
Mathematical
Inequalities

& Applications

Volume 26, Number 3 (2023), 567–594 doi:10.7153/mia-2023-26-36

REGULARITY IN ORLICZ SPACES FOR QUASI–LINEAR

ELLIPTIC EQUATIONS OF SCHRÖDINGER TYPE

NGUYEN NGOC TRONG, NGUYEN THANH TUNG,
TRAN TRI DUNG AND LE XUAN TRUONG ∗

(Communicated by L. D’Ambrosio)

Abstract. In this paper, we generalize gradient estimates in Lebesgue spaces to Orlicz spaces
for weak solutions of quasi-linear elliptic equations of Schrödinger type on a Reifenberg flat
domain, under the condition that the coefficients are in John-Nirenberg space with small BMO
semi-norms. We assume that the potential belongs to some certain reverse Hölder class. Our
results improve the known results for such equations using a harmonic analysis-free technique.

1. Introduction and main results

In this paper, we consider the following quasi-linear elliptic equation of Schrödinger
type {

div((ADu.Du)
p−2
2 ADu)+V|u|p−2u = div(| f |p−2 f ) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a domain of R
n . Throughout the paper, we always assume that the follow-

ing assumptions hold true (for the convenience of presentation we shall refer to these
assumptions as Assumption (H)):

� n � 2 and p ∈ (1,∞) .

� The data f is a vector field which belongs to at least the space Lp(Ω;Rn) .

� The coefficient matrix A : Ω → R
n×n is symmetric and satisfies the following

uniform ellipticity condition: there exists a positive constant Λ such that for all
ξ ∈ R

n , we have
Λ−1|ξ |2 � A(x)ξ .ξ � Λ|ξ |2.
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� The potential V : R
n → R is nonnegative and belongs to the reverse Hölder class

RHγ with {
n
p � γ < n if p < n,

1 < γ < n if p � n.
(1.2)

It means that there exists a constant C > 0 such that the following inequality(
1
|B|

ˆ
B
V(y)γdy

)1/γ
� C

|B|
ˆ

B
V(y)dy

holds for all balls B in R
n .

We have some important remarks related to the reverse Hölder class as follows.

REMARK 1.1.

(i) The RHγ class which is a wide class of functions including all nonnegative poly-
nomials was introduced independently by Muckenhoupt [18] and Gehring [9] in
the study of weighted norm inequalities and quasi-conformal mapping, respec-
tively.

(ii) It is well-known that V ∈ RHγ if and only if V ∈ A∞ , where A∞ is the class of
Muckenhoupt weights on R

n . In addition, if V ∈ A∞ then we have

[V]A∞ := sup
B

( 
B
Vdx

)
exp

( 
B
logV−1dx

)
< ∞, (1.3)

where the supremum is taken over all balls B ⊂ R
n . We call [V]A∞ the A∞

constant of V . (See pages 7, 8 in [23] and pages 8, 9 in [17])

As usual, the solutions of problem (1.1) are taken in a weak sense. More precisely,
we have the following definition.

DEFINITION 1.2. Let Assumption (H) hold true. A function u ∈ W 1,p
0 (Ω) is

called a weak solution of the problem (1.1) if for any ϕ ∈W 1,p
0 (Ω) , we have

ˆ
Ω
(ADu.Du)

p−2
2 ADu.Dϕdx+

ˆ
Ω

V|u|p−2uϕdx =
ˆ

Ω
| f |p−2 f .Dϕdx.

REMARK 1.3. Let u be a weak solution of the problem (1.1). Since the parameter
γ satifies (1.2), it follows from the Sobolev’s embedding inequality that

∣∣∣ˆ
Ω

V|u|p−2uϕdx
∣∣∣� (ˆ

Ω
V

n
p dx
) p

n
(ˆ

Ω
|u| np

n−p dx
) (n−p)(p−1)

np
(ˆ

Ω
|ϕ | np

n−p dx
) n−p

np
< ∞.

Moreover, ‖Du‖Lp(Ω) and ‖Du‖Lp(Ω) +‖V 1
p u‖Lp(Ω) are two equivalent norms, and the

problem (1.1) has a unique weak solution u ∈W 1,p
0 (Ω) (see [17]).
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Our main goal is to study how the regularity of f is reflected to the solutions of
(1.1) in the setting of Orlicz spaces. For this purpose we need to add further assumptions
to A and the domain Ω . These assumptions are related to following definitions.

DEFINITION 1.4. Let δ and R be two positive constants. A domain Ω ⊂ R
n is

said to be (δ ,R)-Reifenberg flat if for every x ∈ ∂Ω and every r ∈ (0,R] , there exists
a coordinate system {y1, · · · ,yn} depending on r and x so that x = 0 in this coordinate
system and

Br(x)∩{yn > δ r} ⊂ Br(0)∩Ω ⊂ Br(x)∩{yn > −δ r}.

DEFINITION 1.5. Let δ and R be two positive constants. We say that A : Ω →
R

n×n is (δ ,R)-vanishing if

sup
0<r�R

sup
x∈Rn

 
Br(x)

|A(y)−ABr(x)|dy � δ , (1.4)

where Br(x) is the ball of radius r and center x , and ABr(x) =
 

Br(x)
A(y)dy .

Now we are in position to state main results of this work.

THEOREM 1.6. [A priori estimate] Let Assumption (H) hold true, | f |p ∈ Lφ (Ω)
for some Young function φ ∈ Δ2 ∩∇2 (see Section 2 below) and R0 > 0 . Then there
exists a small number δ = δ (n, p,φ ,Λ) > 0 such that if A is (δ ,R0)-vanishing and Ω
is (δ ,R0)-Reifenberg flat, we have the following estimate:

ˆ
Ω

φ
(|Du|p)dx+

ˆ
Ω

φ
(
V|u|p)dx � C

ˆ
Ω

φ
(| f |p)dx, (1.5)

where C is a positive constant independent of u and f , provided that u ∈W 1,p
0 (Ω) is

a weak solution to (1.1) satisfying |Du|p ∈ Lφ (Ω) .

By using Theorem 1.6 we obtain the existence result as below.

THEOREM 1.7. [Existence] Under the assumptions of Theorem 1.6, then there
exists a small number δ = δ (n, p,φ ,Λ) > 0 such that if A is (δ ,R0)-vanishing and Ω
is (δ ,R0)-Reifenberg flat, then the problem (1.1) has a unique weak solution u such
that |Du|p ∈ Lφ (Ω) . Moreover, we also have the following estimate

ˆ
Ω

φ(|Du|p)dx+
ˆ

Ω
φ(V|u|p)dx � C

ˆ
Ω

φ(| f |p)dx, (1.6)

where C is a constant independent of u and f .
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Recently, integrability of the gradient of solutions for elliptic/parabolic problems
with discontinuous coefficients of VMO/BMO type have been extensively studied by
many authors (see [3, 4, 6, 14, 15, 16]). We would like to point out that if a function
satisfies the VMO condition, then it satisfies the (δ ,R0)-vanishing condition which
we treat in this paper. On the other hand, Reifenberg flat domains were introduced by
Reifenberg in the noteworthy paper [21] where he showed that they are locally topolog-
ical disks if δ is sufficiently small. A good example of Reifenberg flat domains is a flat
version of the well-known Van Koch snowflake when the angle of the spike with respect
to the horizontal is sufficiently small (see [22]). These domains arise naturally in many
areas such as applied mathematics, harmonic analysis and geometric measure theory.
They look like coast lines, zigzag functions, atomic clusters. For a further discussion
of Reifenberg flat domains we refer the reader to [3, 6, 8, 11, 12, 22].

We summarize here some remarks of the regularity of the solution to the equations
of the form (1.1) which have been established recently.

� Theorem 1.7 was claimed in [7] when V = 0.

� Theorem 1.6 was proved in [24] when A = I , p = 2 and V ∈ RH∞ , i.e. V ∈
L∞

loc(R
n) and

sup
Br(x0)

V � C
 

Br(x0)
Vdx,

for all balls Br(x0) .

� Theorem 1.6 was established in [25] when A∈C1(Rn,Rn) , p = 2 and V∈RH∞ .

� When φ(t) = tq/p with q > p , the authors in [17] proved Theorem 1.7 for a
general vector valued function A that satisfies growth and ellipticity conditions.

However, when q � pγ , they do not obtain any estimate for
∥∥∥V 1

p u
∥∥∥

Lq
.

It should be emphasized, as pointed out, that our results are developed as a continuation
to the aforementioned works. In particular, these results generalize those of [7], [24],
[25]. Furthermore, our work improves the one of [17] when providing an estimate of∥∥∥V 1

p u
∥∥∥

Lq
when q � pγ in the sense that A is a matrix of discontinuous entries.

This paper will be organized as follows. In Section 2, we recall some basic defi-
nitions and facts about Orlicz spaces. In Section 3, we prove Theorem 1.6. Our main
ingredients to the proof of Theorem 1.6 are Lemma 3.1 and Lemma 3.2. A proof of
Lemma 3.1 will be given in Section 4. Finally, Section 5 is devoted to the proof of
Theorem 1.7 using approximation.

We end this section by noting that the following notations will be used throughout
this paper:

• Positive constants are signified as C although they may be different even on the
same line.



REGULARITY IN ORLICZ SPACES FOR EQUATIONS OF SCHRÖDINGER TYPE 571

• We write A � B and A ∼ B if there exist positive constants C and C′ such that

A � CB and C′A � B � CA,

respectively.

• If B is a ball of center x and radius R then, for every λ > 0, we denote by λB
the ball of the same center and radius λR .

• We write BR for any ball of radius R .

2. Orlicz space

Orlicz spaces were first introduced by Orlicz as a generalization of Lp spaces.
Since then, the theory of Orlicz spaces has played a crucial role in a very wide spectrum
(see [20]). In this section, for the convenience of the readers, we will recall some
definitions and basic facts about Orlicz spaces which will be needed in the following.
For further properties, we refer the readers to [1] and [26].

DEFINITION 2.1. Denote by Φ the function class that consists of all functions
φ : [0,∞) �→ [0,∞) , which are increasing and convex. Then a function φ ∈ Φ is said to
be a Young function if φ(0) = 0 and

lim
t→∞

φ(t) = ∞, lim
t→0+

φ(t)
t

= lim
t→+∞

t
φ(t)

= 0.

It is well-known that a Young function φ is differentiable a.e. and can be written
as:

φ(x) =
ˆ x

0
φ ′(t)dt,x � 0,

where φ ′(0) = 0,φ ′ : [0,∞) → [0,∞) is non-decreasing and left-continuous.

DEFINITION 2.2. Given a Young function φ , the function φ∗ : [0,∞) �→ [0,∞) ,
defined by

φ∗(s) = sup{st−φ(t) : t � 0},
is called the complementary function of φ .

It is a fact that if φ is a Young function then so is φ∗ , and the complementary
function of φ∗ is φ . In addition, from the definition of φ∗ we have Young’s inequality:
for s, t � 0,

st � φ(s)+ φ∗(t).

DEFINITION 2.3. A function φ ∈ Φ is said to satisfy the global Δ2 condition,
denoted by φ ∈ Δ2 , if φ is a Young function and there exists a positive constant K > 0
such that for every t > 0,

φ(2t) � Kφ(t).



572 N. N. TRONG, N. T. TUNG, T. T. DUNG AND L. X. TRUONG

DEFINITION 2.4. A function φ ∈ Φ is said to satisfy the global ∇2 condition,
denoted by φ ∈ ∇2 , if φ is a Young function and there exists a constant a > 1 such
that for every t > 0,

φ(t) � φ(at)
2a

.

Note that φ ∈ ∇2 if and only if φ∗ ∈ Δ2 .

LEMMA 2.5. ([7]) φ ∈ Δ2∩∇2 if and only if φ is a Young function and there exist
constants A2 � A1 > 0 and α1 � α2 > 1 such that for any 0 < s � t ,

A1

( s
t

)α1 � φ(s)
φ(t)

� A2

(s
t

)α2
. (2.7)

Moreover, the condition (2.7) implies that for 0 < θ1 � 1 � θ2 < ∞ ,

φ(θ1t) � A2θ α2
1 φ(t) and φ(θ2t) � A−1

1 θ α1
2 φ(t). (2.8)

LEMMA 2.6. Let φ be a Young function satisfying φ ∈ Δ2∩∇2 . Then there exists
a positive constant K > 0 such that for every t > 0 and 0 < θ1 � 1 � θ2 < ∞ ,

φ ′(θ1t) � KA2θ α2−1
1 φ ′(t) and φ ′(θ2t) � KA−1

1 θ α1−1
2 φ ′(t),

where A2 � A1 > 0 and α1 � α2 > 1 are constants defined in Lemma 2.5.

Proof. Since φ ′ : [0,∞) → [0,∞) is non-decreasing, we have

φ(t) =
ˆ t

0
φ ′(x)dx � tφ ′(t),

and

φ(2t) =
ˆ 2t

0
φ ′(x)dx �

ˆ 2t

t
φ ′(x)dx � tφ ′(t). (2.9)

On the other hand, by φ ∈ Δ2 , there exists a positive constant K such that φ(2t) �
Kφ(t) for every t > 0. Therefore, for every t > 0

φ(t) � tφ ′(t) � Kφ(t), (2.10)

which is equivalent to
φ(t)

t
� φ ′(t) � K

φ(t)
t

. (2.11)

Finally, it follows from (2.11) and Lemma 2.5 that for 0 < θ1 � 1 � θ2 < ∞ and t > 0,
we have

φ ′(θ1t) � K
φ(θ1t)

θ1t
� KA2θ α2−1

1
φ(t)

t
� KA2θ α2−1

1 φ ′(t),

φ ′(θ2t) � K
φ(θ2t)

θ2t
� KA−1

1 θ α1−1
2

φ(t)
t

� KA−1
1 θ α1−1

2 φ ′(t). �
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LEMMA 2.7. Let φ be a Young function satisfying φ ∈ Δ2∩∇2 and b > 0 . Then
there exists a positive constant C such that for any t > 0 , the following holds true

btˆ

0

φ ′(λ )
λ

dλ � Cφ ′(t). (2.12)

Proof. Take an arbitrary α ∈ (0,bt) and choose n ∈ N such that
bt
2n < α . Since

φ ′ is non-decreasing, we have
ˆ bt

α

φ ′(λ )
λ

dλ �
ˆ bt

bt
2n

φ ′(λ )
λ

dλ

=
ˆ bt

2n−1

bt
2n

φ ′(λ )
λ

dλ +
ˆ bt

2n−2

bt
2n−1

φ ′(λ )
λ

dλ + · · ·+
ˆ bt

bt
2

φ ′(λ )
λ

dλ

�
ˆ bt

2n−1

bt
2n

φ ′( bt
2n−1 )
λ

dλ +
ˆ bt

2n−2

bt
2n−1

φ ′( bt
2n−2 )
λ

dλ + · · ·+
ˆ bt

bt
2

φ ′(bt)
λ

dλ

= ln2

(
φ ′
( bt

2n−1

)
+ φ ′

( bt
2n−2

)
+ · · ·+ φ ′(bt)

)
.

Then in view of Lemma 2.6, we derive
ˆ bt

α

φ ′(λ )
λ

dλ �
(

1
(2α2−1)n−1 +

1
(2α2−1)n−2 + · · ·+1

)
KA2 ln2.φ ′(bt) � Cφ ′(t),

(2.13)
where C is a positive constant depending only on φ and b .

Letting α → 0+ in (2.13) gives (2.12). �

DEFINITION 2.8. Let φ be a Young function. Then the Orlicz class Kφ (Ω) is
defined to be the set of all measurable functions f : Ω → R satisfying the conditionˆ

Ω
φ(| f |)dx < ∞ , and the Orlicz space Lφ (Ω) is defined to be the linear hull of Kφ (Ω) .

In Lφ (Ω) we consider the following analog of the Luxemburg norm

‖u‖Lφ (Ω) = inf

{
λ > 0 :

ˆ
Ω

φ
( |u(x)|

λ

)
dx � 1

}
.

It is well-known that if φ ∈ Δ2 , then the space C∞
c (Ω) of infinitely differentiable

functions with compact support is dense in Lφ (Ω) and (Lφ )∗(Ω) = Lφ∗
(Ω) (see [1,

p. 271]). Furthermore, if φ and φ∗ ∈ Δ2 then Lφ (Ω) is reflexive (see [1, p. 274]).

LEMMA 2.9. ([1]) Let φ be a Young function satisfying φ ∈ Δ2∩∇2 . Then

Lα1(Ω) ⊂ Lφ (Ω) ⊂ Lα2(Ω) ⊂ L1(Ω),

with α1 � α2 > 1 as in Lemma 2.5.
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REMARK 2.10. ([26]) In general, Kφ (Ω) ⊂ Lφ (Ω) . However, if φ ∈ Δ2 , then
we have Kφ (Ω) = Lφ (Ω) . Moreover, if g ∈ Lφ (Ω) , thenˆ

Ω
φ(|g(x)|)dx =

ˆ ∞

0
|{x ∈ Ω : |g|> λ}|d[φ(λ )]. (2.14)

LEMMA 2.11. ([19, Theorem 1.5]) Given f ∈ Lφ (Ω) and g ∈ Lφ (Ω) . If for all
λ > 0 , we have ˆ

Ω
φ(|λ f |)dx �

ˆ
Ω

φ(|λg|)dx

then
‖ f‖Lφ (Ω) � ‖g‖Lφ (Ω) .

3. Proof of Theorem 1.6

This section is devoted to proving Theorem 1.6. Our main tools are Lemma 3.1
and Lemma 3.2 below. We will give a proof of Lemma 3.1 in the next section. Note
that, in Lemma 3.1, if B2R �⊂ Ω then we shall use the same notation u for its zero
extension on R\Ω .

LEMMA 3.1. Assume that the assumptions of Theorem 1.6 hold true. Let u ∈
W 1,p

0 (Ω) be a weak solution to (1.1). Then, for each ball

B2R = B2R(x0) with x0 ∈ Ω and R ∈ (0,R0/20],

there exist a function h ∈ W 1,p(ΩR) and a constant δ > 0 independent of R and x0

such that the following hold true 
ΩR

(|D(u−h)|p +V|u−h|p)dx � δ
p

p−1

 
Ω2R

(|Du|p +V|u|p)dx+
 

Ω2R

| f |pdx,

(3.15) 
ΩR

(|Dh|p +V|h|p)dx �
 

Ω2R

(|Du|p +V|u|p)dx+
 

Ω2R

| f |pdx. (3.16)

Here Ω2R = B2R ∩Ω and ΩR = BR ∩Ω with BR = BR(x0) .

LEMMA 3.2. Let u ∈W 1,p
0 (Ω) be a weak solution to (1.1) and

λ0 :=
 

Ω

(|Du|p +V|u|p)dx+
1

δ p

 
Ω
| f |pdx.

Then we can find a constant M0 > 0 so that if λ > M0λ0 and

E(λ ) := {x ∈ Ω : |Du(x)|p +V(x)|u(x)|p > λ} �= /0,

then there exists a disjoint family of balls

BRj = BRj(x j) with 0 < Rj < R0/20 and x j ∈ E(λ )

such that
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� E(λ ) ⊂
∞⋃

j=1

(
Ω5Rj ∩E(λ )

)
, with Ω5Rj = B5Rj(x j)∩Ω .

� ρx j(Rj) = λ and ρx j (R) < λ for any R j < R < R0 , where

ρx j (R) :=
 

BR(x j)∩Ω

(|Du|p +V|u|p)dx+
1

δ p

 
BR(x j)∩Ω

| f |pdx.

Proof. Let λ > 0. For every x ∈ E(λ ) , we define the function ρx : (0,R0] → R
+

by

ρx(R) =
 

BR(x)∩Ω

(|Du|p +V|u|p)dx+
1

δ p

 
BR(x)∩Ω

| f |pdx.

By elementary calculation we can show that there exists a constant M0 > 0 such that

ρx(R) � |Ω|
|BR(x)∩Ω|λ0 � M0λ0,

for any R0/20 � R � R0 . So we have ρx(R) < λ provided that λ > M0λ0 and R0/20
� R � R0 . On the other hand, it follows from Lebesgue’s differentiation theorem that

lim
R→0+

ρx(R) > λ .

Due to the continuity of the function R �→ ρx(R) , we deduce that for any λ > M0λ0 ,
there is a constant Rx ∈ (0,R0/20) such that ρx(Rx) = λ and ρx(R) < λ for Rx < R �
R0 .

Finally, applying Vitali’s covering lemma for the family of balls

{BRx(x) : x ∈ E(λ )}
completes the proof of this lemma. �

Proof of Theorem 1.6. The proof includes three steps.

Step 1. Let λ > M0λ0 and E(λ ) �= /0 , where M0 is defined as in Lemma 3.2. We
first estimate the size of

ΩRj = BRj ∩Ω.

It follows from Lemma 3.2 that either 
ΩRj

| f |pdx � δ pλ
2

or
 

ΩRj

(|Du|p +V|u|p)dx � λ
2

.

If the former holds then, for any T > 0, we have

|ΩRj | �
2

δ pλ

ˆ ∞

0

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt

� 2
δ pλ

(ˆ T

0

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt +
ˆ ∞

T

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt
)
.
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Then by choosing T = δ pλ/4, we obtain

|ΩRj | �
4

δ pλ

ˆ ∞

δ pλ/4

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt.

Similarly, if the latter holds, that is,
 

ΩRj

(|Du|p +V|u|p)dx � λ
2

then we also have

|ΩRj | �
4
λ

ˆ ∞

λ/4

∣∣{x ∈ ΩRj : |Du|p +V|u|p > t}∣∣dt.

So by combining the estimates above, we derive

|ΩRj | �
4
λ

ˆ ∞

λ/4

∣∣{x ∈ ΩRj : |Du|p +V|u|p > t}∣∣dt

+
4

δ pλ

ˆ ∞

δ pλ/4

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt. (3.17)

Step 2. Let ε > 0, λ > M0λ0 and E(λ ) �= /0 . We then show that there exists a
constant ϒ > 1 such that

|E(ϒλ )| �ε

[
1
λ

ˆ ∞

λ/4

∣∣{x ∈ Ω : |Du|p +V|u|p > t}∣∣dt

+
1

δ pλ

ˆ ∞

δ pλ/4

∣∣{x ∈ Ω : | f (x)|p > t}∣∣dt

]
. (3.18)

Indeed, for ϒ > 1, it follows from Lemma 3.2 that∣∣E(ϒλ )
∣∣� ∞

∑
j=1

∣∣∣{x ∈ Ω5Rj : |Du(x)|p +V(x)|u(x)|p > ϒλ
}∣∣∣

�
∞

∑
j=1

∣∣∣∣
{

x ∈ Ω5Rj : |D(u(x)−h j(x))|p +V(x)|u(x)−h j(x)|p >
ϒλ
2p+1

}∣∣∣∣
+

∞

∑
j=1

∣∣∣∣
{

x ∈ Ω5Rj : |Dhj(x)|p +V(x)|h j(x)|p >
ϒλ
2p+1

}∣∣∣∣ ,
where h j is defined by applying Lemma 3.1 for the case R = 5Rj and x0 = x j .

For j ∈ N , we set

O1
j :=

{
x ∈ Ω5Rj : |D(u(x)−h j(x))|p +V(x)|u(x)−h j(x)|p >

ϒλ
2p+1

}
,

O2
j :=

{
x ∈ Ω5Rj : |Dhj(x)|p +V(x)|h j(x)|p >

ϒλ
2p+1

}
.



REGULARITY IN ORLICZ SPACES FOR EQUATIONS OF SCHRÖDINGER TYPE 577

Then it follows from Lemma 3.1 and Lemma 3.2 that∣∣O2
j

∣∣� 2p+1

ϒλ

ˆ
Ω5Rj

(|Dhj|p +V|h j|p
)
dx � ϒ−1

∣∣Ω5Rj

∣∣
and ∣∣O1

j

∣∣� 2p+1

ϒλ

ˆ
Ω5Rj

(|Du−Dhj|p +V|u−h j|p
)
dx � εϒ−1

∣∣Ω5Rj

∣∣.
Therefore, by choosing ϒ sufficiently large and using the following fact

|BR(x)|
|BR(x)∩Ω| �

(
2

1− δ

)n

� 4n,

for x ∈ Ω and 0 < R < R0 , we obtain

|E(ϒλ )| � ε
∞

∑
j=1

|Ω5Rj | � ε
∞

∑
j=1

|BRj | � ε
∞

∑
j=1

|ΩRj |.

Finally, the estimates above together with (3.17) yield (3.18).

Step 3. In light of Remark 2.10, one has

ˆ
Ω

φ(|Du|p)dx+
ˆ

Ω
φ(V|u|p)dx � 2

∞̂

0

∣∣E(λ ))
∣∣d[φ(λ )] � 2

∞̂

0

∣∣E(ϒλ )
∣∣d[φ(ϒλ )],

where the constant ϒ is chosen in Step 2. On the other hand, we can write

∞̂

0

∣∣E(ϒλ )
∣∣d[φ(ϒλ )] =

λ̂̂

0

∣∣E(ϒλ )
∣∣d[φ(ϒλ )]+

∞̂

λ̂

∣∣E(ϒλ )
∣∣d[φ(ϒλ )] = I1 +I2,

where λ̂ > M0λ0 is defined by

λ̂ := (M0 +N0)λ0 = (M0 +N0)
( 

Ω

(|Du|p +V|u|p)dx+
1

δ p

 
Ω
| f |pdx

)
,

for some N0 > 0. Now we estimate the terms I1 and I2 .

Estimate I1 =
λ́̂

0

∣∣E(ϒλ )
∣∣d[φ(ϒλ )] :

Since λ̂ �C
 

Ω
| f |pdx , it follows from the properties of φ and Jensen’s inequality

that

I1 � φ(ϒλ̂ )|Ω| � C|Ω|φ
( 

Ω
| f |pdx

)

� C(n, p,δ ,φ ,Ω)
ˆ

Ω
φ (| f |p)dx.
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Estimate I2 =
∞́

λ̂

∣∣E(ϒλ )
∣∣d[φ(ϒλ )] :

It follows from (3.18) that

I2 � ε
∞̂

λ̂

1
λ

ˆ ∞

λ/4

∣∣{x ∈ ΩRj : |Du(x)|p +V(x)|u(x)|p > t}∣∣dt d[φ(ϒλ )]

+
ε

δ p

ˆ ∞

λ̂

1
λ

ˆ ∞

δ pλ/4

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt d[φ(ϒλ )].

By interchanging the order of integration and using Lemma 2.7, we obtain

ˆ ∞

λ̂

1
λ

ˆ ∞

δ pλ/4

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt d[φ(ϒλ )]

�
ˆ ∞

0

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣dt
ˆ 4tδ−p

λ̂

1
λ

d[φ(ϒλ )]

�
ˆ ∞

0

∣∣{x ∈ ΩRj : | f (x)|p > t}∣∣φ ′(t)dt �
ˆ

Ω
φ
(| f |p)dx.

Similarly, we also have

∞̂

λ̂

1
λ

ˆ ∞

λ/4

∣∣{x ∈ ΩRj : |Du(x)|p +V(x)|u(x)|p > t}∣∣dt d[φ(ϒλ )]

�
ˆ

Ω
φ
(|Du|p)dx+

ˆ
Ω

φ
(
V|u|p)dx.

Combining the estimates above and taking ε small enough yield

I2 � C(n, p,δ ,φ ,Ω).
ˆ

Ω
φ (| f |p)dx.

Therefore, we complete the proof of Theorem 1.6. �

4. Proof of Lemma 3.1

In order to prove Lemma 3.1, we need to establish some key results related to the
following homogeneous equation

−div
(
(ADw.Dw)

p−2
2 ADw

)
+V|w|p−2w = 0 in Bρ , (4.19)

for some ball Bρ of R
n . We begin with the following Caccioppoli-type estimate.
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PROPOSITION 4.1. Let w be a solution to the equation (4.19). Then there exists
a positive constant C = C(n, p,Λ) such that

ˆ

Bτ

(|Dw|p +V|w|p)dx � C
ˆ

Bt

|w|p
(t − τ)p dx,

for all balls Bτ ⊂ Bt ⊂ Bρ , where Bρ is mentioned in (4.19).

Proof. Let η ∈C∞
c (Bt) be a smooth function satisfying the following conditions

0 � η � 1, η ≡ 1 on Bτ , and |Dη | � 1
t− τ

.

By using φ = wη p as a test function we have
ˆ

Bt

η p((ADw.Dw)
p
2 +V.|w|p)dx = −p

ˆ
Bt

wη p−1(ADw.Dw)
p−2
2 ADw.Dηdx.

In addition, it follows from the property of uniform ellipticity that
ˆ

Bt

η p((ADw.Dw)
p
2 +V.|w|p)dx � Λ−1

ˆ
Bt

η p (|Dw|p +V|w|p)dx.

Since A is uniformly bounded, we obtain

−p
ˆ

Bt

η p−1w.(ADw.Dw)
p−2
2 ADw.Dηdx � pΛ

ˆ
Bt

η p−1|Dw|p−1|w||Dη |dx.

By Young’s inequality, it is clear to see that for any ε > 0,

pΛ
ˆ

Bt

η p−1|Dw|p−1|w||Dη |dx � ε
ˆ

Bt

η p|Dw|pdx+C(ε, p,Λ)
ˆ

Bt

|w|p
(t − τ)p dx.

Finally, combining the estimates above and taking ε small enough lead to

ˆ

Bτ

(|Dw|p +V|w|p)dx � C
ˆ

Bt

|w|p
(t− τ)p dx,

which completes the proof of this proposition. �

Next, in light of Proposition 4.1 and the improved Fefferman-Phong inequality
(see [2, Lemma 4.1]), we obtain the following result.

PROPOSITION 4.2. Let w be a solution to the equation (4.19). Then there exist
positive constants

C(n, p,Λ, [V]A∞) and β ∈ (0,1)
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depending only on the A∞ constant of V , p and n such that for every ball BR ⊂ Bρ ,
the following inequalities hold true(

Rp
 

BR

Vdx
)kβ

 
BR

|w|pdx � C
 

B2R

|w|pdx, (4.20)

and (
Rp

 
BR

Vdx
)kβ

 
BR

(|Dw|p +V|w|p)dx � C
 

B2R

(|Dw|p +V|w|p)dx, (4.21)

where k =
[

1
β

]
.

Proof. If Rp
 

BR

Vdx � 1 then (4.20) and (4.21) are obvious. If Rp
 

BR

Vdx > 1

then it follows from the improved Fefferman-Phong inequality ([2, Lemma 4.1]) that
there exist positive constants

C(n, p,Λ, [V]A∞) and β ∈ (0,1)

depending only on the A∞ constant of V , p and n such that for any κ > 0,

1
Rp

(
Rp

 
BκR

Vdx
)β

ˆ
BκR

|w|pdx � c
ˆ

BκR

(|Dw|p +V|w|p)dx. (4.22)

Set k =
[

1
β

]
, and take 1 = s0 < s1 < · · · < sk = 2, with

si − si−1 =
1
k
, i ∈ {1,2, . . . ,k}.

Then in view of Proposition 4.1 we have
ˆ

Bsi−1R

(|Dw|p +V|w|p)dx � C
ˆ

BsiR

|w|p
Rp dx. (4.23)

Therefore, it follows from (4.22) and (4.23) that(
Rp

 
BκR

Vdx
)β

ˆ

Bsi−1R

[|Dw|p +V|w|p]dx � C
ˆ

BsiR

(|Dw|p +V|w|p)dx, (4.24)

and (
Rp

 
BκR

Vdx
)β

ˆ

Bsi−1R

|w|pdx � C
ˆ

BsiR

|w|pdx. (4.25)
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Hence iterating (4.24) yields

(
Rp

 
BR

Vdx
)kβ

ˆ

BR

(|Dw|p +V|w|p)dx � C
ˆ

B2R

(|Dw|p +V|w|p)dx,

which leads to (4.21). Similarly, iterating (4.25) gives (4.20). �

We shall now prove the following lemma of Gehring-type inequality.

LEMMA 4.3. Assume that the assumptions of Theorem 1.6 hold true. Let w be a
solution to the equation

−div
(
(ADw.Dw)

p−2
2 ADw

)
+V|w|p−2w = 0 in ΩR = BR(x0)∩Ω , (4.26)

where 0 < R < R0/20 and either x0 ∈ Ω, BR(x0) ⊂ Ω or x0 ∈ ∂Ω . Then there exists a
positive constant ε0 such that for 0 < μ � ε0 ,

( 
ΩR/2

(|Dw|p(1+μ) +V1+μ |w|p(1+μ))dx

) 1
1+μ

� C(n, p,Λ)
 

ΩR

(|Dw|p +V|w|p)dx. (4.27)

Proof. We consider the following cases.

Case 1 : ΩR = BR(x0) ⊂ Ω .
First we note that by using [10, Proposition V.1.1], it suffices to prove that there

exist constants

C(n, p,Λ) > 0, 1 < ν � p and θ ∈ (0,1)

such that
 

Br/4

(|Dw|p +V|w|p)dx �θ
 

Br

(|Dw|p +V|w|p)dx

+C(n, p,Λ)
( 

Br

|Dw| p
ν dx+

 
Br

V
1
ν |w| p

ν dx

)ν
, (4.28)

for any ball Br ⊂ ΩR .
Let η ∈C∞

c

(
Br/2
)

be a smooth function satisfying the conditions

0 � η � 1, η ≡ 1 on Br/4, and |Dη | � 1
r
.
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By choosing φ = η p(w− (w)Br/2
) as a test function, we have

 
Br/2

η p((ADw.Dw)
p
2 +V|w|p)dx

= −p
 

Br/2

η p−1(w− (w)Br/2
)(ADw.Dw)

p−2
2 (ADw.Dη)dx

+
 

Br/2

η pV|w|p−2w(w)Br/2
dx = J1 + J2, (4.29)

where

J1 := −p
 

Br/2

η p−1(w− (w)Br/2
)(ADw.Dw)

p−2
2 (ADw.Dη)dx,

J2 :=
 

Br/2

η pV|w|p−2w(w)Br/2
dx.

Using similar arguments as in the proof of Proposition 4.1, we deduce that

LHS of (4.29) � Λ−1
 

Br/2

η p (|Dw|p +V|w|p)dx. (4.30)

Next we estimate two terms in the right-hand side of (4.29). It follows from the uniform
boundedness of A and Young’s inequality with ε > 0 that

J1 � pΛ
 

Br/2

η p−1|w− (w)Br/2
||Dw|p−1|Dη |dx

� ε
 

Br/2

η p|Dw|pdx+C(ε, p,Λ)
 

Br/2

|w− (w)Br/2
|p

rp dx.

Then it follows from Sobolev-Poincaré’s inequality

 
Br/2

|w− (w)Br/2
|p

rp dx � C(n, p)

( 
Br/2

|Dw| p
ν dx

)ν

,

where 1 < ν � n+ p
n

, that

J1 � ε
 

Br/2

η p|Dw|pdx+C(ε,n, p,Λ)
( 

Br/2

|Dw| p
ν dx
)ν

. (4.31)

Next, we estimate the second term of the right-hand side of (4.29) as follows:

J2 �
 

Br/2

η pV|w|p−1|(w)Br/2
|dx

� |(w)Br/2
|
( 

Br/2

V
1
ν |w| p

ν dx

) (p−1)ν
p
( 

Br/2

V
1

p−ν(p−1) dx

) p−ν(p−1)
p

.
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Then in light of Young’s inequality, it is clear to see that

J2 � C(θ )

( 
Br/2

V
1
ν |w| p

ν dx

)ν

+ θ |(w)Br/2
|p
( 

Br/2

V
1

p−ν(p−1) dx

)p−ν(p−1)

.

Since V ∈ RHγ with γ > 1, we can take ν > 1 such that V ∈ RH 1
p−ν(p−1)

. As a result

of that, we obtain

J2 � C(θ )

( 
Br/2

V
1
ν |w| p

ν dx

)ν

+ θ |(w)Br/2
|p
 

Br/2

Vdx. (4.32)

Observe that the improved Fefferman-Phong’s inequality ([2, Lemma 4.1]) gives

|(w)Br/2
|p
 

Br/2

Vdx �
rp
ffl
Br/2

Vdx

mβ

(
rp
ffl
Br/2

Vdx
)  

Br/2

(|Dw|p +V|w|p)dx, (4.33)

where mβ (z) = 1 if z � 1 and mβ (z) = zβ if z > 1.
We now combine the estimates from (4.29) to (4.33) and choose ε small enough

to get

 
Br/2

η p (|Dw|p +V|w|p)dx

� C(θ ,n, p,Λ)

( 
Br/2

|Dw| p
ν dx+

 
Br/2

V
1
ν |w| p

ν dx

)ν

+ θ
rp
ffl
Br/2

Vdx

mβ

(
rp
ffl
Br/2

Vdx
)  

Br/2

(|Dw|p +V|w|p)dx

︸ ︷︷ ︸
K

. (4.34)

At this stage, if rp
ffl
Br/2

Vdx � 1, then it is clear to see that

K �
 

Br/2

(|Dw|p +V|w|p)dx �
 

Br

(|Dw|p +V|w|p)dx. (4.35)

Otherwise, if rp
ffl
Br/2

Vdx > 1 then by applying Proposition 4.2, we derive

K �

(
rp
ffl
Br/2

Vdx
)1−β

(
rp
ffl
Br/2

V
)[ 1

β ]β

 
Br

(|Dw|p +V|w|p)dx �
 

Br

(|Dw|p +V|w|p)dx, (4.36)
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which together with (4.34)–(4.35) yields
 

Br/4

(|Dw|p +V|w|p)dx �θ
 

Br

(|Dw|p +V|w|p)dx

+C(n, p,Λ)
( 

Br

|Dw| p
ν dx+

 
Br

V
1
ν |w| p

ν dx

)ν
,

for some θ ∈ (0,1) .

Case 2 : x0 ∈ ∂Ω .
We extend w by zero in R

n\Ω . In view of [10, Proposition V.1.1] again, it suffices
to prove that
 

Br(y)
(|Dw|p +V|w|p)dx �θ

 
B4r(y)

(|Dw|p +V|w|p)dx

+C(n, p,Λ)

( 
B4r(y)

|Dw| p
ν dx+

 
B4r(y)

V
1
ν |w| p

ν dx

)ν

,

(4.37)

for all balls B4r(y) ⊂ BR(x0) , and for some ν ∈ (1, p) .
Since Ω is a (δ ,R0)-Reifenberg flat domain with δ ∈ (0,1/2] , there exists a

coordinate system {y1,y2, . . . ,yn} such that in this coordinate system, the origin is an
interior point of Ω and

x0 =
(
0, . . . ,0,

−δ r
1− δ

)
,

B+
r (0) ⊂ Br(0)∩Ω ⊂ Br(0)∩{yn > −4δ r},

where B+
r (0) = Br(0)∩{yn > 0} . Hence, if we restrict δ < 1/5 then

Br(x0) ⊂ B 5r
4
(0) ⊂ B 5r

2
(0) ⊂ B2r(0) ⊂ B4r(x0).

Now notice that for the balls centered at 0 , we can use the following Sobolev-Poincaré’s
inequality near the boundary of a Reifenberg domain.

LEMMA 4.4. [13, Lemma 3.1] Let Ω ⊂ R
n is a (δ ,R0)-Reifenberg flat do-

main and let x0 ∈ ∂Ω , r < R0 . Suppose that u is a p-quasi continuous function in
W 1,p(Ωr(x0)) with p ∈ (1,∞) . Then we have( 

Ωr(x0)
|u|κ pdx

) 1
κ p

� cr
( 

Br(x0)
|Du|pdx

)1/p
, (4.38)

where c = c(n, p) > 0 , u is the zero extension of u from Ωr(x0) to Br(x0) , and

κ =

{
2 if p � n,

n
n−p if 1 < p < n.
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In particular, we have

( 
Ωr(x0)

|u|pdx

) 1
p

� cr

( 
Br(x0)

|Du|pdx

)1/p

. (4.39)

At this stage, by using the similar arguments as in Case 1, we can obtain
 

Br(y)
(|Dw|p +V|w|p)dx � C

 
B5r/4(0)

(|Dw|p +V|w|p)dx

� θ
 

B5r/2

(|Dw|p +V|w|p)dx

+C(n, p,Λ)

( 
B5r/2

|Dw| p
ν dx+

 
B5r/2

V
1
ν |w| p

ν dx

)ν

,

which implies (4.37). The proof of Lemma 4.3 is thus completed. �

Proof of Lemma 3.1. Step 1. Let u∈W 1,p
0 (Ω) be a weak solution of (1.1) and w∈

u+W1,p
0 (B2R) be a weak solution of the following localized homogeneous equation:{

−divA (x,Dw)+V|w|p−2w = 0 in Ω2R,

w = u on ∂Ω2R,
(4.40)

where A (x,ξ ) = (Aξ .ξ )
p−2
2 Aξ ,ξ ∈ R

n .
We extend u by zero outside Ω and extend w from Ω2R to R

n by the extension
of u . These extensions are still denoted by u and w respectively.

First, by using ϕ = w−u as a test function, we have
ˆ

Ω2R

(
A (x,Du)−A (x,Dw)

)
(Du−Dw)dx

+
ˆ

Ω2R

V
(|u|p−2u−|w|p−2w

)
(u−w)dx =

ˆ
Ω2R

| f |p−2 f .(Du−Dw)dx.

From Lemma 2 in [27], it follows that

Λ−1
ˆ

Ω2R

(|Du|2 + |Dw|2) p−2
2 |Du−Dw|2dx

+
ˆ

Ω2R

V
(|u|p−2u−|w|p−2w

)
(u−w)dx �

ˆ
Ω2R

| f |p−1.|Du−Dw|dx.

If p � 2, by applying the following elementary inequality

|a−b|2(|a|2 + |b|2) p−2
2 � Cp|a−b|p,
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for all a,b ∈ R
n , one gets

 
Ω2R

(|D(u−w)|p +V|u−w|p)dx � C(n, p,Λ)
 

Ω2R

| f |p−1|Du−Dw|dx. (4.41)

If 1 < p < 2 then it follows from the elementary inequalities

|a−b|p � ε(|a|+ |b|)p +C(p,ε)(|a|+ |b|)p−2|a−b|2,
(|a|p−2a−|b|p−2b).(a−b) � C(p)(|a|2 + |b|2) p−2

2 |a−b|2,
for all a,b ∈ R

n and ε > 0, that
 

Ω2R

(|D(u−w)|p +V|u−w|p)dx � C(ε,n, p,Λ)
 

Ω2R

| f |p−1|Du−Dw|dx

+ ε
 

Ω2R

(|Du|2 + |Dw|2) p
2 dx+ ε

 
Ω2R

V
(|u|2 + |w|2) p

2 dx. (4.42)

Then in light of Young’s inequality, (4.41) and (4.42), we derive
 

Ω2R

(|D(u−w)|p +V|u−w|p)dx � C(ε,κ ,n, p,Λ)
 

Ω2R

| f |p

+ ε
 

Ω2R

(|Du|2 + |Dw|2) p
2 dx+ ε

 
Ω2R

V
(|u|2 + |w|2) p

2 dx, (4.43)

for some small κ > 0 and for any small ε > 0. As a result of that, for any ε > 0, the
following estimate holds true
 

Ω2R

(|D(u−w)|p +V|u−w|p)dx � ε
 

Ω2R

(|Du|p +V|u|p)dx+
 

Ω2R

| f |pdx. (4.44)

Step 2. Now we consider a weak solution h of the following problem{
−divA ΩR (Dh)+V|h|p−2h = 0 in ΩR,

h = w on ∂ΩR,
(4.45)

with A ΩR : R
n → R is defined by

A ΩR(ξ ) =
(
AΩRξ .ξ

) p−2
2 AΩRξ , AΩR =

 
ΩR

A(x)dx,ξ ∈ R
n.

By taking η = w−h as a test function for (4.40) and (4.45), we derive
 

ΩR

(
A ΩR(Dw)−A ΩR(Dh)

)
.D(w−h)dx+

 
ΩR

V(|w|p−2w−|h|p−2h)(w−h)dx

= −
 

ΩR

(
A (x,Dw)−A ΩR(Dw)

)
.D(w−h)dx.
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Using similar arguments as in Step 1 yields 
ΩR

(|D(w−h)|p +V|w−h|p)dx � ε
 

ΩR

(|Dw|p +V|w|p)dx

+
 

ΩR

∣∣∣A (x,Dw)−A BR(Dw)
∣∣∣ .|D(w−h)|dx,

for any ε > 0. Put

Γ(A,ΩR) =

∣∣∣A (x,Dw)−A BR(Dw)
∣∣∣

|Dw|p−1 .

Then, in view of (1.4), we obtain 
ΩR

∣∣A (x,Dw)−A ΩR(Dw)
∣∣ |D(w−h)|dx �

 
ΩR

Γ(A,ΩR)|Dw|p−1|Dw−Dh|dx

�
( 

ΩR

|Dw−Dh|pdx
) 1

p
( 

ΩR

|Dw|p(1+μ)dx
) p−1

p(1+μ)
( 

ΩR

(Γ(A,ΩR))s0dx
) 1

s0

� δ
( 

ΩR

|Dw−Dh|pdx
) 1

p
( 

ΩR

|Dw|p(1+μ)dx
) p−1

p(1+μ)
,

where μ < ε0 as in Lemma 4.3 and s0 =
p(1+ μ)
μ(p−1)

. This leads to

 
ΩR

∣∣A (x,Dw)−A ΩR(Dw)
∣∣ |D(w−h)|dx

� δ
( 

ΩR

|Dw−Dh|pdx
) 1

p
( 

Ω2R

(|Dw|p +V|w|pdx
) p−1

p
.

Hence  
ΩR

(|D(w−h)|p +V|w−h|p)dx � ε
 

ΩR

(|Dw|p +V|w|p)dx

+δ
( 

ΩR

|Dw−Dh|pdx
) 1

p
( 

Ω2R

(|Dw|p +V|w|p)dx
) p−1

p
.

Finally, by using Young’s inequality and choosing a suitable ε , we derive 
ΩR

(|D(w−h)|p +V|w−h|p)dx � δ
p

p−1

 
Ω2R

(|Dw|p +V|w|p)dx. (4.46)

Finally, combining (4.44) and (4.46) gives 
ΩR

(|D(u−h)|p +V|u−h|p)dx

�
 

ΩR

(|D(u−w)|p +V|u−w|p)dx+
 

ΩR

(|D(w−h)|p +V|w−h|p)dx

� δ
p

p−1

 
Ω2R

(|Du|p +V|u|p)dx+
 

Ω2R

| f |pdx.
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This means that (3.15) is proved. Then (3.16) is only a consequence of (3.15). �

5. Proof of Theorem 1.7 by approximation

Recall that the given bounded, open domain Ω is (δ ,R) is Reifenberg flat. Now
for each small δ > 0, we write

Ωε = {x ∈ Ω : d(x,∂Ω) > ε},

where d is the standard distance function defined by

d(x,y) = |x− y|

and

d(x,∂Ω) = inf{d(x,y) : y ∈ ∂Ω} (x ∈ Ω).

It is well-known that an ε inner neighborhood of the (δ ,R)-Reifenberg flat domain is
a Lipschitz domain with the (δ ,R)-Reifenberg flat property for δ small; that is, Ωε
is a Lipschitz domain with the uniform (δ ,R)-Reifenberg flat (see [5, Lemma 4.2]).
Therefore, according to a standard approximation of a Lipschitz domain by smooth
domains, we can construct a further approximation of Ωε for any fixed small δ > 0
by smooth domains Ωη

ε ⊂ Ωε with the uniform (δ ,R)-Reifenberg flat property for a
properly chosen η = η(ε) > 0.

Next we use a standard diagonal argument to extract a subsequence of smooth
domains Ωk with the uniform (δ ,R)-Reifenberg flat property such that

Ωk ⊂ Ω and dH(∂Ωk,∂Ω) → 0 as k → ∞, (5.47)

where the Hausdorff distance dH is defined as follows:

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x,y),sup
y∈Y

inf
x∈X

d(x,y)

}
.

Proof of Theorem 1.7. Given a Young function φ ∈ Δ2∩∇2 , we choose {Ak} to
be a sequence of smooth functions with the uniform ellipticity and the uniform (δ ,R)-
vanishing property converging to A in Lq for any 1 < q < ∞ , and { fk} and {Vk} to
be sequences of smooth functions in C∞

c (Ω,Rn) and C∞
c (Ω,R) respectively such that

fk → f in Lp(Ω,Rn), | fk|p → | f |p in Lφ (Ω), (5.48)

ˆ
Ω
| fk|pdx � C

ˆ
Ω
| f |pdx,

ˆ
Ω

φ(| fk|p)dx � C
ˆ

Ω
φ(| f |p)dx, (5.49)

and
Vk → V in Lp(Ω,R), Vk ∈ RHγ . (5.50)
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According to the standard theory for nonlinear uniformly elliptic equations of p -
Laplacian type with the corresponding smooth data on smooth domains, the following
Dirichlet problems{

div
(
(Ak.Duk)

p−2
2 AkDuk

)
+Vk|uk|p−2uk = div(| fk|p−2 fk) in Ωk,

uk = 0 on ∂Ωk
(5.51)

have unique weak solutions uk ∈W 1,p
0 (Ωk) with the regularity uk ∈C1,α(Ω

k
) for some

α = α(n, p,k) ∈ (0,1) and uk = 0 on ∂Ωk in the classical sense. In addition, these
solutions satisfy

|Duk|p,Vk|uk|p ∈ Lφ (Ωk). (5.52)

Then it follow from Theorem 1.6 and (5.52) that these solutions have the uniform gra-
dient estimates in Orlicz space with respect to the above approximation; that is,

ˆ
Ωk

φ(|Duk|p)dx+
ˆ

Ωk
φ(Vk|uk|p)dx � C

ˆ
Ωk

φ(| fk|p)dx, (5.53)

where the constant C is independent of k ∈ N . We extend uk from Ωk to Ω by the
zero extension and denote by uk . Then uk ∈W 1,p

0 (Ω) . In addition, (5.53) and (5.49)
imply that

ˆ
Ω

φ(|Duk|p)dx+
ˆ

Ω
φ(Vk|uk|p)dx � C

ˆ
Ω

φ(| fk|p)dx � C
ˆ

Ω
φ(| f |p)dx. (5.54)

From (5.54) with φ(t) ≡ t, we have

ˆ
Ω
|Duk|pdx+

ˆ
Ω

Vk|uk|pdx � C
ˆ

Ω
| fk|pdx � C

ˆ
Ω
| f |pdx. (5.55)

Therefore, there exist a subsequence of uk (still denoted by uk ) and a function v ∈
W 1,p

0 (Ω) such that ⎧⎪⎨
⎪⎩

Vk|uk|p → V|v|p strongly in L1
loc(Ω),

uk → v strongly in Lp(Ω),
Duk ⇀ Dv weakly in Lp(Ω).

(5.56)

We claim that
Duk → Dv strongly in Lp

loc(Ω). (5.57)

The proof of this claim will be given later. Then it follows from (5.57) and the particular
selection of Ak and fk that v ∈W 1,p

0 (Ω) is also a weak solution of (1.1). Thanks to the
uniqueness of the weak solution to (1.1), we deduce that v = u and

Duk → Du strongly in Lp
loc(Ω). (5.58)



590 N. N. TRONG, N. T. TUNG, T. T. DUNG AND L. X. TRUONG

Consequently, we can use a standard diagonal argument to extract a subsequence of uk

(still denoted by uk ) such that

Duk → Du a.e. in Ω. (5.59)

Finally, applying Fatou’s lemma to the left-hand side of (5.54) yields (1.6):
ˆ

Ω
φ(|Du|p)dx+

ˆ
Ω

φ(V|u|p)dx � C
ˆ

Ω
φ(| f |p)dx.

We now prove the claim (5.57). We only consider the case that p � 2. The other
case 1 < p < 2 can be addressed in the same way (see [6, 14]). To this end, choose a
cut-off function ζ ∈C∞

c (Ω) satisfying

p � ζ � 1, supp ζ ⊂ Ω2, ζ = 1 on Ω1.

Then function ϕ = ζ p(um − un) with m,n � 2 is a qualified test function for (5.51)
when k = m or k = n . Thus we haveˆ

Ω
(AmDum.Dum)

p−2
2 AmDum.D[ζ p(um − un)]dx+

ˆ
Ω

Vm|um|p−1umϕdx

=
ˆ

Ω
| fm|p−2 fm.D[ζ p(um − un)]dx,

and ˆ
Ω
(AnDun.Dun)

p−2
2 AnDun.D[ζ p(um − un)]dx+

ˆ
Ω

Vn|un|p−1unϕdx

=
ˆ

Ω
| fn|p−2 fn.D[ζ p(um − un)]dx.

After several simple computations, we derive the following equation

I8 + I1 =
7

∑
i=2

Ii,

where

I1 =
ˆ

Ω
ζ p[(AmDum.Dum)

p−2
2 AmDum − (AmDun.Dun)

p−2
2 AmDun].D(um − un)dx

+
ˆ

Ω
ξ pVm[|um|p−2um −|un|p−2un](um −un)dx,

I2 = −p
ˆ

Ω
ζ p−1(um − un)(AmDum.Dum)

p−2
2 AmDum.Dζdx,

I3 = p
ˆ

Ω
ζ p−1(um − un)(AmDun.Dun)

p−2
2 AmDun.Dζdx,

I4 =
ˆ

Ω
pζ p−1(um − un)

[| fm|p−2 fm −| fn|p−2 fn
]
.Dζdx,
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I5 =
ˆ

Ω
ζ p[| fm|p−2 fm −| fn|p−2 fn

]
.D(um − un)dx,

I6 = −
ˆ

Ω
ζ pD(um − un).

[
(AmDun.Dun)

p−2
2 AmDun − (AnDun.Dun)

p−2
2 AnDun

]
dx,

I7 = −p
ˆ

Ω
ζ p−1(um−un)Dζ .

[
(AmDun.Dun)

p−2
2 AmDun−(AnDun.Dun)

p−2
2 AnDun

]
dx,

I8 =
ˆ

Ω
ξ p(Vm −Vn)|un|p−2un(um −un)dx.

Estimate I1 . Since Am is uniformly elliptic, the vector valued function a(ξ ,x) =
(Am(x)× ξ .ξ )

p−2
2 Am(x)ξ is strictly monotonic; that is, there is a positive constant c0

such that[(
Am(x)ξ .ξ

) p−2
2 Am(x)ξ − (Am(x)η .η

) p−2
2 Am(x)η

]
.[ξ −η ] � c0|ξ −η |p,

for all ξ ,η ∈ R
n . This observation, together with the elementary inequality

(|x|p−2x−|y|p−2y).(x− y) � 0,

for all x,y ∈ R
n , implies that

I1 � c0

ˆ
Ω

ζ p
∣∣D(um − un)

∣∣pdx. (5.60)

Estimate I2, I3, I4, I7, I8 . It follows from the uniform boundedness of Am and Young’s
inequality with ε > 0 that

I2 � ε
ˆ

Ω
ζ p|Dum|pdx+C(ε, p)

ˆ
Ω

∣∣(um − un)
∣∣pdx, (5.61)

I3 � ε
ˆ

Ω
ζ p|Dun|pdx+C(ε, p)

ˆ
Ω

∣∣(um − un)
∣∣pdx, (5.62)

I4 � ε
ˆ

Ω
ζ p(| fm|p + | fn|p

)
dx+C(ε, p)

ˆ
Ω

∣∣(um − un)
∣∣pdx, (5.63)

I7 � ε
ˆ

Ω
ζ p|Dun|pdx+C(ε, p)

ˆ
Ω

∣∣(um − un)
∣∣pdx, (5.64)

|I8| � ε
ˆ

Ω
ξ

p2
p−1 |Vm −Vn|

p
p−1 |un|pdx+C(ε, p)

ˆ
Ω
|um −un|pdx. (5.65)

Estimate I5 . From the following inequality∣∣|ξ |p−2ξ −|η |p−2η
∣∣� c(p)

(|ξ |+ |η |)p−2|ξ −η |,
for all ξ ,η ∈ R

n and for some positive constant c(p) , we have

I5 � c(p)
ˆ

Ω
ζ p
[(| fm|+ | fn|

)p−2| fm − fn|
∣∣D(um − un)

∣∣]dx.
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Then in view of Young’s inequality with ε > 0 and Hölder’s inequality, it is clear to see
that

I5 � ε
ˆ

Ω
ζ p
∣∣D(um−un)

∣∣pdx+C(p,ε)
(ˆ

Ω

(| fm|p+| fn|p
)
dx

) p−2
p−1
(ˆ

Ω
| fm− fn|pdx

) 1
p−1

� ε
ˆ

Ω
ζ p
∣∣D(um − un)

∣∣pdx+C(p,ε)
(ˆ

Ω
| fm − fn|pdx

) 1
p−1

.

Thus, we get

I5 � ε
ˆ

Ω
ζ p
∣∣D(um − un)

∣∣pdx+C(p,ε)
(ˆ

Ω
| fm − fn|pdx

) 1
p−1

. (5.66)

Estimate I6 . Using the following elementary inequality∣∣∣∣(Amξ .ξ
) p−2

2 Amξ − (Anξ .ξ
) p−2

2 Anξ
∣∣∣∣� C(p)

∣∣Am −An
∣∣|ξ |p−1.

for all ξ ∈ R
n , we have

I6 � C(p)
ˆ

Ω
ζ p
[
|Am −An|

∣∣Dun
∣∣p−1∣∣D(um − un)

∣∣]dx.

Now in light of Lemmas 2.5 and 2.9, one observes that for each v ∈ Lφ (Ω) , there exist
A2 > 0 and α2 > 1 such that

ˆ
Ω
|v|α2dx �

ˆ
{x∈Ω:|v|�1}

|v|α2dx+
ˆ
{x∈Ω:|v|�1}

|v|α2dx � |Ω|+ A2

Ω1

ˆ
Ω

φ(|v|)dx.

But then since |Dun|p ∈ Lφ (Ω) and (5.54), we have
ˆ

Ω
|Dun|pα2dx � |Ω|+ A2

Ω1

ˆ
Ω

φ
(|Dun|

)
dx < +∞.

Therefore, using Young’s inequality with ε > 0 gives

I6 �ε
ˆ

Ω
ζ p
∣∣D(um − un)

∣∣pdx

+C(ε, p)
[ˆ

Ω
|Am −An|

pα2
(p−1)(α2−1) dx

]1− 1
α2
[ˆ

Ω
ζ pα2 |Dun|pα2dx

] 1
α2

�ε
ˆ

Ω
ζ p
∣∣D(um − un)

∣∣pdx+C(ε, p)
[ˆ

Ω
|Am −An|

pα2
(p−1)(α2−1) dx

]1− 1
α2

.

So we can conclude that

I6 � ε
ˆ

Ω
ζ p
∣∣D(um − un)

∣∣pdx+C(ε, p)
[ˆ

Ω
|Am −An|

pα2
(p−1)(α2−1) dx

]1− 1
α2

. (5.67)
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At this stage, we combine all the estimates from (5.60) to (5.65) to deduce that for every
ε > 0,

ˆ
Ω

ζ p
∣∣D(um − un)

∣∣pdx+ ε
ˆ

Ω
ξ

p2
p−1 |Vm −Vn|

p
p−1 |un|pdx

� C(ε, p)

{ˆ
Ω
|um − un|pdx+

(ˆ
Ω
| fm − fn|pdx

) 1
p−1

+
[ˆ

Ω
|Am −An|

pα2
(p−1)(α2−1) dx

]1− 1
α2

}

+ ε
ˆ

Ω
ζ p(|Dum|p + |Dun|p + | fm|p + | fn|p

)
dx.

Finally, due to the strong convergence of {um} in Lp(Ω) , the particular selection of
Ak , fk and the arbitrariness of ε > 0, we conclude that

ˆ
Ω1

∣∣D(um − un)
∣∣pdx �

ˆ
Ω

ζ p
∣∣D(um − un)

∣∣pdx → 0 as m,n → ∞.

Analogously, for every fixed k ∈ N we have
ˆ

Ωk

∣∣D(um − un)
∣∣pdx → 0 as m,n → ∞,

which implies the claim (5.57). �
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