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Abstract. We investigate the behaviour of the smallest possible constant dn in the Hardy’s in-
equality
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A new proof of the Hardy’s inequality is given which allows us to give another much simpler
proof of the upper estimation of dn

dn < 4− c

ln2 n
, c > 0.

1. Introduction

In series of papers Hardy [4, 5, 6] proved for p > 1 the inequality
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where the constant C is an absolute constant in a sense it does not depend on the

sequence {ak} and n . Initially Hardy proved the inequality (1) with the constant p2

p−1 .

Later Landau [9] proved that the constant
(

p
p−1

)p
is the smallest possible one, for

which (1) holds for every n .
For p -even integer the assumption for nonnegativity of {ak} can be dropped, and

for p = 2 the inequality (1) becomes
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There are many papers investigating different generalizations and applications of Hardy’s
inequality – see for instance [8] and the bibliography of the book [7].

Let allow the constant C in (1) to depend on n and let us denote it by dn . Then
we can write (1) for p = 2 as
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The behavior of the constant dn as a function of n was studied in many papers –
see, for instance, [1], [2], [10], [11], [12]. In [12] Herbert S. Wilf established the exact
rate of convergence of the constant dn

dn = 4− 16π2

ln2 n
+O

(
ln lnn

ln3 n

)
.

In [3] we also studied the asymptotic behavior of dn and proved that the next
inequalities are true
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where the constants c1 and c2 do not depend on n . By considering the sequence

ak =
√

k−√
k−1 , k = 1, . . . ,n

establishing the left inequality is not difficult. But the proof of the right inequality was
very complicated and we used the special properties of the space �2

+ where �p
+ is the

class of nonnegative sequences {ak} .
In this paper we give a much simpler proof of the upper estimation of dn in (4)

which could be used (with some modifications) in order to prove a similar result for
p �= 2. Our main result read as follows:

THEOREM 1. The next estimation of dn is true

dn � 4− d

ln2(n+1)
, (5)

where d = 1/4 for n � 16 , d = 1/6 for n � 7 , d = 1/8 for n � 5 and d = 1/16 for
n � 2 .

REMARK 1. The constants 1/4, 1/6, 1/8 and 1/16 in the above estimation (5)
are by no means the best ones. They could be significantly improved in a lot of ways
but that would have made the proof longer and much more complicated. Our goal was
to keep the proof as simple as possible.
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2. Proof of the Theorem 1

From Cauchy’s inequality we have for every two sequences μi and ηi , i = 1, . . .n(
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and after changing the order of summation
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Obviously
dn � max

1�i�n
Mi, so we want to minimize max
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Mi

over all sequences μ = {μi}, i = 1,2, . . . ,n , i.e. to find

min
μ
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or, at least, to make it as small as possible.

REMARK 2. By choosing, for instance,

μk = k−1/4, k = 1,2, . . . n

it is not very difficult to prove that max1�i�n Mi < 4, i.e. dn < 4. In fact, by taking the
sequence

μ2
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− (k−1)
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, k = 1,2, . . . n

the next upper estimation of dn could be proved

dn < 4− 4√
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.

It is similar to the result in [2] where the authors proved the estimation
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)2

.

Although the results of this type give better estimations for some n , asymptotically they
are worse.
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In order to prove the estimation (5) we need to make a more complicated choice
of the sequence μk .

Let
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For the first term in RHS we have (for i � 1)
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Indeed it follows from easily verifiable inequalities
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where for brevity we denoted by

f (x) = x−3/2 [ln2 x−4lnx+8
]
.

We have f (x) > 0 and f (x) is decreasing since
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By taking c = 2 for n � 16, c = 3 for n � 7, c = 4 for n � 5 and c = 8 for n � 2 we
have also the estimation
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we have from (6) and (10)
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and consequently
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.
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[2] A. ČIŽMEŠIJA, J. PEČARIĆ, Mixed means and Hardy’s inequality, Math. Inequal. Appl. 1 (1998), no.

4, 491–506.
[3] DIMITAR K. DIMITROV, IVAN GADJEV, GENO NIKOLOV, RUMEN ULUCHEV, Hardy’s inequalities

in finite dimensional Hilbert spaces, Proc. Amer. Math. Soc. 149 (2021), 2515–2529,
https://doi.org/10.1090/proc/15467 .

[4] G. H. HARDY, Notes on a theorem of Hilbert, Math. Z. 6 (1920), 314–317.
[5] G. H. HARDY, Notes on some points in the integral calculus, LI. On Hilbert’s double-series theorem,

and some connected theorems concerning the convergence of infinite series and integrals, Messenger
Math. 48 (1919), 107–112.

[6] G. H. HARDY, Notes on some points in the integral calculus, LX. An inequality between integral,
Messenger Math. 54 (1925), 150–156.

[7] A. KUFNER, L. MALIGRANDA, AND L.-E. PERSON, The Hardy Inequality: About its History and
Some Related Results, Vydavatelský servis, 2007.
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