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GENERALIZED STEVIC-SHARMA TYPE OPERATORS
FROM H* SPACE INTO BLOCH-TYPE SPACES

QIN ZHANG AND ZHITAO GUO*

(Communicated by S. Varosanec)

Abstract. The boundedness and compactness of a Stevic-Sharma type operator from H*™ space
into Bloch-type spaces are characterized.

1. Introduction

Denote by N the set of positive integers and Ny = NU{0}. Let D be the open unit
disc in the complex plane C, H(ID) the class of all analytic functions on I, S(D) the
family of all analytic self-maps of D, and H* = H(D) the space of bounded analytic
functions on I with the norm || f||cc = sup,cp | f(z)

Suppose that u is a radial weight, that is, a strictly positive continuous function
on I which is radial (i.e., t(z) = u(|z|) for each z € D). The Bloch-type space %,
consists of all f € H(D) such that sup_cp u(2)|f'(z)| < eo. %y becomes a Banach
space under the norm

I/

2, = |£(0)] +82£M(Z)|f/(1)l~

When pt(z) = 1 — |z|?, the induced space %, is the classical Bloch space. The little
Bloch-type space %, ¢ consists of those functions f in 2, satisfying the condition

lim 1(2)|f(z)| =0.

lz]—1

It is known that %, ¢ is a closed subspace of %), . For some investigations on Bloch-
type spaces and operators on them see for instance [3, 6, 8, 10, 11, 13, 14, 15, 16, 17,
19, 20, 21, 27, 28, 32, 34].

Let v € H(D) and ¢ € S(D), the multiplication and composition operators are
defined respectively by My f = y- f and Cypf = fo ¢, where f € H(ID). The product
of them is known as the weighted composition operator Wy, o f = W - f o ¢, which has
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been extensively studied. The differentiation operator D, which is defined by Df(z) =
f'(z) for f € H(D), plays an important role in operator theory and many other different
areas of mathematics.

The first papers on product-type operators including the differentiation operator
dealt with the operators DCp and CyD, (see, for example, [9, 12, 13, 17, 18]). In
[25, 26], Stevi¢ et al. introduced the following so-called Stevi¢-Sharma operator

Tungf(2) = u@)f(9(2) +v(2)f'(9(z)), [feHD),

where u,v € H(D) and ¢ € S(D). By taking some specific choices of the involving
symbols, we can obtain the general product-type operators:

Muc(p = Tu,O,(p, C(pMu = Lyo@,0,p M,D = TO,u,id»
DM, =Ty, CoD=Ty19, DCop=Thy ,,
MCoD =Toup, MuDCo=Tyup 9> CoMuD ="Touop.p,

DM,Cy =Ty,

o' or CoDMy =Ty

wopuog.gr  DCoMu= Ty (wop) ¢/ (uop).o-
For this reason, Stevi¢-Sharma operator is particularly important and has aroused
great interest of experts (see, e.g., [4, 15, 28, 29, 34, 30] and the references therein).

In [27], Stevi€ et al. introduced the following product-type operator

Tiof (2) = u(@) f"(9(2)) +v(2) /" (9(2), neNo, (D

and investigated its boundedness and compactness from a general space to Bloch-type
space. Subsequently, Abbasi in [1] studied the boundedness, compactness and essential
norm of 7./, , from Hardy space to nth weighted-type space. Abbasi and Zhu etal. in
[3, 33] charactenzed the boundedness, compactness and essential norm of 7, q, from
or to Zygmund- type space. The second author et al. investigated the boundedness and
compactness of T/, , from Hardy space [6] and O«(p,q) space [8] to Zygmund-type
space or Bloch-type space. Since the publication of [27] have also appeared several
extensions of operator (1) on the unit disc, as well as on the unit ball (see, for example,
[2,7,22,23, 24]).
In [7] we considered the following Stevi¢-Sharma type operator

T £(2) = u(2) 7 (9(2)) +v(2) " (9(z)), meNy, neN, ?)

Without loss of generality, we may let m < n. Note that when m =0 and n =1,
we get the classical Stevi¢-Sharma operator. Here we investigate the boundedness and
compactness of the operators Tumvrfp from H* space into Bloch-type spaces %, .

Throughout this paper, for nonnegative quantities A and B, we use the abbrevia-
tion A < B or B 2 A if there exists a positive constant C independent of A and B such
that A < CB.
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2. Preliminaries

In this section, we formulate some lemmas which will be used in the proofs of the
main results. The first one is well-known (see [31]).

LEMMA 1. Let f € H” and k € N. Then
sup(1— |2 M @) S [1£]le-

zeD
Forany w e D and j € N, set
1—|w?)!
fj,w(Z) = ﬁ7 zeD. 3)

It is evident that f;,, € H* and sup,cp || fjw|l~ < 1 for every j € N. Moreover, we
easily see that f;,, converges to zero uniformly on compact subsets of D as |w| — 1.

LEMMA 2. Let me Ng, n€ N and m+1 <n. Forany 0#w €D and i,k €
{m,m~+1,n,n+ 1}, there exists a function g;,, € H” such that

—k
K, WO
gi,w(w) - (1 IR ‘W|2)k7

where &y, is the Kronecker delta symbol.

Proof. Forany w € D\ {0} and constants ¢y, c,c3,c4, let

4

gW(Z) = Z ijj,w(Z)7

J=1

where f;,, is defined in (3). For each i € {m,m+ 1,n,n+ 1}, the system of linear
equations
() = (mter - (m - D)tey 52 ey 4 0830wt
(m+4)! ) pmtl wntl
(

mH (m+3) ims1)

w) = ((m+1)ley+ (m+2)ler+

1_|w|2)m+l = (I—[w]2ymHT
w' W' O

(n-g3) c

(
)=

n+1)(

3+ -———C4
(w (n'cl—|—(n—|—1)'cz—|—(n+2) c3+ 4)

(=wPyr — =) o
(n+4) ) it o w' 6i(n+l)
(A (e

w) = ((n+ 1+ (n+2)ler+ ("+3) 3+

has a unique solution ¢; j, j € {1,2,3,4} that is independent from w, since the deter-
minant of coefficient matrix

m! (m+1)! (WH2-2)! @
(m+1)! (m2)r 3 el 2 2

nt (n+1)! <"+§2>! <n+:3>! = 3! (1)t 1) (=) [(n—m)* ~1] # 0.
(n+1)! (n+2)! (n-;3)! (n-g4)!
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For such chosen numbers ¢; j, j € {1,2,3,4} the function

glw ch/fjw

satisfies the desired conditions. [J

The following lemma can be proved similar to [5, Proposition 3.11], so we omit
the details.

LEMMA 3. Let u vGH( ), @ € S(D), me Ny, neN and U be a radial weight
such that the operator Tj,, V’ tH” — %), is bounded. Then Tumvrfp H*” — %, is compact
if and only if || T,V fi Hju — 0 as k — oo for each bounded sequence {fi }ren in H™
which converges to zero uniformly on compact subsets of D as k — oo.

3. The operator T\, : H™ — 2y

In this section, we first give some necessary and sufficient conditions for the gener-
alized Stevié-Sharma type operators va’;’p :H” — %), to be bounded in different cases
involving m and n. For simplicity of the expressions, we write

En(z) =u'(2),

THEOREM 1. Let u,v € HD), ¢ € S(D), m€ Ny, n €N, m+1<n, I be the
set {m,m+ 1,n,n+ 1} and U be a radial weight. Then the following statements are
equivalent.

(i) The operator T, : H* — 2By is bounded.

(i1)
ZSUPHTMV,(pfj»iju <o and Zsup[,t |Ei(2)] < oo,
j= 1weD icl z€D
where f;,, are defined in (3).
(iii)

Proof. (1)=(ii). Assume that Tuv(p : H” — 2B, is bounded. Since for each
weD and j€{1,2,3,4}, [|fjwll- <1, we have sup,cp [T fiwlls, < oo, and
consequently

Z SUP T v(pfj WHJ,l < oo,

Jj= 1weD
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Taking f,(z) = 2" € H™, by the boundedness of T\, : H* — %, we get

o > Ty fmll 2, > sugu(Z)l(Tu’f’v’ﬁpﬁn)’(Z)l = su]gu(Z)lEm(Z)lm!,
zE zE

which yields

Sup U (2)|Em(z)] < oo “4)
zeD

Applying the operator T3/ t0 fii1(z) =2 € H® we have
o> | TN fnt1 ]2, > Sugu(2)|(va’ﬁpﬁn+1)/(Z)|
ze
= SUHI;M(ZNEm(Z)(P(Z)(mJF D!+ Epg1(2)(m+ 1)
ze

> Sup (D) B 1(2) (m+ 1)1 = sup1a(2) En (D] 1)1

from which along with (4) and the fact that |¢(z)| < 1 it follows that

Sllp,ll(Z)|Em+1 (Z)| < oo, )
z€eD

By using the function f,(z) = 7" € H*, we obtain

0o >[I T full 5, > sugu(Z)l(TJf'v’,’?pfn)’(Z)l
z€

n!
' +E,(2)n!|,

+ Ent1 (Z) (P(Z)n7m71 m

:jlel]gu(z) En(2)0(z (n—m)!

from which along with (4), (5), the triangle inequality and the fact that |p(z)| < 1 gives

Sup U (2)|En(2)] < oo (6)
zeD

Taking f,11(z) = "1 € H”, similarly we have

o > T fatillz, > suﬂgu(Z)l(va’onan)’(Z)l
zZ€

—supn(9) B0t "

TE(2) o) (n+ 1)+ Ep1(2)(n+ 1)1,

from which along with (4), (5), (6), the triangle inequality and the fact that |@(z)| < 1
it follows that

sup i (z)|Ep41(2)] < eo. (7)
zeD
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Combining (4)—(7) we can see that

D sup(z)| Ei(z)] < oo

icl z€D

(ii)=>(iii). Suppose that (ii) holds. For each i € I and @(w) # 0, Lemma 2 says
that there exist constants ¢; j, j € {1,2,3,4} such that

4
8i,p(w Zcz /qu) €H”, (3

and

—k
® ()= @(w) ik
(1=[ow)?)*
where f; () are defined in (3) and k € I. Then we have

°°>Zsup||Tumvr(lpfj<p H%’ywsup”Tuvq)gz(p H%’H

j= 1weD
1(w)[Ei(w)||@(w)['
(I=low)])"

> (W) (T8 pom) (W) = ?

From (9) it follows that for each i € I,

(W) Ei(w)| (W) Ei(w)| HOw)|Ei(w)
wb T 10MPY S b, T T00IPY oy (T lo(w)PY

. w)|E;(w w)l? A
<o sp BOVECMOO |y (o
o>y (1= 1ow)) o<}
< oo,
Consequently,
ZSUP Ei(2)|

icl z€D (1 - ‘(P( )‘ )

(iii)=-(i). Assume that (iii) holds. For any f € H”, using Lemma | we have

Tmn ,U(Z)|E,(Z)|
w@)(Tivef) (z |<l€ZIu @I1f 7 (e ())Iﬁllf\\wgw- (10)
Besides, we have
(T )(0)] <[u(0)£") (9(0))] + [v(0).£") (¢(0))]

)
u(0)] (0)
5((1 P - ()P )f”“’
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Hence T, v - H” — %), is bounded. The proof is completed. [

When m+ 1 =n, as in the proof of Lemma 2, we conclude similarly that for any
0#weD and i,k € {m,n,n+1}, there exist constants d; j, j € {1,2,3} such that the
function /= X3_ d; jfjw(z) € H™ satisfies

wk Ok

S (= [w)E

By this and in the same way as Theorem 1, we can get the following conclusion.

THEOREM 2. Let u,v € HD), ¢ € S(D), me Ny, neN, m+1=n, J be the
set {m,n+ 1} and | be a radial weight. Then the following statements are equivalent.
(i) The operator T, V’(p H*” — 3, is bounded.
(ii)
3

z sup ||TumvfprwH% < oo,
j=1weDb

and

> supp(z) |+supu( )u(2)@'(z) +V(2)] < oo,

icJ z€D

where f;,, are defined in (3).
(iii)

< oo,

u(z)|Ei(z)| w(z)|u(z)@’' (z) +V'(2)|
LT oy T T (1= P

We shall now describe the compactness of Turf'v’ﬁp acting from H” to %, .

THEOREM 3. Let u,v € HD), ¢ € S(D), m €Ny, n €N, m+1<n, I be the
set {m,m+ 1,n,n+ 1} and U be a radial weight. Suppose that Tu'v TH” — By is
bounded, then the following statements are equivalent.

(i) The operator T,y : H* — 2By is compact.
P - u
(i1)
4
im (T S .o |2, =0
Zl o)t 0T om) 1B

where f; o) are defined in (3).
(iii)

LEIE@)]
Zioi (1 [p@)PF
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Proof. (i)=(ii). Suppose that T\, : H* — 2, is compact. Let {wy}ren be
a sequence in D such that [@(wy)| — 1 as k — . Set fjr = fjp(w,)> Where j €
{1,2,3,4}, then f;; converges to zero uniformly on compact subsets of ID as k — oo.
By using Lemma 3, we have

klgn HTumvréof/,k”,%u =0,
from which along with the fact that |@(w;)| — 1 as k — o it follows that
|<p L TS oS00 2, =0,

which yields that (ii) holds.

(ii)=>(iii). Assume that (ii) holds. If ||@]|| < 1, then (iii) automatically holds.
Now we consider the case ||@[|~ = 1. Since 7,7, : H* — %, is bounded, letting
[o(w)| — 1 in (9) gives

fim  HOIEMW]
lo(m=1 (L=[e(w)P)"

where i € I. Therefore,
i MOEG
Sle@—1 (1—|e(2)]?)

(iii)=-(i). Suppose that (iii) holds. Then for every € > 0, there exists § € (0, 1)
such that

u(z)|Ei(z)|
(1=1lo@)P)
whenever § < |@(z)| < 1. Moreover, we have L; := sup,.p 1 (z)|Ei(z)| < e for each
i €1 by Theorem 1.
Let {fi}ren be a sequence in H* such that supycy || fxll S 1 and fp — O uni-
formly on compact subset of D as k& — oo. Applying Lemma 1 we have
| Tt fill 2,

=|(T O]+ sup @I T ) (2)
<[u(0) £ (9(0)) + [v(0) /" (@(0))| + X sup () | Ei(2) £ (9(2))]

<eg, i€l

icl z€D

<lu(0)|1£™ (9(0))] +[v(0 >|\f,£”)< (0))]

+Y sup u@IEQRIL (@@)+Y, sup u@IEGIL (0@)]

icl |o(z)|<8 i€l 5<|p(z)|<1
<Ju(0)|£" (¢ (0))I+IV(0)I\f;f")(<P( 0))|
Ei(z

A '+,§,5<\Z“p.<l< P

<l ()L™ (9(0)] + (O 11" (9(0)] + XL sup £ (w)| +4e. (11)

el [w|<o
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Since f; — 0 uniformly on compact subset of D as k — o, we conclude that for i € I,

fk(’) also do by Cauchy’s estimate. In particular, {¢(0)} and {w: |w| < 6} are compact
subsets of D, hence letting k — oo in (11) yields

lim [T e, < 4.

By the arbitrariness of & we can see that limy .. |7, fil|, = 0, from which by
Lemma 3 we deduce that 7,7, : H” — 2, is compact. [J

By using similar arguments it is proved the following theorem. We omit the details.

THEOREM 4. Let u,v € HD), ¢ € S(D), me Ny, neN, m+1=n, J be the
set {m,n+ 1} and W be a radial weight. Suppose that Tumvrfp :H” — %), is bounded,
then the following statements are equivalent.

(i) The operator Tumvrfp :H” — 2, is compact.

(i1)

3

Y, lim

T e =0
~ lo(w) =1 ” u.,v7(pfj7(p(w) ”%y ’

where f; o) are defined in (3).
(iii)
LEEGR] . pEREEE V)

im -+ =0.
So@-1 (I=1o@))  lerl—1  (I—]o(z))"

4. The operator 7,7, : H” — %, ¢

In this section, we study the boundedness and compactness of T,y from H* to
the little Bloch-type spaces %, .

THEOREM 5. Let u,v € HD), ¢ € S(D), me Ny, n€ N, m+1<n, I be the
set {m,m+1,n,n+ 1} and | be a radial weight. If the operator T,y : H* — Py
is bounded, then

Y lim p(z)|Ei(z)| =0. (12)

ierld—1

Proof. Suppose that T, : H® — %, is bounded. It is evident that T\, :
H* — %, is bounded, and for each f € H*, we have T, f € Py 0. Taking f,(2) =
7" € H*, we obtain

1
lim 1 (2)|En(2)| = — Lim pu(2) (T3 fin) ()] = 0. (13)

|z‘4>1 m! ‘z|~>l
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By using the function f,,+1(z) = z""! € H*, we obtain

1 . T
0= mélr_{llu( 2)|( uvq)fm-H) (2)]

= lim 1 (2)[En(2)Q(2) + Emt1(2)]

|z =1
= lim 1 (@)|En1 )] = lim 1(2)|En(2)0(2)],

from which along with (13) and the fact that |¢(z)| < 1 it follows that

lim u(z)|Ens1(z)] =0. (14)

|z]—1

Taking f,(z) = Z", we have

_m Nl
tim, (@) En @0 @) G
+Ep1(2)(z) ! #'_1)' +En(2)n!
= lim u(2)|(TiVefr) (2)| =0

|z[—1

from which along with (13), (14), the triangle inequality, and the fact that |@(z)| < 1
yields that

lim 1(2)|Ea(2)| = 0. (15)

|z]—1

Applying the operator T,/ to f,11(z) = 2" € H* we get

. B )
1 E,, n—m+1 (n+
\Z|191 (@)9(2) (n—m+1)!

+En1(2)e(2)""

+En(2)@(2)(n+ 1)+ Epi1(2)(n+1)!

= lim p@I(Tspfurt) (2)] =0,

|2]—

from which along with (13), (14), (15), the triangle inequality, and the fact that |@(z)| <
1 it follows that

lim u(z)|E.1(z)] =0. (16)

lz]—1

Combining (13)—(16) we can see that (12) holds. [
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THEOREM 6. Let u,v€ H(D), ¢ € S(D), me Ny, n€N, m+1=n, J be the set
{m,n+1} and p be a radial weight. If the operator T,y : H™ — %, is bounded,
then

3 lim p(2)|Ei(z)] + tim 4 (2)u(2)9' )+ ()] =

icy =1

For the compactness of T;,\, : H” — 2y, o, we have the following results.

THEOREM 7. Let u,v € HD), ¢ € S(D), m€ Ny, n €N, m+1<n, I be the
set {m,m—+ 1,n,n+ 1} and U be a radial weight. If the operator Turf'v’ﬁp CH” — B
is compact, then

HOIEQ)
ie1|Z\ITl 11—l 0- (17)

Proof. Suppose that T,y : H® — %, is compact, then T,y : H® — %y is
compact and T,V : H* — %, is bounded. By Theorem 5, for any £ > 0, there
exists 7 € (0,1) such that

u(z)|Ei(z)l <e, i€l (18)

whenever 1 < |z| < 1. From Theorem 3, for any € > 0, there exists 6 € (0,1) such
that

1Q)IE(z)|
(1=le@)P)

for 6 < |p(z)| < 1. Therefore, when & < |p(z)] <1 and 1 < |z| < 1, we have (19)
holds. If |¢(z)| < 0 and 1 < |z] < 1, by using (18) we get

LG e |
(1—l(z)?) < (1—82)i Se, el 20)

Combining (19) with (20), we can see that (17) holds by the arbitrariness of €. [

<e, i€l (19)

THEOREM 8. Let u,v € H(D), ¢ € S(D), me Ny, neN, m+1=n, J be the
set {m,n+ 1} and | be a radial weight. If the operator va’ffp CH” — 2, is compact,
then

HEE@)] | p(E@)uE)e" (=) +V(2)]

lim —————5—=+ lim =0.
G- =le@P) -1 (I-leE)P)"
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