (see, for instance, [1, 7, 10, 13, 14, 17,
20]). The operators M , [b,M] , Mb and [b,M�] play an important role in real and har-
monic analysis and applications (see, for example [4, 6, 5, 21, 24, 25]). The nonlinear
commutator of maximal function [b,M] can be used in studying the product of a func-
tion in H1 and a function in BMO (see [3] for instance). Note that, the boundedness
of the operator Mb on Lp(Rn) spaces was proved by Garcia-Cuerva et al. [7]. In [2]
by Bastero et al. studied the necessary and sufficient condition for the boundedness of
[b,M] on Lp(Rn) spaces.

In [11] recently gave necessary and sufficient conditions for the boundedness of the
fractional maximal commutators in the Orlicz spaces LΦ(G) on any stratified Lie group
G when b belongs to BMO(G) spaces, and was obtained some new characterizations
for certain subclasses of BMO(G) spaces. Stratified groups appear in quantum physics
and many parts of mathematics, including Fourier analysis, several complex variables,
geometry, and topology [4, 6, 22]. The geometric structure of stratified Lie groups
is so good that they inherit many analysis properties from the Euclidean spaces [8,
21]. Apart from this, the difference between the geometric structures of Euclidean
spaces and stratified Lie groups makes the study of the function spaces on them more
complicated. However, the study of Orlicz spaces on stratified Lie groups is quite a few,
which makes it deserve a further investigation. In 2017, Zhang [23] considered some
new characterizations of the Lipschitz spaces Λ̇β (Rn) via the boundedness of maximal
commutator Mb and the (nonlinear) commutator [b,M] in Lebesgue spaces and Morrey
spaces on Euclidean spaces.

Inspired by the above literature, our main aim is to characterize the commutator
functions b , involved in the boundedness on Orlicz spaces of the maximal commutator
Mb (Theorems 3, 4), the commutator of the maximal operator [b,M] (Theorem 5) and
the commutator of the sharp maximal operator [b,M�] (Theorem 6), see [9]. Actually,
such a characterization was done in [12, Theorems 4.5, 4.9, 4.13] in the Eucledian case
G = Rn .

By A � B we mean that A � CB with some positive constant C independent of
appropriate quantities. If A � B and B � A , we write A ≈ B and say that A and B are
equivalent.
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2. Notations

We first recall some preliminaries concerning stratified Lie groups (or so-called
Carnot groups). We refer the reader to the books [4, 6, 21] for analysis on stratified Lie
groups. Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume that
there is a direct sum vector space decomposition

G = V1⊕·· ·⊕Vm (1)

so that each element of Vj , 2 � j � m , is a linear combination of ( j − 1)th order
commutator of elements of V1 . Equivalently, (1) is a stratification provided [Vi,Vj] =
Vi+ j whenever i+ j � m and [Vi,Vj] = 0 otherwise. Let X = {X1, . . . ,Xn} be a basis for
V1 and Xi j, 1 � i � k j, for Vj consisting of commutators of length j . We set Xi1 = Xi,
i = 1, . . . ,n and k1 = n , and we call Xi1 a commutator of length 1.

If G is the simply connected Lie group associated with G , then the exponential
mapping is a global diffeomorphism from G to G . Thus, for each g ∈ G , there is

x = (xi j) ∈ RN , 1 � i � k j, 1 � j � m , N =
m
∑
j=1

k j , such that g = exp(∑xi jXi j) . A

homogeneous norm function | · | on G is defined by |g| = (
∑ |xi j|2·m!/ j

)1/(2·m!)
, and

Q =
m
∑
j=1

jk j is said to be the homogeneous dimension of G , since d(δrx) = rQdx for

r > 0. The dilation δr on G is defined by

δr(g) = exp
(
∑r jxi jXi j

)
if g = exp

(
∑xi jXi j

)
.

Since G is nilpotent, the exponential map is diffeomorphism from G onto G

which takes Lebesgue measure on G to a biinvariant Haar measure dx on G . The
group identity of G will be referred to as the origin and denoted by e .

A homogenous norm on G is a continuous function x → ρ(x) from G to [0,∞) ,
which is C∞ on G\{0} and satisfies ρ(x−1) = ρ(x) , ρ(δtx) = tρ(x) for all x ∈ G ,
t > 0; ρ(e) = 0 (the group identity). Moreover, there exists a constant c0 � 1 such
that ρ(xy) � c0 (ρ(x)+ ρ(y)) for all x,y ∈ G . With this norm, we define the G -ball
centered at x with radius r by B(x,r) = {y ∈ G : ρ(y−1x) < r} , and we denote by
Br = B(e,r) = {y ∈ G : ρ(y) < r} the open ball centered at e , the identity element of

G , with radius r . By
�
B(x,r) = G\B(x,r) we denote the complement of B(x,r) . One

easily recognizes that there exists c1 = c1(G) such that

|B(x,r)| = c1 rQ, x ∈ G, r > 0.

The most basic partial differential operator in a stratified Lie group is the sub-Laplacian
associated with X is the second-order partial differential operator on G given by L =
∑n

i=1 X2
i .

First, we recall the definition of Young functions.

DEFINITION 1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is
convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) = ∞ .
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From the convexity and Φ(0) = 0 it follows that any Young function is increasing.
If there exists s∈ (0,∞) such that Φ(s) = ∞ , then Φ(r) = ∞ for r � s . The set of Young
functions such that

0 < Φ(r) < ∞ for 0 < r < ∞
will be denoted by Y . If Φ ∈ Y , then Φ is absolutely continuous on every closed
interval in [0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 � s � ∞ , let

Φ−1(s) = inf{r � 0 : Φ(r) > s}.
If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ .

For a Young function Φ , the complementary function Φ̃(r) is defined by

Φ̃(r) =
{

sup{rs−Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞),
∞ , r = ∞.

It is well known that

r � Φ−1(r)Φ̃−1(r) � 2r for r � 0. (2)

A Young function Φ is said to satisfy the Δ2 -condition, written Φ∈Δ2 , if Φ(2r)�
CΦ(r) , r > 0 for some C > 1. If Φ ∈ Δ2 , then Φ ∈Y . A Young function Φ is said to
satisfy the ∇2 -condition, denoted also by Φ ∈ ∇2 , if Φ(r) � 1

2C Φ(Cr) , r � 0 for some
C > 1.

DEFINITION 2. (Orlicz Space). For a Young function Φ , the set

LΦ(G) =
{

f ∈ L1
loc(G) :

∫
G

Φ(k| f (x)|)dx < ∞ for some k > 0

}
is called Orlicz space. The space LΦ

loc(G) is defined as the set of all functions f such
that f χB ∈ LΦ(G) for all balls B ⊂ G .

LΦ(G) is a Banach space with respect to the norm

‖ f‖LΦ(G) = inf

{
λ > 0 :

∫
G

Φ
( | f (x)|

λ

)
dx � 1

}
.

If Φ(r) = rp, 1 � p < ∞ , then LΦ(G) = Lp(G) . If Φ(r) = 0, 0 � r � 1 and
Φ(r) = ∞ , r > 1, then LΦ(G) = L∞(G) .

For a measurable set D⊂G , a measurable function f and t > 0, let m(D, f , t) =
|{x ∈ D : | f (x)| > t}|. In the case D = G , we shortly denote it by m( f , t) .

DEFINITION 3. The weak Orlicz space

WLΦ(G) = { f ∈ L1
loc(G) : ‖ f‖WLΦ < ∞}

is defined by the norm

‖ f‖WLΦ = inf
{

λ > 0 : sup
t>0

Φ(t)m
( f

λ
, t

)
� 1

}
.
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We note that ‖ f‖WLΦ � ‖ f‖LΦ .
The following analogue of the Hölder’s inequality is well known (see, for example,

[19]).

THEOREM 1. Let D ⊂ G be a measurable set and f ,g be measurable functions
on D. For a Young function Φ and its complementary function Φ̃ , the following in-
equality is valid ∫

D
| f (x)g(x)|dx � 2‖ f‖LΦ(D)‖g‖LΦ̃(D). (3)

By elementary calculations we have the following property.

LEMMA 1. Let Φ be a Young function and D be a set in G with finite Haar
measure. Then

‖χD‖LΦ(G) = ‖χD‖WLΦ(G) =
1

Φ−1 (|D|−1)
.

By Theorem 1, Lemma 1 and (2) we get the following estimate.

LEMMA 2. For a Young function Φ and any G -ball B, the following inequality
is valid ∫

B
| f (y)|dy � 2|B|Φ−1 (|B|−1)‖ f‖LΦ(B). (4)

3. Characterization of Lipschitz spaces via maximal commutator functions

For a given G -ball B and 0 � α < Q , we define the following maximal function:

Mα ,B f (x) = sup
B⊇B′�x

|B′|−1+ α
Q

∫
B′
| f (y)|dy,

where the supremum is taken over all balls B′ such that x ∈ B′ ⊆ B . Moreover, we
denote by MB = M0,B when α = 0.

In order to prove our main theorem, we also need the following lemma.

LEMMA 3. [11] Let 0 � α < Q, and f : G → R be a locally integrable function.

(1) If B0 is a ball on G , then |B0|
α
Q � Mα

(
χB0

)
(x) = Mα ,B0

(
χB0

)
(x) for every

x ∈ B0 .
(2) Mα

(
f χB

)
(x) =Mα ,B( f )(x) and Mα

(
χB

)
(x)= Mα ,B

(
χB

)
(x) = |B| α

Q for every
x ∈ B ⊂ G .

The following result completely characterizes the boundedness of Mα on Orlicz
spaces.

THEOREM 2. [11] Let 0 < α < Q, Φ,Ψ be Young functions and Φ ∈ Y . The
condition

rα Φ−1(r−Q)
� CΨ−1(r−Q)

(5)
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for all r > 0 , where C > 0 does not depend on r , is necessary and sufficient for the
boundedness of Mα from LΦ(G) to WLΨ(G) . Moreover, if Φ ∈ ∇2, the condition (5)
is necessary and sufficient for the boundedness of Mα from LΦ(G) to LΨ(G) .

REMARK 1. Note that Theorem 2 in the case G = Rn were proved in [12].

In this section, as an application of Theorem 2 we consider the boundedness of
Mb,α on Orlicz spaces when b belongs to the Lipschitz space, by which some new
characterizations of the Lipschitz spaces are given.

Next we give the definition of the Lipschitz spaces on G , and state some basic
properties and useful lemmas.

DEFINITION 4. (Lipschitz-type spaces on G ) Let 0 < β < 1.
(1) We say a function b belongs to the Lipschitz space Λ̇β (G) if there exists a

constant C such that for all x,y ∈ G ,

|b(x)−b(y)|� Cρ(y−1x)β .

The smallest such constant C is called the Λ̇β (G) norm of b and is denoted by ‖b‖Λ̇β (G) .

(2) [16] The space Lipβ (G) is defined to be the set of all locally integrable func-
tions b , i.e., there exists a positive constant C , such that

sup
B

1

|B|1+β/Q

∫
B
|b(x)−bB|dx � C,

where the supremum is taken over every ball B⊂G containing x and bB = 1
|B|

∫
B b(y)dy .

The smallest such constant C is called the Lipβ (G) norm of b and is denoted by
‖b‖Lipβ (G) .

To prove the theorems, we need auxiliary results. The first one is the following
characterizations of Lipschitz space (see [16]).

LEMMA 4. Let 0 < β < 1 and b ∈ L1
loc(G) , then

(1)
‖b‖Λ̇β (G) ≈ ‖b‖Lipβ (G).

(2) Let B1 ⊂ B2 ⊂ G and b ∈ Lipβ (G) , where B1 and B2 are balls. Then there
exists a constant C depends only on B1 and B2 such that

|bB1 −bB2 | � C‖b‖Lipβ (G) |B2|
β
Q .

(3) There exists a constant C depends only on β such that

|b(x)−b(y)|� C‖b‖Lipβ (G) |B2|
β
Q

holds for any ball B containing x and y.
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LEMMA 5. Let 0 < β < 1 and b∈ Λ̇β (G) . Then the following pointwise estimate
holds

Mb f (x) � C‖b‖Λ̇β (G) Mβ f (x).

Proof. If b ∈ Λ̇β (G) , then

Mb( f )(x) = sup
B�x

|B|−1
∫

B
|b(x)−b(y)|| f (y)|dy

� C‖b‖Λ̇β (G) sup
B�x

|B|−1+ β
Q

∫
B
| f (y)|dy

= C‖b‖Λ̇β (G) Mβ f (x). �

LEMMA 6. If b ∈ L1
loc(G) and B0 := B(x0,r0) , then

|b(x)−bB0| � MbχB0(x) for every x ∈ B0.

Proof. For x ∈ B0 , we get

MbχB0(x) = sup
B�x

|B|−1
∫

B
|b(x)−b(y)|χB0(y)dy

= sup
B�x

|B|−1
∫

B∩B0

|b(x)−b(y)|dy

� |B0|−1
∫

B0∩B0

|b(x)−b(y)|dy

�
∣∣|B0|−1

∫
B0

(b(x)−b(y))dy
∣∣ |b(x)−bB0|. �

The following theorem is valid.

THEOREM 3. Let 0 < β < 1 , b∈ L1
loc(G) , Φ,Ψ be Young functions and Φ ∈ Y .

1. If Φ ∈ ∇2 and the condition

t−
β
Q Φ−1(t) � CΨ−1(t), (6)

holds for all t > 0 , where C > 0 does not depend on t , then the condition b ∈ Λ̇β (G)
is sufficient for the boundedness of Mb from LΦ(G) to LΨ(G) .

2. If the condition

Ψ−1(t) � CΦ−1(t)t−
β
Q , (7)

holds for all t > 0 , where C > 0 does not depend on t , then the condition b ∈ Λ̇β (G)
is necessary for the boundedness of Mb from LΦ(G) to LΨ(G) .

3. If Φ ∈ ∇2 and Ψ−1(t) ≈ Φ−1(t)t−
β
Q , then the condition b ∈ Λ̇β (G) is neces-

sary and sufficient for the boundedness of Mb from LΦ(G) to LΨ(G) .
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Proof. (1) The first statement of the theorem follows from Theorem 2 and Lemma
5.

(2) We shall now prove the second part. Suppose that Ψ−1(t) � Φ−1(t)t−
β
Q and

Mb,α is bounded from LΦ(G) to LΨ(G) . Choose any ball B in G , by Lemmas 1 and 2

1

|B|1+ β
Q

∫
B
|b(y)−bB|dy =

1

|B|1+ β
Q

∫
B

∣∣∣∫
B
(b(y)−b(z))dz

∣∣∣dy

� 1

|B|1+ β
Q

∫
B
Mb

(
χB

)
(y)dy

� 2Ψ−1(|B|−1)

|B| β
Q

‖Mb
(
χB

)‖LΨ(B)

� C

|B| β
Q

Ψ−1(|B|−1)
Φ−1(|B|−1)

� C.

Thus by Lemma 4 we get b ∈ Λ̇β (G) .
(3) The third statement of the theorem follows from the first and second parts of

the theorem. �

If we take Φ(t) = t p and Ψ(t) = tq with 1 � p < ∞ and 1 � q � ∞ at Theorem
3, we have the following result.

COROLLARY 1. Let 0 < β < 1 , b ∈ L1
loc(G) , 1 < p < q � ∞ and 1

p − 1
q = β

Q .

Then the condition b ∈ Λ̇β (G) is necessary and sufficient for the boundedness of Mb

from Lp(G) to Lq(G) .

REMARK 2. Note that Theorem 3 in the case G = Rn were proved in [12].

The following theorem is valid.

THEOREM 4. Let 0 < β < 1 , b∈ L1
loc(G) , Φ,Ψ be Young functions and Φ ∈ Y .

1. If condition (6) holds, then the condition b∈ Λ̇β (G) is sufficient for the bound-
edness of Mb from LΦ(G) to WLΨ(G) .

2. If condition (7) holds and t1+ε

Ψ(t) is almost decreasing for some ε > 0 , then the

condition b∈ Λ̇β (G) is necessary for the boundedness of Mb from LΦ(G) to WLΨ(G) .

3. If Ψ−1(t) ≈ Φ−1(t)t−
β
Q and t1+ε

Ψ(t) is almost decreasing for some ε > 0 , then

the condition b ∈ Λ̇β (G) is necessary and sufficient for the boundedness of Mb from
LΦ(G) to WLΨ(G) .

Proof. (1) The first statement of the theorem follows from Theorem 2 and Lemma
5.
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(2) For any fixed ball B0 such that x ∈ B0 by Lemma 6 we have |b(x)− bB0 | �
MbχB0(x) . This together with the boundedness of Mb from LΦ(G) to WLΨ(G) and
Lemma 1

|{x ∈ B0 : |b(x)−bB0| > λ}|� |{x ∈ B0 : MbχB0(x) > λ}|
� 1

Ψ
(

λ
C‖χB0

‖LΦ

) =
1

Ψ
(

λ Φ−1(|B0|−1)
C

) .

Let t > 0 be a constant to be determined later, then∫
B0

|b(x)−bB0|dx =
∫ ∞

0
|{x ∈ B0 : |b(x)−bB0| > λ}|dλ

=
∫ t

0
{x ∈ B0 : |b(x)−bB0| > λ}|dλ

+
∫ ∞

t
|{x ∈ B0 : |b(x)−bB0| > λ}|dλ

� t|B0|+
∫ ∞

t

1

Ψ
(

λ Φ−1(|B0|−1)
C

)dλ

� t |B0|+ t

Ψ
(

tΦ−1(|B0|−1)
C

) ,

where we use almost decreasingness of t1+ε

Ψ(t) in the last step.

Set t = C|B0|
β
Q in the above estimate, we have∫

B0

|b(x)−bB0|dx � |B0|1+ β
Q .

Thus by Lemma 4 we get b ∈ Λ̇β (G) since B0 is an arbitrary ball in G .
(3) The third statement of the theorem follows from the first and second parts of

the theorem. �

If we take Φ(t) = t p and Ψ(t) = tq with 1 � p < ∞ and 1 � q � ∞ at Theorem
4, we have the following result.

COROLLARY 2. Let 0 < β < 1 , b ∈ L1
loc(G) , 1 � p < q � ∞ and 1

p − 1
q = β

Q .

Then the condition b ∈ Λ̇β (G) is necessary and sufficient for the boundedness of Mb

from Lp(G) to WLq(G) .

REMARK 3. Note that Theorem 4 in the case G = Rn were proved in [12, Corol-
lary 4.6].
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4. Commutators of maximal function in Orlicz spaces

For a function b defined on G , we denote

b−(x) :=

{
0 , if b(x) � 0

|b(x)|, if b(x) < 0

and b+(x) := |b(x)|−b−(x) . Obviously, b+(x)−b−(x) = b(x) .
The following relations between [b,M] and Mb are valid. Let b be any non-

negative locally integrable function. Then for all f ∈ L1
loc(G) and x ∈ G the following

inequality is valid ∣∣[b,M] f (x)
∣∣ =

∣∣b(x)M f (x)−M(b f )(x)
∣∣

=
∣∣M(b(x) f )(x)−M(b f )(x)

∣∣
� M(|b(x)−b| f )(x) = Mb( f )(x).

If b is any locally integrable function on G , then

|[b,M] f (x)| � Mb( f )(x)+2b−(x)M f (x), x ∈ G (8)

holds for all f ∈ L1
loc(G) (see, for example, [5, 24]).

Obviously, the Mb and [b,M] operators are essentially different from each other
because Mb is positive and sublinear and [b,M] is neither positive.

LEMMA 7. Let b∈ L1
loc(G) and Φ be a Young function. Then the following state-

ments are equivalent.
1. b ∈ Λ̇β (G) and b � 0 .
2. For all Φ ∈ Δ2 we have

sup
B

|B|− β
Q Φ−1(|B|−1)‖b(·)−MB(b)(·)‖LΦ(B) � C. (9)

3. There exists Φ ∈ Δ2 such that (9) is valid.

Proof. (1) ⇒ (2) : Let b be any non-negative locally integrable function. Then

|[b,M] f (x)| � Mb( f )(x), x ∈ G (10)

holds for all f ∈ L1
loc(G) .

By Lemmas 3 and 5, for all x ∈ B , we have∣∣[b,M]
(
χB

)
(x)

∣∣, ∣∣[|b|,M]
(
χB

)
(x)

∣∣ � ‖b‖Λ̇β
Mβ

(
bχB

)
(x)

� ‖b‖Λ̇β
|B| β

Q , (11)

and ∣∣[b,M]
(
χB

)
(x)

∣∣, ∣∣[|b|,M]
(
χB

)
(x)

∣∣ � ‖b‖Λ̇β
Mβ

(
bχB

)
(x) � ‖b‖Λ̇β

|B| β
Q . (12)
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For any fixed G -ball B ,

I =|B|− β
Q Ψ−1(|B|−1)‖b(·)−MB(b)(·)‖LΨ(B) (13)

By Lemma 3, for any x ∈ B ,

b(x)−MB(b)(x) =
(
b(x)−MB(b)(x)

)
=

(
b(x)MB

(
χB

)
(x)−M

(
bχB

)
(x)

)
= [b,M]

(
χB

)
(x).

Therefore, from (11) we obtain

I = |B|− β
Q Ψ−1(|B|−1)‖b(·)−MB(b)(·)‖LΨ(B)

= |B|− β
Q Ψ−1(|B|−1)‖b(·)M(χB)(·)−M(bχB)(·)‖LΨ(B)

= |B|− β
Q Ψ−1(|B|−1)‖[b,M](χB)‖LΨ(B) (14)

� |B|− β
Q Ψ−1(|B|−1)‖b‖Λ̇β

|B| β
Q ‖χB‖LΨ � ‖b‖Λ̇β

.

By (14), we get

|B|− β
Q Ψ−1(|B|−1)∥∥b(·)−MB(b)(·)∥∥LΨ(B) � ‖b‖Λ̇β

,

which leads us to (9) since B is arbitrary.
(3) ⇒ (1) : Now, let us prove b ∈ Λ̇β (G) and b � 0. For any G -ball B , let

E = {y ∈ B : b(y) � bB} and F = {y ∈ B : b(y) > bB} . The following equality is true
(see [2, page 3331]): ∫

E
|b(y)−bB|dy =

∫
F
|b(y)−bB|dy.

Since b(y) � bB � |bB| � MB(b)(y) for any y ∈ E , we obtain

|b(y)−bB| �
∣∣b(y)−MB(b)(y)

∣∣, y ∈ E.

Then from Lemma 2 and (14) we have

1

|B|1+ β
Q

∫
B
|b(y)−bB|dy =

2

|B|1+ β
Q

∫
E
|b(y)−bB|dy

� 2

|B|1+ β
Q

∫
E

∣∣b(y)−MB(b)(y)
∣∣dy

� 2

|B|1+ β
Q

∫
B

∣∣b(y)−MB(b)(y)
∣∣dy.
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Thus by Lemma 4 we get b ∈ Λ̇β (G) .
In order to prove b � 0, it suffices to show b− = 0. Observe that 0 � b+(y) �

|b(y)| � MB(b)(y) for y ∈ B , therefore, for any y ∈ B , there holds

0 � b−(y) � MB(b)(y)−b+(y)+b−(y) = MB(b)(y)−b(y).

Then for any G -ball B , we have

1
|B|

∫
B
b−(y)dy � 1

|B|
∫

B

(
MB(b)(y)−b(y)

)
dy

=
1
|B|

∫
B

∣∣b(y)−MB(b)(y)
∣∣dy

� |B| β
Q

|B|1+ β
Q

∫
B

∣∣b(y)−MB(b)(y)
∣∣dy � C |B| β

Q .

Let |B| → 0 with x ∈ B . Lebesgue’s differentiation theorem assures that

0 � b−(x) = lim
|B|→0

1
|B|

∫
B
b−(y)dy = 0.

Thus b ∈ Λ̇β (G) and b � 0. The proof of Lemma 7 is completed. �

THEOREM 5. Let 0 < β < 1 and b be a locally integrable function. Suppose that

Φ,Ψ be Young functions, Φ ∈ Y ∩∇2 and Ψ−1(t) ≈ Φ−1(t)t−
β
Q . Then the following

statements are equivalent.
1. b ∈ Λ̇β (G) and b � 0 .

2. [b,M] is bounded from LΦ(G) to LΨ(G) .
3. There exists a constant C > 0 such that

sup
B

|B|− β
Q Ψ−1(|B|−1)∥∥b(·)−MB(b)(·)∥∥LΨ(B) � C. (15)

4. There exists a constant C > 0 such that

sup
B

|B|−1− β
Q

∥∥b(·)−MB(b)(·)∥∥L1(B) � C. (16)

Proof. Part “(1) ⇔ (3)” and part “(1) ⇔ (4)” follows from Lemma 7.
(1)⇒ (2) : It follows from (10) and Theorem 3 that [b,M] is bounded from LΦ(G)

to LΨ(G) since b ∈ Λ̇β (G) and b � 0.
(2) ⇒ (3) : For any fixed ball B ⊂ G and all x ∈ B , we have (see [11, pp. 13]).

M(χB)(x) = 1 and M(bχB)(x) = MB(b)(x).
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Since [b,M] is bounded from LΦ(G) to LΨ(G) , then

|B|− β
Q Ψ−1(|B|−1)‖b(·)−MB(b)(·)‖LΨ(B)

= |B|− β
Q Ψ−1(|B|−1)‖b(·)M(χB)(·)−M(bχB)(·)‖LΨ(B)

= |B|− β
Q Ψ−1(|B|−1)‖[b,M](χB)‖LΨ(B) (17)

� C|B|− β
Q Ψ−1(|B|−1)‖χB‖LΦ � C

which implies (3) since the ball B ⊂ G is arbitrary.
(3) ⇒ (4) . We deduce (16) from (15). Assume (15) holds, then for any fixed

G -ball B , it follows from Lemma 4 and (15) that

|B|−1− β
Q ‖b(·)−MB(b)(·)‖L1(B)

� 2 |B|− β
Q Ψ−1(|B|−1)∥∥b(·)−MB(b)(·)∥∥LΨ(B) � C ,

where the constant C is independent of B . So we obtain (16).
The proof of Theorem 5 is completed. �
If we take Φ(t) = t p and Ψ(t) = tq with 1 � p < ∞ and 1 � q � ∞ at Theorem

5, we have the following result.

COROLLARY 3. Let 0 < β < 1 , b ∈ L1
loc(G) , b be a locally integrable function,

1 < p < q � ∞ and 1
p − 1

q = β
Q . Then the following statements are equivalent:

1. b ∈ Λ̇β (G) and b � 0 .
2. [b,M] is bounded from Lp(G) to Lq(G) .
3. There exists a constant C > 0 such that

sup
B

1

|B| β
Q

(
1
|B|

∫
B

∣∣b(x)−MB(b)(x)
∣∣qdx

)1/q

� C.

4. There exists a constant C > 0 such that

sup
B

1

|B|1+ β
Q

∫
B

∣∣b(x)−MB(b)(x)
∣∣dx � C.

REMARK 4. Note that Theorem 5 in the case G = Rn and b � 0 were proved in
[12] and in the case G = Rn in [23].

THEOREM 6. Let 0 < β < 1 and b be a locally integrable function. Suppose that

Φ,Ψ be Young functions, Φ ∈ Y ∩∇2 and Ψ−1(t) ≈ Φ−1(t)t−
β
Q . Then the following

statements are equivalent:
1. b ∈ Λ̇β (G) and b � 0 .
2. [b,M�] is bounded from LΦ(G) to LΨ(G) .
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3. There exists a constant C > 0 such that

sup
B

|B|− β
Q Ψ−1(|B|−1)∥∥b(·)−2M�

(
bχB

)
(·)∥∥LΨ(B) � C. (18)

4. There exists a constant C > 0 such that

sup
B

|B|−1− β
Q

∥∥b(·)−2M�
(
bχB

)
(·)∥∥L1(B) � C. (19)

Proof. We only need to prove (1) ⇒ (2) , (2) ⇒ (3) , (3) ⇒ (4) and (4) ⇒ (1) .
(1) ⇒ (2) . Since b ∈ Λ̇β (G) and b � 0, then for any locally integrable function

f and a.e. x ∈ G

∣∣[b,M�] f (x)
∣∣ =

∣∣∣sup
B�x

b(x)
|B|

∫
B
| f (y)− fB|dy− sup

B�x

1
|B|

∫
B
|b(y) f (y)− (b f )B|dy

∣∣∣
� sup

B�x

1
|B|

∫
B

∣∣(b(y)−b(x)) f (y)+b(x) fB− (b f )B
∣∣dy

� sup
B�x

( 1
|B|

∫
B
|b(y)−b(x)| | f (y)|+ ∣∣b(x) fB − (b f )B

∣∣)
� ‖b‖Λ̇β

Mβ f (x)+ sup
B�x

∣∣∣b(x)
|B|

∫
B

f (z)dz− 1
|B|

∫
B
b(z) f (z)dz

∣∣∣
� ‖b‖Λ̇β

Mβ f (x)+ sup
B�x

1
|B|

∫
B
|b(x)−b(z)|| f (z)|dz

� ‖b‖Λ̇β
Mβ f (x).

Then, it follows from Theorem 2 that [b,M�] is bounded from LΦ(G) to LΨ(G) .
(2) ⇒ (3) . Assume [b,M�] is bounded from LΦ(G) to LΨ(G) , we will prove

(18). For any fixed G -ball B , we have (see [2, page 3333] or [24, page 1383] for
details)

M�
(
χB

)
(x) =

1
2

for all x ∈ B.

Then, for all x ∈ B ,

b(x)−2M�
(
bχB

)
(x) = 2

(b(x)
2

−M�
(
bχB

)
(x)

)
= 2

(
b(x)M�

(
χB

)
(x)−M�

(
bχB

)
(x)

)
= [b,M�]

(
χB

)
(x).

Since [b,M�] is bounded from LΦ(G) to LΨ(G) , then by applying Lemma 1 and
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noting that Ψ−1(t) ≈ Φ−1(t)t−
β
Q , we have

|B|− β
Q Ψ−1(|B|−1)∥∥b(·)−2M�

(
bχB

)
(·)∥∥LΨ(B)

= 2|B|− β
Q Ψ−1(|B|−1)∥∥[b,M�](χB)

∥∥
LΨ(B)

� |B|− β
Q Ψ−1(|B|−1)∥∥χB

∥∥
LΦ � 1.

which implies (18).
(3) ⇒ (4) : We deduce (18) from (19). Assume (18) holds, then for any fixed

G -ball B , it follows from Lemma 4 and (18) that

|B|−1− β
Q

∥∥∥b(·)−2M�
(
bχB

)
(·)

∥∥∥
L1(B)

� 2 |B|− β
Q Ψ−1(|B|−1)∥∥b(·)−2M�

(
bχB

)
(·)∥∥LΨ(B) � C ,

where the constant C is independent of B . So we obtain (19).
(4) ⇒ (1) . We first prove b ∈ Λ̇β (G) . For any fixed G -ball B , we have (see (2)

in [2] for details) ∣∣bB
∣∣ � 2M�

(
bχB

)
(x), for any x ∈ B. (20)

For any G -ball B , let E = {y ∈ B : b(y) � bB} and F = {y ∈ B : b(y) > bB} . The
following equality is true (see [2, page 3331]):∫

E
|b(y)−bB|dy =

∫
F
|b(y)−bB|dy.

Since b(y) � bB � |bB| � 2M�
(
bχB

)
(y) for any y ∈ E , we obtain

|b(y)−bB| �
∣∣b(y)−2M�

(
bχB

)
(y)

∣∣, y ∈ E.

Then from Lemma 2 and (14) we have

1

|B|1+ β
Q

∫
B
|b(y)−bB|dy =

2

|B|1+ β
Q

∫
E
|b(y)−bB|dy

� 2

|B|1+ β
Q

∫
E

∣∣b(y)−2M�
(
bχB

)
(y)

∣∣dy

� 2

|B|1+ β
Q

∫
B

∣∣b(y)−2M�
(
bχB

)
(y)

∣∣dy.

Applying Lemma 4 we get b ∈ Λ̇β (G) .
In order to prove b � 0, it suffices to show b− = 0.
Then, for all x ∈ B ,

2M�
(
bχB

)
(x)−b(x) �

∣∣bB
∣∣−b(x) =

∣∣bB
∣∣−b+(x)+b−(x).
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By (19), there exists a constant C > 0 such that for any G -ball B

C � 1

|B|1+ β
Q

∫
B

∣∣b(y)−2M�
(
bχB

)
(y)

∣∣dy

� 1

|B|1+ β
Q

∫
B

(
2M�

(
bχB

)
(y)−b(y)

)
dy

� 1

|B|1+ β
Q

∫
B

(∣∣bB
∣∣−b+(y)+b−(y)

)
dy

=
1

|B| β
Q

(∣∣bB
∣∣− 1

|B|
∫

B
b+(y)dy+

1
|B|

∫
B
b−(y)dy

)
.

This gives ∣∣bB
∣∣− 1

|B|
∫

B
b+(y)dy+

1
|B|

∫
B
b−(y)dy � C|B| β

Q (21)

for all balls B and the constant C is independent of B .
Let the radius of G -ball B tends to 0 (then |B| → 0) with x ∈ B , Lebesgue differ-

entiation theorem assures that the limit of the left-hand side of (21) equals to

|b(x)|−b+(x)+b−(x) = 2b−(x) = 2|b−(x)|.
Moreover, the right-hand side of (21) tends to 0. Thus, we have b− = 0. Then b ∈
Λ̇β (G) and b � 0. The proof of Theorem 6 is completed. �

REMARK 5. Theorem 6 also gives new characterizations of non-negative Lips-
chitz functions that they differ from the ones in Theorem 5.

If we take Φ(t) = t p and Ψ(t) = tq with 1 � p < ∞ and 1 � q � ∞ at Theorem
6, we have the following result.

COROLLARY 4. Let 0 < β < 1 , b ∈ L1
loc(G) , b be a locally integrable function,

1 < p < q � ∞ and 1
p − 1

q = β
Q . Then the following statements are equivalent:

1. b ∈ Λ̇β (G) and b � 0 .
2. [b,M�] is bounded from Lp(G) to Lq(G) .
3. There exists a constant C > 0 such that

sup
B

1

|B| β
Q

(
1
|B|

∫
B

∣∣b(x)−2M�
(
bχB

)
(x)

∣∣qdx

)1/q

� C.

4. There exists a constant C > 0 such that

sup
B

1

|B|1+ β
Q

∫
B

∣∣b(x)−2M�
(
bχB

)
(x)

∣∣dx � C.
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