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REGULARITY IN ORLICZ SPACES FOR QUASI-LINEAR
ELLIPTIC EQUATIONS OF SCHRODINGER TYPE

NGUYEN NGOC TRONG, NGUYEN THANH TUNG,
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(Communicated by L. D’Ambrosio)

Abstract. In this paper, we generalize gradient estimates in Lebesgue spaces to Orlicz spaces
for weak solutions of quasi-linear elliptic equations of Schrddinger type on a Reifenberg flat
domain, under the condition that the coefficients are in John-Nirenberg space with small BMO
semi-norms. We assume that the potential belongs to some certain reverse Holder class. Our
results improve the known results for such equations using a harmonic analysis-free technique.

1. Introduction and main results

In this paper, we consider the following quasi-linear elliptic equation of Schrodinger
type

div((ADu.Du) "> ADu) + V|ulP"2u = div(|f|P2f)  in Q
(1.1)
u=0 on 0Q,
where Q is a domain of R". Throughout the paper, we always assume that the follow-
ing assumptions hold true (for the convenience of presentation we shall refer to these
assumptions as Assumption (H)):

o n>=2and p € (1,0).
o The data f is a vector field which belongs to at least the space LP(Q;R").

¢ The coefficient matrix A : Q — R™" is symmetric and satisfies the following
uniform ellipticity condition: there exists a positive constant A such that for all
& e R", we have
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¢ The potential V : R” — R is nonnegative and belongs to the reverse Holder class
RH, with

(1.2)

sSy<n ifp<n,
Il<y<n ifp>n

It means that there exists a constant C > 0 such that the following inequality

(ﬁ / V(y)Ydy)l/y< % [ Vo

holds for all balls B in R”.

We have some important remarks related to the reverse Holder class as follows.

REMARK 1.1.

(i) The RHy class which is a wide class of functions including all nonnegative poly-
nomials was introduced independently by Muckenhoupt [18] and Gehring [9] in
the study of weighted norm inequalities and quasi-conformal mapping, respec-
tively.

(i) It is well-known that V € RHy if and only if V € A.., where A.. is the class of
Muckenhoupt weights on R”. In addition, if V € A.. then we have

[V]a. := sup (7[ de> exp <][ 1ogV—1dx) < oo, (1.3)
B B B

where the supremum is taken over all balls B C R". We call [V]4,, the Ao
constant of V. (See pages 7, 8 in [23] and pages 8, 9 in [17])

As usual, the solutions of problem (1.1) are taken in a weak sense. More precisely,
we have the following definition.

DEFINITION 1.2. Let Assumption (H) hold true. A function u € WO1 P(Q) is
called a weak solution of the problem (1.1) if for any ¢ € WO1 P(Q), we have

/ (ADu.Du)"T ADu.D@dx + / V|ulP2updx = / |f|P~2f.Dodx.
Q Q Q

REMARK 1.3. Let u be a weak solution of the problem (1.1). Since the parameter
v satifies (1.2), it follows from the Sobolev’s embedding inequality that
(n—p

n 4 np )(p—1) np n—p
)/ V‘u|p72u(pdx‘ < </ Vﬁdx>" (/ ‘M|de> np (/ \(p\ﬁdx> np < oo,
Q Q o o

1
Moreover, ||Dul|1r(q) and |[Dul|pq) + ||V 7 ul[1r(q) are two equivalent norms, and the

problem (1.1) has a unique weak solution u € WOl P(Q) (see [17]).
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Our main goal is to study how the regularity of f is reflected to the solutions of
(1.1) in the setting of Orlicz spaces. For this purpose we need to add further assumptions
to A and the domain Q. These assumptions are related to following definitions.

DEFINITION 1.4. Let 6 and R be two positive constants. A domain Q C R” is
said to be (8, R)-Reifenberg flat if for every x € dQ and every r € (0, R], there exists
a coordinate system {y;,---,y,} depending on r and x so that x =0 in this coordinate
system and

Br(x)N{yn > 0r} C B-(0)NQ C By(x)N{y, > —3r}.

DEFINITION 1.5. Let 6 and R be two positive constants. We say that A : Q —
R™" is (8,R)-vanishing if

sup sup][ . |A(y) — Ag,(ldy < 0, (1.4)

0<r<RxeR"JB
where B;(x) is the ball of radius r and center x, and Ag () = ][ A(y)dy.
Now we are in position to state main results of this work.

THEOREM 1.6. [A priori estimate] Let Assumption (H) hold true, |f|P € L?(Q)
for some Young function ¢ € Ay NV, (see Section 2 below) and Ry > 0. Then there
exists a small number 6 = 8(n,p,¢,A) >0 such that if A is (8,Ry)-vanishing and Q
is (8,Ry)-Reifenberg flat, we have the following estimate:

/¢(\Du|p)dx—|—/¢(V|u\”)dx<C/¢(|f|p)dx, (L.5)
Q Q Q

where C is a positive constant independent of u and f, provided that u WO1 P(Q) is
a weak solution to (1.1) satisfying |DulP € L?(Q).

By using Theorem 1.6 we obtain the existence result as below.

THEOREM 1.7. [Existence] Under the assumptions of Theorem 1.6, then there
exists a small number 6 = 8(n,p,¢,A) >0 such that if A is (8,Ry)-vanishing and Q
is (8,Ro)-Reifenberg flat, then the problem (1.1) has a unique weak solution u such
that |Dul|P € L?(Q). Moreover, we also have the following estimate

/ o(|DulP)dx + / O (V]ulP)dx < C / o(1117)dx, (L6)
Q Q Q

where C is a constant independent of u and f.
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Recently, integrability of the gradient of solutions for elliptic/parabolic problems
with discontinuous coefficients of VMO/BMO type have been extensively studied by
many authors (see [3, 4, 6, 14, 15, 16]). We would like to point out that if a function
satisfies the VMO condition, then it satisfies the (8,Ro)-vanishing condition which
we treat in this paper. On the other hand, Reifenberg flat domains were introduced by
Reifenberg in the noteworthy paper [21] where he showed that they are locally topolog-
ical disks if & is sufficiently small. A good example of Reifenberg flat domains is a flat
version of the well-known Van Koch snowflake when the angle of the spike with respect
to the horizontal is sufficiently small (see [22]). These domains arise naturally in many
areas such as applied mathematics, harmonic analysis and geometric measure theory.
They look like coast lines, zigzag functions, atomic clusters. For a further discussion
of Reifenberg flat domains we refer the reader to [3, 6, 8, 11, 12, 22].

We summarize here some remarks of the regularity of the solution to the equations
of the form (1.1) which have been established recently.

¢ Theorem 1.7 was claimed in [7] when V =0.

¢ Theorem 1.6 was proved in [24] when A =1, p=2 and V € RH..,ie. V €
Ly (R") and

loc

sup V < C][ Vdx,
Br(xo) By (xo)

for all balls B,(xo).
o Theorem 1.6 was established in [25] when A € C!(R",R"), p=2 and V € RH...

o When ¢(r) = t9/P with g > p, the authors in [17] proved Theorem 1.7 for a
general vector valued function A that satisfies growth and ellipticity conditions.

L

It should be emphasized, as pointed out, that our results are developed as a continuation
to the aforementioned works. In particular, these results generalize those of [7], [24],
[25]. Furthermore, our work improves the one of [17] when providing an estimate of

1
HVPu

1
However, when g > p7, they do not obtain any estimate for HVE u

‘L when g > p7 in the sense that A is a matrix of discontinuous entries.
q

This paper will be organized as follows. In Section 2, we recall some basic defi-
nitions and facts about Orlicz spaces. In Section 3, we prove Theorem 1.6. Our main
ingredients to the proof of Theorem 1.6 are Lemma 3.1 and Lemma 3.2. A proof of
Lemma 3.1 will be given in Section 4. Finally, Section 5 is devoted to the proof of
Theorem 1.7 using approximation.

We end this section by noting that the following notations will be used throughout
this paper:

e Positive constants are signified as C although they may be different even on the
same line.
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e We write A < B and A ~ B if there exist positive constants C and C’ such that
A<CB and C'A<B<CA,

respectively.

e If B is a ball of center x and radius R then, for every A > 0, we denote by AB
the ball of the same center and radius AR.

e We write Bg for any ball of radius R.

2. Orlicz space

Orlicz spaces were first introduced by Orlicz as a generalization of L” spaces.
Since then, the theory of Orlicz spaces has played a crucial role in a very wide spectrum
(see [20]). In this section, for the convenience of the readers, we will recall some
definitions and basic facts about Orlicz spaces which will be needed in the following.
For further properties, we refer the readers to [1] and [26].

DEFINITION 2.1. Denote by @ the function class that consists of all functions
¢ : [0,00) — [0,e0), which are increasing and convex. Then a function ¢ € @ is said to
be a Young function if ¢(0) =0 and

t t
lim ¢(r) =, lim o) = lim —— =0.
1—o =0+t 1=+ (1)

It is well-known that a Young function ¢ is differentiable a.e. and can be written

as:

ot = [ o'(ndrx>o0,
0
where ¢'(0) =0,¢’ : [0,00) — [0,00) is non-decreasing and left-continuous.

DEFINITION 2.2. Given a Young function ¢, the function ¢* : [0,00) +— [0,e0),
defined by

0% (s) = sup{st — 9(1) :1 > 0},
is called the complementary function of ¢.

It is a fact that if ¢ is a Young function then so is ¢*, and the complementary
function of ¢* is ¢. In addition, from the definition of ¢* we have Young’s inequality:
for s, >0,

st < O(s) + 07 (7).

DEFINITION 2.3. A function ¢ € @ is said to satisfy the global A, condition,
denoted by ¢ € Ay, if ¢ is a Young function and there exists a positive constant K > 0
such that for every ¢t > 0,

¢(2t) <K9(1).
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DEFINITION 2.4. A function ¢ € @ is said to satisfy the global V, condition,
denoted by ¢ € V,, if ¢ is a Young function and there exists a constant @ > 1 such
that for every r > 0,

9(at)

1) < .
o<
Note that ¢ € V, if and only if ¢* € A,.

LEMMA 2.5. ([7]) ¢ € ANV, ifand only if ¢ is a Young function and there exist
constants Ay > A1 >0 and o > op > 1 such that for any 0 < s <,

M (D) <89 ()"

Moreover, the condition (2.7) implies that for 0 < 0] <1< 6 < oo,
0(017) < A2029 (1) and ¢(6a1) <AL 05 9(1). (2.8)

LEMMA 2.6. Let ¢ be a Young function satisfying ¢ € Ay N\V,. Then there exists
a positive constant K > 0 such that for every t >0 and 0 < 0] < 1 < 6, < oo,

¢'(617) <KA20{°"'¢/(r) and ¢'(621) < KA 0579/ (1),

where Ay > A1 >0 and op > 0p > 1 are constants defined in Lemma 2.5.

Proof. Since ¢’ : [0,00) — [0,0) is non-decreasing, we have

— / d < / ,
) /0 o' (v)dx < 10/ (1)
and 2t 2t
0020 = [ o' (Wdx= | ¢ (x)dx =14 (t). (2.9)
0 t

On the other hand, by ¢ € A,, there exists a positive constant K such that ¢(2¢) <
Ko(1) for every t > 0. Therefore, for every # > 0

o(t) <19'(r) <K9(1), (2.10)
which is equivalent to
@@P’(IKK@. 2.11)

Finally, it follows from (2.11) and Lemma 2.5 that for 0 < 6; <1< 6, < and t > 0,
we have

¢’(91¢)<K¢(9 ) < ka, 62" 100 g, 072710’ (1),

t
¢ (61t) < Kq)(eﬂ) <KA7'eo! M <KAT'OM (1), O
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LEMMA 2.7. Let ¢ be a Young function satisfying ¢ € A, NV, and b > 0. Then
there exists a positive constant C such that for any t > 0, the following holds true

bt
/ P4 a < co'). 2.12)
0

. bt .
Proof. Take an arbitrary o € (0,bt) and choose n € N such that o <O Since
¢’ is non-decreasing, we have

bt q)/(z’)dl - bt ¢/(2’)dz/
o A = o A

znlM zn—<z>(> ’”¢(>
/M LACON7IN / R s =)

an

bt bl

n— n—. bt !
<ﬂ2 1 2"' A+ /2 22 3 4ot ¢Elbt)dl
7

on

:1n2<¢ <2n D) +e' (2n 5) -+ +¢(bt))

Then in view of Lemma 2.6, we derive

bt 41
¢'(A) 1 1 / /
2 dA < <(2a2_1)n_1 ey +---+1) KA;In2.¢"(br) < C9' (1),
(2.13)

where C is a positive constant depending only on ¢ and b.
Letting oo — 07" in (2.13) gives (2.12). O

DEFINITION 2.8. Let ¢ be a Young function. Then the Orlicz class K?(Q) is
defined to be the set of all measurable functions f : € — R satisfying the condition

/ o (| f|)dx < o, and the Orlicz space L?(Q) is defined to be the linear hull of K (Q).
Q

In L?(Q) we consider the following analog of the Luxemburg norm

u||m<m=inf{x>o: / ¢('”§L—x>')dx<1}.

It is well-known that if ¢ € Ay, then the space C°(€2) of infinitely differentiable
functions with compact support is dense in L?(Q) and (L?)*(Q) = L? (Q) (see [I,
p.271]). Furthermore, if ¢ and ¢* € A, then L?(Q) is reflexive (see [1, p.274]).

LEMMA 2.9. ([1]) Let ¢ be a Young function satisfying ¢ € Ay N\V,. Then
LU(Q) C L?(Q) C L% (Q) c LY(Q),

with o = o > 1 as in Lemma 2.5.
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REMARK 2.10. ([26]) In general, K?(Q) C L?(Q). However, if ¢ € A,, then
we have K?(Q) = L?(Q). Moreover, if g € L?(Q), then

/ 815 (x))dx = / Hxe Qg > AYdo(A)] 2.14)
Q 0

LEMMA 2.11. ([19, Theorem 1.5]) Given f € L?(Q) and g € L?(Q). If for all

A >0, we have
[ oasnax< [ o(s)a

||fHL¢(Q) < ||8HL¢(Q)

then

3. Proof of Theorem 1.6

This section is devoted to proving Theorem 1.6. Our main tools are Lemma 3.1
and Lemma 3.2 below. We will give a proof of Lemma 3.1 in the next section. Note
that, in Lemma 3.1, if Byg ¢ Q then we shall use the same notation u for its zero
extension on R\ Q.

LEMMA 3.1. Assume that the assumptions of Theorem 1.6 hold true. Let u €
WOI"p(Q) be a weak solution to (1.1). Then, for each ball

Bag = Bagr(xo) with xo € Q and R € (0,R/20],

there exist a function h € WP (Qg) and a constant § > 0 independent of R and xg
such that the following hold true

][(|D(u—h)|p+V\u—h\”)dx§ 5%][ (|Du\”+V|u\”)dx+][ \FIPdx,
Qg Qop Qg
(3.15)
][(|Dh\”+V\h|p)dx§][ (\Du|p+V\u|p)dx+][ \FIPdx. (3.16)
Qg

Qo Qo

Here Qor = BorNQ and Qr = BR N with Bg = BR(X()).

LEMMA 3.2. Let u € WOI"p(Q) be a weak solution to (1.1) and

Ao = ]i (|1Dul? + V|u|?)dx+ %]{Jﬂpd}ﬂ
Then we can find a constant My > 0 so that if A > MyAy and
EA):={xeQ: |Du(x)|” +V(x)|u(x)? > A} #0,
then there exists a disjoint family of balls
Bgr; = Bg;(x;) with 0 <R; <Ro/20 and x; € E(A)

such that
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o EM)c (Q5RjﬂE(7L)>, with Qsg; = Bsg, (x/) N Q.
j=1
o px;(Rj)=A and py;(R) <A forany R; <R < Ry, where

1
Px; (R) := ][ (|Dul? + V|u|P)dx + —][ |f|Pdx.
’ BR(X_,')QQ 617 BR(Xj)ﬁQ

Proof. Let A > 0. For every x € E(A), we define the function p, : (0,Ro] — R™
by

1
pu(R) :][ (1Dul? + V]ulP)dx + — \F|Pdx.
Br(x)NQ 07 Jppne

By elementary calculation we can show that there exists a constant My > 0 such that

px(R) < <

X m% < MOA(L

for any Ry/20 < R < Ry. So we have p,(R) < A provided that A > MyAy and Ry/20
< R < Rp. On the other hand, it follows from Lebesgue’s differentiation theorem that

li (R) > A.
A, P(F)

Due to the continuity of the function R — p,(R), we deduce that for any A > MyAo,
there is a constant R, € (0,Ry/20) such that p(Ry) =4 and py(R) < A for Ry <R <
Ro.

Finally, applying Vitali’s covering lemma for the family of balls

{Br,(x) : x€ E(A)}
completes the proof of this lemma. [

Proof of Theorem 1.6. The proof includes three steps.

Step 1. Let A > MyAy and E(A) # 0, where M is defined as in Lemma 3.2. We
first estimate the size of
QRj = BR_,- NnQ.
It follows from Lemma 3.2 that either
6P A
][ |fIPdx > —— or ][ (|Du|? 4+ V]ul?)dx > —.
Qg 2 2

o

If the former holds then, for any 7' > 0, we have
2 oo
Q| < W/o [{xeQp, : [f(x)|P > 1}]dr

. .
<5z (| Hreau i@ > e [ e, s i > o).
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Then by choosing T = 6”1 /4, we obtain
4 o
Qp;| < =+
‘ J | 61)1 5”1/4

Similarly, if the latter holds, that is,

|{x € Qg, : |f(x)|? > t}]dt.

N|>’

f<mw+ww>
QRj

then we also have
4 [
Qg | < —/ |{x € Qg; : |Dul? +V|u|? > 1}|dz.
: A i :
So by combining the estimates above, we derive

y
| <I/7L/4 (v € Qx, ¢ [Dul? + V]ul? > 1}]dr

4 oo

T 5,)/1/4’{)6 € Qe ¢ [f)I > 1} dr. (3.17)

Step 2. Let € >0, A > MyAy and E(A) # 0. We then show that there exists a
constant Y > 1 such that

E(CA)| <e [1/ [{xeQ: |Dul? +V]ul? > 1}|dr
A Jaya

1 o

SPA 5m/4’{xe Q:|f(x)P >t}|dt] . (3.18)

Indeed, for Y > 1, it follows from Lemma 3.2 that

=

[EQrA)| < g HXEQSR |Du(x)|P + V(x)|u(x)|? >Y’7LH
=)

~.
—

{re s, ) )P + Veluto) - o > 7% |

2

where £; is defined by applying Lemma 3.1 for the case R = 5R; and xo = x;.
For j € N, we set

~.
—

{XGQ5R ‘Dh ( )|p_|_V( )|h ( )‘p > ZTpil}

ﬁ}:%eg%:wa—mwwwvwww—mww>3i}

2p+1

TA
ﬁf = {xEQ5Rj : |Dhj(x)|P +V(x)|hj(x)][? > 2p+1}
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Then it follows from Lemma 3.1 and Lemma 3.2 that
) 2p+1 » » .
03 < [ (Dl Vi) Y e
J
and
2! ~1
o} <2 [ (1Du= DI+ V=) S 1 st |
Qsg;
Therefore, by choosing Y sufficiently large and using the following fact

|Br(x)] 2 \'_ .
Bang S\125) S

for x € Q and 0 < R < Ry, we obtain

|Qg; |-

[EQCA)| S ey [Qsk,| S e |Br| S €
: < =

Jj=1 Jj=1 J

oo

Finally, the estimates above together with (3.17) yield (3.18).
Step 3. In light of Remark 2.10, one has

[ o+ [ oviupar<2 0/ E(A)[dlo(2)] <2 O/ [EQA)|dlo (YA,

where the constant Y is chosen in Step 2. On the other hand, we can write
oo 1 oo
/ |E(YA)|dio(YA)] = / |E(YA)[d[6(A) +/ ECY2)|d[0(YA)] = 4 + 7,

0 0 a

where A > Moy is defined by

A= (Mo~+ No) Ao = (Mo + No) (762 (|Dul? + V|u|?)dx + %]if”dx) ,
for some Ny > 0. Now we estimate the terms .#; and .%,.
Estimate 91 = 0} |E(YA)|d[g(YA)]:

Since L < C ][ | f1Pdx, it follows from the properties of ¢ and Jensen’s inequality
Q
that

7 < oY)l <clelo (]i f”dX)

<C(n7p75,¢,9)/9¢(|f|”)dm
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Estimate %, = [ |E(YA)|d[¢(YA)]:

A
It follows from (3.18) that

fg,Ss/%/;J{erRj DU [P+ V(@) u(@)|? > 1} |dr d[6(FA)

5p/ /MAMHXGQR CfO)P > e} |ded[o(YA)].

By interchanging the order of integration and using Lemma 2.7, we obtain

/ / v e Qx, « [f@)? > 1}]drdlo(rA)]
5a/4
4t57”1
/;{erR: )\P>z}ydzA Zdlo(A)]
< [ lre s 17l > 0o 0dr s [ o(lr)ax

Similarly, we also have

/3 /;4 [ € Qe, & DU+ V)lu(@)” > 1}|dr d[6(XA)]

§/Q¢(|Du\1’)dx+/g¢(V\u|p)dx

Combining the estimates above and taking & small enough yield

fz<C(n7p75,¢,9)~/9¢(\f\”)dx

Therefore, we complete the proof of Theorem 1.6. [

4. Proof of Lemma 3.1

In order to prove Lemma 3.1, we need to establish some key results related to the
following homogeneous equation

— div ((ADw.Dw) %ADW> FVWP 2w =0 in B, (4.19)

for some ball B, of R". We begin with the following Caccioppoli-type estimate.
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PROPOSITION 4.1. Let w be a solution to the equation (4.19). Then there exists
a positive constant C = C(n, p,A) such that

p
Dw|? +V|w|P)dx < C [l dx,
(IDw|
(t—1)P

B B;

forall balls By C B; C Bp, where By, is mentioned in (4.19).
Proof. Let n € C°(B;) be a smooth function satisfying the following conditions

1
0<n<1l, n=1lonB; and \Dn\§ﬁ~

By using ¢ =wn? as a test function we have

np((ADw.Dw)% +V.|w|P)dx = —p/ wnp_l(ADw.Dw)%;zADw.Dndx.

By B

In addition, it follows from the property of uniform ellipticity that
i np((ADw.Dw)% +V.wlP)dx > A /B n? (|Dw|? +V|w|?)dx.
; i
Since A is uniformly bounded, we obtain
—p/B n?~w.(ADw.Dw) #ADW.Dndx < pA/B n?~! Dw|P~|w||Dn|dx.
i i

By Young’s inequality, it is clear to see that for any € > 0,

dx.

V4
pi [ 0w nlipnidr< e [ nfipuira-+cle.p) [ i
B B, g, (t—1)P

Finally, combining the estimates above and taking € small enough lead to

P
/(\Dw\”+V|w|p)dx < C/ [/

B (t—1)P
Be

dx,

which completes the proof of this proposition. []

Next, in light of Proposition 4.1 and the improved Fefferman-Phong inequality
(see [2, Lemma 4.1]), we obtain the following result.

PROPOSITION 4.2. Let w be a solution to the equation (4.19). Then there exist
positive constants

C(n,p,A,[V]a.) and B €(0,1)
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depending only on the A.. constant of V, p and n such that for every ball Bg C B,
the following inequalities hold true

KB
(RP][ de> w|Pdx < C ][ Iw|Pdx, (4.20)
Bg Br Bog
and

k,
(RI’][ de) ’ ][ (\DW‘F —|—V|w|p)dx < C][ (\DW‘F —|—V|w|p)dx, (4.21)
Br Bi

Bog

where k = [H .

Proof. If RP ][ Vdx < 1 then (4.20) and (4.21) are obvious. If R” ][ Vdx > 1
B B
then it follows fromRthe improved Fefferman-Phong inequality ([2, LemmaR4.1]) that
there exist positive constants
C(n,p,A,[V]a.) and B €(0,1)

depending only on the A.. constant of V, p and n such that for any x > 0,

1 B
—(R? \Y4 Py < P L Viwl?)dx. 4.
p(R ]iKR dx) /BKR [w] dx\c/ (‘Dw\ + Viw| )dx (4.22)

Byr

1
Set k = [E],andtake =59 <81 < -+ <8 =2, with

S,‘—Si_lz%, iE{l,Z,...,k}.
Then in view of Proposition 4.1 we have
P
/ (\Dw\p—l—V\w\”)dxéC/ |;:#La’x. (4.23)
Bsi—lR Bs,—R

Therefore, it follows from (4.22) and (4.23) that

(Rl’][ de)ﬁ / [\DW‘P+V|W|p]dx§C/(|DW|P+V\w\p)dx, (4.24)
Byr

Bsi—lR Bs,—R

and

B
(R”][ de> / \W\degc/ Iw|”dx. (4.25)
BK‘R
s;R

By |k B

i
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Hence iterating (4.24) yields

k
(RP][ V) ﬁ/(|Dw|P—|—V|w|P)dx<C/ (IDW]? + V]w]?)d,
Bg
B Bog

which leads to (4.21). Similarly, iterating (4.25) gives (4.20). O

We shall now prove the following lemma of Gehring-type inequality.

LEMMA 4.3. Assume that the assumptions of Theorem 1.6 hold true. Let w be a
solution to the equation

—div ((ADW.DW) ¥ADW) SVWPPw=0 in Qp=Br(x)NQ,  (4.26)

where 0 < R < Ry/20 and either xo € Q, Br(xp) C Q or xg € dQ. Then there exists a
positive constant &y such that for 0 < U < &,

T+
<][ (|DW|P(1+#)+V1+MWP(1+H))dx>
Qr/2

<Cn, p,A)][ (IDW|? 4+ V|w|P) dx. 4.27)

Qg

Proof. We consider the following cases.

Case 1: Qg = Br(xp) C Q.
First we note that by using [10, Proposition V.1.1], it suffices to prove that there
exist constants

C(n,p,A) >0, 1<v<p and 6¢€(0,1)

such that
][ (|DW|P + V|w|?)dx <9][ (|IDW|P + V|w|P)dx
Br/4 By
P T
+C(n,p,A) (7[ \Dw\de—i-][ VVdex> , (4.28)
B, B,

for any ball B, C Qg.
Let n € C7 (B,/2) be a smooth function satisfying the conditions

1
0<n<1l, n=lonB,, and \Dn\S;
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By choosing ¢ =n”(w—(w)s, ,) as a test function, we have

p
2

][ n?((ADw.Dw)? + V|w|?)dx
Br/2

p—2

— ][ 0?1 (w— (w)s, ) (ADw.Dw) "= (ADw.D)dx
Br/2

+]i NPV 2w(w)p, ,dx=Ji+ 2, (4.29)
r/2

where

p—2

5= —p ][ 07~ (w— (w)a, ,)(ADw.Dw) "% (ADw.Dn dx,
Br/2

Jy e ][ NPVl w(w), .
Br/2
Using similar arguments as in the proof of Proposition 4.1, we deduce that
LHS of (4.29) > A~ ][ n? (|Dw|? + V|w|?) dx. (4.30)
Br/2

Next we estimate two terms in the right-hand side of (4.29). It follows from the uniform
boundedness of A and Young’s inequality with € > O that

H<pAS 07w ([l Dl
Br/2

‘W_ (W)B,/z‘p
rP

<e np\Dw\pdx+C(£7p7A)]i dx.
r/2

Br/2

Then it follows from Sobolev-Poincaré’s inequality

‘W_ (W)Br/z‘p P Y
][ ———dx< C(n,p) ][ |Dw|vdx |
Br/2 r Br/2

where 1 < v < n+_p’ that
n

Ji<e n”|Dw|pdx+C(£,n,p,A)<][

D \%
IDw| ’de) : 431)
Br/2 Br/2

Next, we estimate the second term of the right-hand side of (4.29) as follows:

R NV 0, s
BV/Z

(p=1)v p—v(p—1)

p P 1 P
< |(W)Br/2‘ (][ V%W’de> (][ VPV(pl)dx>
B'/z BV/Z
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Then in light of Young’s inequality, it is clear to see that

1 v . p—v(p—1)
5 <C(0) (7[ va’v’dx> +6](w)g, 1" (7[ VP—V<P1>dx> .
Br/Z Br/Z

Since V € RHy with y > 1, we can take v > 1 such that V € RH (1 . As a result
p—v(p—1
of that, we obtain

J, <C(0) <][ Véw’v’dx> +6|(w /2|][ Vdx. (4.32)
Br/2

Observe that the improved Fefferman-Phong’s inequality ([2, Lemma 4.1]) gives

P fB Vdx
w)s, |P][ Vdx < #][ (|DW|P + V|w|P)dx, (4.33)
B mpg (rl’ JCBV/Z de) B

where mg(z) = 1 if z< 1 and mg(z =P ifz>1.
We now combine the estimates from (4.29) to (4.33) and choose € small enough
to get

][ n? (|IDw|? + V|w|?)dx
r/2

C(0,n,p,A) (ﬁ

+06

\%
|Dw| Lde—F][ \& \ Cdx)
/2 B,

rP fBr/Z Vdx

r

—][ (IDW|P + V|w|P)dx. (4.34)
mg <rl’ fBr/Z de) B

K

At this stage, if fB /2 Vdx < 1, then it is clear to see that
Kgf (|DW|P+V\W\P)dx5][ (|Dw|? + V]w|?)dx. 435
Br/2 B
Otherwise, if r” fB /2 Vdx > 1 then by applying Proposition 4.2, we derive

5
(rp fBr 2de>
K< Iy ][ \Dw\”+V|w|”)dx<][ (IDW|P + Vw|")dx,  (4.36)
B,

(rprr/z )E
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which together with (4.34)—(4.35) yields

][ (|IDw|P +V|w|?)dx <6][ (|Dw|? + V|w|?)dx

Br/4 B,

v
+C(n,p,A) (7[ \Dw\’v_)dx—i—][ V%wedx> ,
B, B,

for some 6 € (0,1).

Case 2: xy € 0Q.
We extend w by zero in R"\ Q. In view of [ 10, Proposition V.1.1] again, it suffices
to prove that

][ (|IDw|P +V|w|?)dx <6][ (|Dw|P + V|w|P)dx
Br(y)

Ba(y

\%
+C(n,p,A)<][ |Dw|€dx+][ V$|w|‘v’dx>,
B4r()’) B4r()’)

4.37)

for all balls Ba,(y) C Br(xo), and for some v € (1,p).

Since Q is a (8,Rp)-Reifenberg flat domain with § € (0,1/2], there exists a
coordinate system {yi,y2,...,¥,} such that in this coordinate system, the origin is an
interior point of € and

—or
X0 = (O,...,O,m),
B (0) C B,(0)NQ C B.(0)N{y, > —48r},
where B} (0) = B,(0) N {y, > 0}. Hence, if we restrict 6 < 1/5 then
By(x0) C B (0) C By (0) C B2,(0) C Bay(xo)-

Now notice that for the balls centered at 0, we can use the following Sobolev-Poincaré’s
inequality near the boundary of a Reifenberg domain.

LEMMA 4.4. [13, Lemma 3.1] Let Q C R" is a (0,Ry)-Reifenberg flat do-
main and let xo € dQ, r < Ry. Suppose that u is a p-quasi continuous function in
WP (Q,(x)) with p € (1,00). Then we have

1
Kp 1/
][ |u|*Pdx < cr<][ |Dﬁ\pdx> p7 (4.38)
Qr(xo) B (xo)

where ¢ = c(n,p) > 0, i is the zero extension of u from Q,(xq) to B,(xo), and

2 ifp=n,
K= n .
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In particular, we have

> 1/p
][ lulPdx | <ecr ][ |Dit|Pdx . (4.39)
Q,(x9) Br(xo)

At this stage, by using the similar arguments as in Case 1, we can obtain
][ (|Dw|p+V|w|p)dx<C][ (|DW|? + V|w|?)dx
Br(y) Bsr/4(0

<0 (|IDw|? +V|w|P)dx
Bs,a

Vv
+C(n,p,A) (7[ |Dw|€dx+][ V%wgdx> ,
Bs,)n Bs,)n

which implies (4.37). The proof of Lemma 4.3 is thus completed. [

Proof of Lemma 3.1. Step 1. Let u € WOI”’(Q) be a weak solution of (1.1) and w €
u+ WO1 " (B,g) be a weak solution of the following localized homogeneous equation:

(4.40)

—div.e (x,Dw) +V|w|/P2w =0 in Qp,
w=u on 0QR,

where o/(x,&) = (AE.E)'TAE,E €R".

We extend u by zero outside Q2 and extend w from €z to R” by the extension
of u. These extensions are still denoted by u and w respectively.

First, by using ¢ =w — u as a test function, we have

/ (& (x,Du) — o (x,Dw)) (Du — Dw)dx
Qo
+ / V([ulP2u— [w|P~?w) (u—w)dx = / |f|P~2f.(Du — Dw)dx.
QR Qo
From Lemma 2 in [27], it follows that
2 N 2
At / (|Dul* +[Dw|*) 7" |Du— Dw|*dx
Qo
+ / V([ulP~2u— |w|P?w) (u—w)dx < / |f|P~L.|Du — Dw|dx.
Qop Qop
If p > 2, by applying the following elementary inequality

p—2

ja—bl*(la]* +[61) = = Cpla—bI7,
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for all a,b € R", one gets
][ (1D —w) [P+ V] — wlP)dx < C(n,p,A)][ P~ |Du—Dwldx.  (4.41)
Qg Qo
If 1 < p <2 then it follows from the elementary inequalities
ja—b|P < e(lal+ [b])? +C(p,€)(Jal + [b])"*a— b,
(lalP~2a— [b|P2b).(a—b) > C(p)(|af* + [b]>) =" [a— b,

for all a,b € R" and € > 0, that

][ (|D(u—w)|p+V|u—w\p)dx<C(£,n7p7A)][ | 1P~ Du — Dw|dx
Qor Qor

+£][ (1Duf? + \Dw\2)§dx+e][ V(P ) idx. @42)
Qop

Qo
Then in light of Young’s inequality, (4.41) and (4.42), we derive

f (ID(u—w)[? + V]u—w|P) dx < C(e. k,n, p. A) f 77
Qor Qo

p
2

+£][ (|Du|2+|Dw|2)%dx+£][ V([ul* +|w[*) 2 dx, (4.43)
Qg

Qg

for some small k¥ > 0 and for any small € > 0. As a result of that, for any € > 0, the
following estimate holds true

7[ (|D(u—w)|p+V|u—w\p)dx§£][ (|Du|p+V\u|p)dx+][ FPdx. (4.44)
Qop

Qg Qg

Step 2. Now we consider a weak solution % of the following problem

{—divEQR (Dh) +V|hP2h=0 in Qg, .45,

h=w on JdQg,
with g, : R" — R is defined by
Toy(&) = (Aa,8) T Aol Aoy f AWdrgeR”
R
By taking 1 = w — h as a test function for (4.40) and (4.45), we derive
]é ( o (D) — o o (Dh)) .D(w — h)dx + ][ V(|w|P~2w — |h|P~2h)(w — h)dx
R

Qp

= —]{2 (o (x,Dw) — o g (Dw)) .D(w — h)dx.
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Using similar arguments as in Step 1 yields

7[ (ID(w—h)|P+V|w—h|P)dx < s][ (IDw]? + V|w|")dx
QR QR

.
Qg

’,@7()@ Dw) — /5, (Dw)’

[Dw|P=!

o (x,Dw) — o 5, (Dw) ‘ D(w — h)|dx,

forany € > 0. Put

F(A7QR) =
Then, in view of (1.4), we obtain

][ | (x,Dw) — o o (DW) | [D(w — h)|dx < ][ ['(A,Qg)|Dw|P~!|Dw — Dh|dx
QR QR
1

< (]iR \Dw—DhIde> r (fm |Dw|P(1+#)dx> =) (]iR (F(A,QR))Sde> L

1 p—1
<5(][ \Dw—Dh|de)”(][ |Dw|P(1+”>dx)”(”‘”,
Qr Qg

p(1+p)
u(p—1)

]i |/ (x, Dw) — oy (DW)||D(w — h)|dx

where [ < & asin Lemma 4.3 and so = . This leads to

<5( 3 |Dw—Dh|de)‘l’(][ (|DW|P+V\W\de)pT71.

QR
Hence
][ (ID(w—h)[P+V]w—h[P)dx < e][ (IDw]? + V]w]P)dx

QR QR
p—1

1
+68 ( \Dw — Dh|1’dx> ’ (f (IDw]P + V|w|p)dx> "

Qr Qop
Finally, by using Young’s inequality and choosing a suitable €, we derive

][ (|D(w—h)|P+V|w—h\P)dx§5%][ (IDWl? + ViwlP)dx.  (4.46)
Qg

Qg

Finally, combining (4.44) and (4.46) gives

7[ (ID(— ) |P+ V]u— h|?) dx
Qr

< f)R (ID(u—w)|? + V] —w|P) dx—l—]i (IDOw— 1) [P+ V]w—h|P) dx

‘R

< 5%][ (|Du|p+V|u\p)dx+][ 1f|Pdx.
Qg

Qg
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This means that (3.15) is proved. Then (3.16) is only a consequence of (3.15). O

5. Proof of Theorem 1.7 by approximation

Recall that the given bounded, open domain Q is (8,R) is Reifenberg flat. Now
for each small § > 0, we write

Qe ={xe€Q:d(x,0Q) > e},
where d is the standard distance function defined by
d(x,y) =[x =yl
and
d(x,0Q) =inf{d(x,y) : y € 0Q} (x € Q).

It is well-known that an € inner neighborhood of the (8,R)-Reifenberg flat domain is
a Lipschitz domain with the (8,R)-Reifenberg flat property for 6 small; that is, Q¢
is a Lipschitz domain with the uniform (8, R)-Reifenberg flat (see [5, Lemma 4.2]).
Therefore, according to a standard approximation of a Lipschitz domain by smooth
domains, we can construct a further approximation of Q, for any fixed small § > 0
by smooth domains Q] C Q. with the uniform (§,R)-Reifenberg flat property for a
properly chosen 1 =1n(g) > 0.

Next we use a standard diagonal argument to extract a subsequence of smooth
domains QF with the uniform (§,R)-Reifenberg flat property such that

Q% ¢ Qand dy (9QF,0Q) — 0 as k — oo, (5.47)

where the Hausdorff distance dy is defined as follows:

dy(X,Y) = max {sup inf d(x,y),sup infd(x,y)} .

xex YeY yey xeX

Proof of Theorem 1.7. Given a Young function ¢ € Ay NV,, we choose {A;} to
be a sequence of smooth functions with the uniform ellipticity and the uniform (8,R)-
vanishing property converging to A in L7 forany 1 < g < oo, and {f;} and {V,} to
be sequences of smooth functions in CZ°(Q,R") and C(Q,R) respectively such that

fe—f in LP(QR"), [fil? —|f]P in L%(Q), (5.48)

/Q filPdx<C /Q fPd, /Q o(|iP)dx < C /Q o(fIP)dx, (549

and
Vi—V in LP(QR), V,cRH,. (5.50)
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According to the standard theory for nonlinear uniformly elliptic equations of p-
Laplacian type with the corresponding smooth data on smooth domains, the following
Dirichlet problems

{div((Ak.Duk)p_z_zAkDuk>+Vkuk|1"2uk:div( RIP2R) in QK 550

u =0 on 0Qk

have unique weak solutions u; € WO1 P(QF) with the regularity u; € C 170‘(§_2k) for some
o= a(n,p,k) € (0,1) and ux =0 on JQF in the classical sense. In addition, these
solutions satisfy

\Dug|?, Vi |u|? € L2 (QF). (5.52)

Then it follow from Theorem 1.6 and (5.52) that these solutions have the uniform gra-
dient estimates in Orlicz space with respect to the above approximation; that is,

/ 0(1Dug|P)dx + / 0 (Vilugl?)dx / o(1i)dx (5.53)

where the constant C is independent of k € N. We extend u; from Qf to Q by the
zero extension and denote by iy Then iy € WO1 P(Q). In addition, (5.53) and (5.49)
imply that

/ o(IDi|)dx+ / O(Vel @ |P)dx / o(Ifil")dx < C / O(If1)dx.  (5.54)
From (5.54) with ¢(z) =¢, we have
/|Dﬁk\pdx+/Vk\ﬁk|pdx<C/ |fk\1’dx<C/ flPdx.  (5.55)
Q Q Q Q

Therefore, there exist a subsequence of u; (still denoted by u;) and a function v €
W, 7 (€2) such that

Vi|ig|P — V|v|P strongly in L} (Q),
iy —v strongly in  LP(Q), (5.56)
Duy — Dv weakly in  LP(Q).
We claim that
Dity — Dy strongly in  Lf (Q). (5.57)

The proof of this claim will be given later. Then it follows from (5.57) and the particular
selection of Ay and f; that v € WO1 P(Q) is also a weak solution of (1.1). Thanks to the
uniqueness of the weak solution to (1.1), we deduce that v =« and

Dity — Du  strongly in L (Q). (5.58)
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Consequently, we can use a standard diagonal argument to extract a subsequence of iy
(still denoted by ;) such that

Du;y — Du ae.in Q. (5.59)

Finally, applying Fatou’s lemma to the left-hand side of (5.54) yields (1.6):

/Q o(|DulP)dx + /Q O(V]ulP)dx < C /Q o(1/17)dx.

We now prove the claim (5.57). We only consider the case that p > 2. The other
case 1 < p < 2 can be addressed in the same way (see [0, 14]). To this end, choose a
cut-off function § € C°(Q) satisfying

p<C<1, supplcQ® (=1 on Q.

Then function ¢ = {P(uy, — uy,) with myn > 2 is a qualified test function for (5.51)
when k =m or k =n. Thus we have

p—2
/ (AwDityy.Dity) T ApDity.D[CP (it — itn)]dx + / Vit | it dx
Q Q
= [ Ul o DIEP G~ )l

and

/(AnDzzn.Dzzn)”z;zAnDzzn.D[gl’(zzm— zzn)]dx+/ Vol it [P~ it dx

Q Q

= [Vl DI = .

After several simple computations, we derive the following equation
7
+1L =1,
i=2
where
I = / P [(AmDitn-Diiy) "= ApDitm — (ApDitn.Dity) T ApDity].D( iy — i) dox
Q
+ / EPV [t | P~ 2t — [T0|P ™ 200) (T — Tiy ),
Q
-2
L=—p / EP ity — itn) (AmDity.Dity) T ApDity.DEdx,
Q

L= p/ P i, — ﬁn)(AszZn.DzZn)#AmDﬁn.DCdx,

Q

14 = /Qpcpfl(ﬁm — ﬁn)[‘frﬂpizfm _ |fn|p72fn].DCdx7
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Is= [ CP 0ol o= 172 0] D~ )

Is=— /Q LPD ity — ity). [(AnDity.Dity) "> ApDit, — (AuDit, Dity) " ADit, ] dx,
L=—p /Q P (tiy—i1) DS [(ApDity. Dity) T A,y Dit— (AnDity Dity) "= A Di, ] dx,
Iy — /Q EP (V= Vo) [fin] P20 (e — ).

Estimate I,. Since A, is uniformly elliptic, the vector valued function a(&,x) =

A(x) x €. p;z A, (x)€ is strictly monotonic; that is, there is a positive constant ¢
y p
such that

[(An)E-£)'T An()E — (A1) T An(n] [~ 1] > col§ — 1,
for all &, € R". This observation, together with the elementary inequality
(P 2x = [y[P2y).(x —y) > 0,
for all x,y € R”, implies that

I >c0/ P D (it — ity)| " dx. (5.60)
Q

Estimate I,13,14,17,13 . It follows from the uniform boundedness of A, and Young’s
inequality with € > O that

L ge/QCF|Dzzm\de+C(s,p)/Qy(zzm—zz,,)y”dx, (5.61)

I <s/QcP|Dﬁn|de+C(s,p)/Q|(ﬁm—ﬁn)|”dx, (5.62)

w<e [ C0hP+ I+ Clep) [ [n—i)dx 63

I <s/le’|Dzzn|de+C(s,p)/Q|(zzm—zzn)|”dx, (5.64)

|Is| ge/ﬁ’g’f”)_zl|Vm—Vn|l’Lfﬁ,,pdx—i-C(s,p)/QWm—ﬁnpdx. (5.65)

Estimate Is. From the following inequality

€772 — P20 | < c(p) (1€]+n])" 1€ —nl,

for all £, € R" and for some positive constant ¢(p), we have

I <e(p) /Q 5 [l + 1Aal) "V fon = | Dt — i) .



592 N. N. TRONG, N. T. TUNG, T. T. DUNG AND L. X. TRUONG

Then in view of Young’s inequality with € > 0 and Holder’s inequality, it is clear to see
that

P2

<& [ & |pt—)Paricp.e) ( RO dx)” 1 ( [l dx) "
<£/ $P|D ity — ity)|"dx +C(p, € (/ fon— fnpdx>l.

Thus, we get

L
/§F|D (itm — itn)|"dx+C(p,€ (/ | fon — f,,”dx) o (5.66)

Estimate Is. Using the following elementary inequality

(An2.8) Tt - (1,55)7

<C(p)|An— A&
for all £ € R", we have
16<C(p)/ gr {|Am—An|;Dﬁn|p‘1yD(zzm—zzn)ﬂ dx.
Q

Now in light of Lemmas 2.5 and 2.9, one observes that for each v € L?(Q), there exist
Ay >0 and o > 1 such that

A
/|v|°‘2dx</ \v\azdx—f—/ [v|*2dx < \Q|+—2/ o(|v])dx
Q {xeQ:lv|<1} {xeQ:lv]>1} Qr Ja
But then since |Dit, |’ € L?(Q) and (5.54), we have
/|Du Poogy < Q) + 22 /¢ Dy |)dx < +oo.
Therefore, using Young’s inequality with € > 0 gives

Is ge/ EP D ity — ity) | dx
Q

1-L €

___rop o 7

+C(e,p) [ / Am—An(”U(”‘szx} ’ [ / ngwanwzczx} ’
Q Q

1—L

[)112 o
<e [ I, - m)av e Ce.p) | [ 1an = A TIET @] 7.
Q

So we can conclude that

1— L
PO o
I<e /Q EP|D it — ity)|"dx+Cle, p) [ /Q Am—Anwa“dx] T 567
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At this stage, we combine all the estimates from (5.60) to (5.65) to deduce that for every
>0,

2
/Q EP|D (it — it) |+ /Q E TV, — Vo 75T [Pl

1
T
<C(e,p) /Q|’Zm_ﬁn‘pdx+ (/Q|fm_fnpdx)

—
pop -4
+ [/ Ay — Ay 72T dx}
Q

1
L)

+£/ P (Ditnl? + 1D + | fonl? + 17 d.
Q

Finally, due to the strong convergence of {u,,} in L”(Q), the particular selection of
Ay, fr and the arbitrariness of € > 0, we conclude that

/ ’D(ﬁm—ﬁn)|pdx</CPID(IZm—IZn)|pdx—>O as m,n — oo,
Ql Q

Analogously, for every fixed k € N we have

/k |D(zZm—zZ,,)’pdx—>0 as m,n — oo,
o

which implies the claim (5.57). O
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