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COMMUTATORS GENERATED BY BMO-FUNCTIONS AND THE
FRACTIONAL INTEGRALS ON ORLICZ-MORREY SPACES

TAKESHI IIDA

(Communicated by J. Soria)

Abstract. We study the boundedness of commutators generated by BMO functions and the frac-
tional integral operator on Orlicz-Morrey spaces of the second kind. To show this problem,
we investigate the Fefferman-Stein type inequality concerning the Hardy-Littlewood maximal
function and the sharp maximal operator and the boundedness of the Orlicz-fractional maximal
operator in the Orlicz-Morrey spaces.

1. Introduction

To study the local behaviour of solutions to second-order elliptic partial differential
equations, Morrey [20] introduced the classical Morrey spaces. Orlicz [23, 24] origi-
nally introduced the Orlicz spaces L as a generalisation of Lebesgue spaces L” . The
authors of the paper [6] consider the boundedness properties of weak (sub)solutions to
the Dirichlet problem in the framework of the Orlicz spaces. To unify the properties of
Orlicz and Morrey norms, the authors of papers [13, 21, 31] introduced three types of
Orlicz-Morrey spaces.

The detailed study of the boundedness properties of the generalised fractional in-
tegral operators and Orlicz maximal operator on Orlicz-Morrey spaces of the second
kind is in the paper [31]. In the paper [15], the author investigated the boundedness of
the Orlicz-fractional maximal operator on the Morrey spaces. Based on these studies,
we study the Orlicz-fractional maximal operator on Orlicz-Morrey spaces of the second
kind.

In this paper, the symbol C denotes a positive constant. Whenever we evaluate
the operator, the constant C may change from one constant to another. In this paper,
the symbol “<” implies that we omit the constant of the corresponding inequality. For
example, let X and ¥ be general function spaces equipped with quasi-norms || - || and
|| - Ily . respectively. We write ||Tf||y < ||f|ly if T is bounded from X to ¥, where T is
a general operator. In this case, the implicit constants of the inequality are independent
of f.

We define the fractional integral operator /.
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Keywords and phrases: Orlicz-Morrey spaces, commutators, fractional integral operator, Orlicz maxi-
mal operator, Orlicz-fractional maximal operator.
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DEFINITION 1.1. Let 0 < o < n. Define

I f(x) ::/]R Ldy.

n =yl
We define the commutator [b,1,] as follows:

DEEINITION 1.2. Let 0 < o < n. For b € BMO (R"), define

butel ()= |

Re =y

Here, we choose f so that the right-hand side makes sense.

This paper aims to develop a theory of commutators generated by BMO functions
and the fractional integral operator [b,I,] on “second kind” Orlicz-Morrey spaces. The
authors of [27] treated the relatively similar problem for the boundedness of [b, 1] on
Orlicz-Morrey spaces, we illustrate it in another problem setting.

Mathematically, we consider the problem set-up as follows. First, we know that
the boundedness of [b, ] on Morrey spaces is due to the papers [8, 17].

PROPOSITION 1.3. Let O<ax<n, I <p<pog<eoand 1 <qg<qy<eo. Assume

1_ 1 _ « J— /)
that %= 0 n and 7= a0 If b € BMO, then we have

1162 1 g0 < 16l 1710

Here, M}° and 4" are defined below, respectively.

The main problem of this paper is to extend Morrey spaces in Proposition 1.3 to
Orlicz-Morrey spaces. We describe the conclusions first.

THEOREM 1.4. Let 0 < o <n, 1 < pg < qo < oo, Greek letters ® and ¥ denote
Young functions with ®(r) < 170, W(r) <19 and b € BMO. Moreover, ¥ € Ay N V.

Assume that L = L — % and
9 po n
1 490
! I\ 70 gy n
/(—1og<e+—)) ¥ (s)ds < ®(t)™ for 1> 1, (1)
1 S N

where the implicit constant is independent of t. Then,
116 2ad 71 a0 S 16l gaso 110

Here, Q///f;o and //\Iq,o are defined below, which are called the Orlicz-Morrey spaces,
respectively.
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REMARK 1.5. Implicit constants of (3), (4), (18), (19), (20), (21), (22) and (25)
below are also independent of 7. In the case of @(¢) =¥ and W(z) =4 with % = %,
condition (1) holds. Let P > 0 and 6 € R. By a straightforward computation, for every
6 >0,

] 6
lim 108 X)) Og(e:x» =0. ©)
X—00 X
Applying (2) for 6 = % and P:q—%—e >0 (here, 0<e<qg-— %),We can show
that condition (1) occurs:

Tt TN\ 70 gy p0
/(Elog<e+g>> (s9)'ds <¢"ro for 1> 1. 3)
1

Since condition (3) is satisfied, Theorem 1.4 recovers Proposition 1.3.
We obtain the following corollary.

COROLLARY 1.6. Let 0< ot <n, 1 <p<py<eo, & =--—%and B € BMO.

If Young functions ® and ¥ correspond to Example 3.7 below, then,

||[ﬂ,la}f||///q‘f}0 fs ”ﬁHBMO Hf”///g(’ .

Proof. Applying (2) for 6 = %a +1and P=p—1>0, we obtain
1P

tlogle+1) < for > 1. 4)

J0)

(log(e +1)) "

Estimate (4) shows that the triplet of Young functions (tlog(e +1¢),¥,®) satisfies
(1. O

We state these notations and definitions precisely. For an index p > 1, let p’ :=
# . For aset E, |E| denotes the Lebesgue measure of E. We assume that all cubes
have their sides parallel to the coordinate axes. For a cube Q C R", ¢(Q) denotes
the side-length and cQ to denote the cube with the same centre as Q but with side-
length c£(Q). The symbols mo(f), fo and fQ f(x)dx denote the integral average of a

measurable function f over Q:

mQ(f):fQ:][Qf(x)dxz a/Qf(x)dx.

For 0 < o < n, the symbol M, denotes the fractional maximal operator and the symbol
M denotes My, which we refer to as the Hardy-Littlewood maximal operator.
Next, we define the Morrey spaces .} as follows:
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DEFINITION 1.7. Let 0 < p < pg < . For f € L!

loc

1 r
L= sup 017 ( f rcapax) " ®)
QCR" Q
By (5), we define the corresponding Morrey space concerning the norm:
= {f et fl g <}
We define the sharp maximal operator M* and BMO spaces as follows:

DEFINITION 1.8. For a locally integral function f, define the sharp maximal
function M* by

mf:wfv ~ fol dy- 0.

QCR"

DEFINITION 1.9. One says that a locally integral function f is an element of
BMO (R") if it satisfies

|mmm:sw(ffw—@dﬂ.
QCR" 0

We define a Young function and the complementary (Young) function (see [26,
p-6D).

DEFINITION 1.10. For a convex function @ : [0,00) — [0,e0) which satisfies
®(r) — o as 1 — oo, one can associate another convex function @ having similar
properties:

®(1) := sup(st — D(s)). (6)

s>0

Then, we refer ® and ® to the Young function and the complementary (Young) func-
tion to @, respectively.

By (6), a pair of Young functions (@,5) satisfies the following inequality, which
we refer to as generalized Young’s inequality:

st <O(s)+D@(t) (s, =0). (7)

A pair of Young functions (<1)75) satisfies the following inequality (see [5, p. 99]):

o (1) (@) (1) =1, (8)

Let A(7) and B(t) are Young functions. We write A(¢) = B(z) if there are constants ¢,
¢ such that ¢1A(z) < B(r) < cpA(r) for t > 1. Moreover, we postulate the following
conditions in terms of a Young function (see [26, pp. 13, 22, 28]).
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DEFINITION 1.11. Let @ be a Young function. Then, we define the conditions
as follows:

(i) @ is an N-function if @ is continuous, ®(¢) = 0 if and only if 7 =0,
lim; 010 ®(¢)/t =0 and lim;_... ®(r)/t = oo.

(ii) @ € A\, if there exists K > 0 such that for every ¢ > 1, ®(2r) < KD(r).

1
(iii) @ € V,, if there exists K > 1 such that forevery 1 > 1, ®(r) < ﬁd)(Kt)

(iv) @ € A\, if there exists C > 0 such that ®(xy) < CO(x)D(y) for x,y > 0.
(v) @ € V', if there exists C > 0 such that ®(x)®(y) < ®(Cxy) for x,y > 0.

This paper assumes that all Young functions are N -functions.
REMARK 1.12. According to [26, Lemma 1 in p. 28],
N CN,. 9)

The condition (v) implies that for ® € V', if x,y > 0, then

@ <§> < %. (10)

We refer to (10) as the property of variable separation for a Young function.

In this paper, one says that a Young function ¥ dominates a Young function @ and
denotes this by ®(r) SP(z), if there exists C > 0 such that forall 7 > 1, ®(r) < ¥(Cr).
We refer to @ € A and ® € A’ as “® is doubling” and “® is submultiplicative”, re-
spectively (see [5, p. 98]). The examples of Young function with doubling and submul-
tiplicative are in [5, p. 98].

EXAMPLE 1.13. Let ®(r) = t“[log(e +1)]".
(i) Ifa>1,then ® € A,.
(ii)) If a>1 and b > 0, then ® € A'.

REMARK 1.14. We have the relation between Young functions ® and @ (see [26,
p. 26 and p. 30]):

(i) @€ A\, if and only if ® € V.
(i) ® € A’ if and only if ® € V'.
By (9),

v CV,. (11)
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a
EXAMPLE 1.15. Let q)(l) = m If a 2 1 and b 2 O, then
e

q)GAzﬁV/.

Since,

By

@ (1) =14 [log(e +1)]

occurs (see [5, p. 105]), equivalence (8) gives,

b

— — 1
(@) (1) 2217 [log(e+1)] 4.
This implies that

!

D(1) =1 [log(e+1)]a”.
Example 1.13 and Remark 1.14 show ® € A, NV'.
There is the following property in [5, 29]. For a Young function @,

()

=) (120). (12)

We define the normalized Luxemburg norm of f on Q (see [5, p. 98]).

DEFINITION 1.16. Let @ be a Young function. For a cube Q,

1/ lo,0 ::inf{x >0: ][Qop (@) dx < 1}.

REMARK 1.17. Fix Q acubein R”".

() 1f (1) =17, then | fllg,o = (fol/(I7dx)".

el ls)

£ o0 gl
inequality, which we refer to as generalised Holder’s inequality (see [5, p. 99]).

(i) We apply (7) to s =

. Then, we obtain the following

][Q F@)e)ldx < 2 fllog llz o- (13)

By the norm || - [|g o, We define the Orlicz-Morrey spaces. We know that var-
ious Orlicz-type spaces. For example, the authors of papers [2, 18, 19] introduced
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many Orlicz-type spaces: Beurling-Orlicz spaces, weak Beurling-Orlicz spaces, Herz-
Orlicz spaces, weak Herz-Orlicz spaces, central Morrey-Orlicz spaces and weak cen-
tral Morrey-Orlicz spaces. Furthermore, they studied the boundedness of the oper-
ators M, I, and Calderén-Zygmund singular integrals on these function spaces. In
this paper, we consider the boundedness of the operators Mp o and [b,I4] on the ordi-
nary Orlicz-Morrey space. Papers [7, 10, 13] categorise Orlicz-Morrey spaces as broad
types. Roughly classifying, the kinds of Orlicz-Morrey spaces have three classes. In
the present paper, we deal with the second kind as the Orlicz-Morrey spaces (see [31,
p-523)).

DEFINITION 1.18. Let 1 < pg < o and be ® be a Young function. Then, we
define the norm of Orlicz-Morrey spaces Q///f;o of the second kind as follows: For a
locally integral function f,

1
Fll yro == sup Q] [|fllg o (14)
11z = 50 1017 £l g

where the cube Q ranges over all compact cubes whose edges are parallel to coordinate
axes. By (14), we define the corresponding Orlicz-Morrey spaces ///g’, that is,

ME = {f : for every cube Q C R", [|f[|g o < and ||fH///£o < oo}.

REMARK 1.19.

(i) Let @ be a Young function and let 1 < ry < . Then, .#Zg # {0} if and only if
®(t) <t for t > 1. To define the Orlicz-Morrey space .ZL°, we may assume
that ®(¢) <170 (see [15, p. 245]).

(i) The second kind is different from the first kind and the third kind (see [7, p.2]).

(iii) For a Young function @, we define the norm || - || ,ro as follows:
0,9

1
A1l g0, := sup (O] [|fllg -
o2 QeP(R) ©

Here, 7 (R") is the set of dyadic cubes in R". Then, two norms || - || ,r0 and
0.9

| -1l ,r0 are equivalent:
ML

171z, = 1AL (s)

In this paper, we omit the proof of (15) (see [16, 25]).

By the norm || - ||,  , We define the Orlicz-fractional maximal operator as follows:
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DEFINITION 1.20. Let 0 < a < n. For a Young function B,
Mp,af(x) := sup £(Q)*[|fllp o x0(x)-
QCR"

Moreover, the symbol Mp denotes Mg, which we refer to as the Orlicz maximal
operator.

REMARK 1.21. For a Young function @, every cube Q and a locally integral
function f, by (13),

fQ Oy < fllog. (16)

The rest of this paper is organized as follows. In Sections 2 and 3, we list known
results and main results, respectively. In Section 4, we give some lemmas. Lastly, in
Section 5, we give the proofs of main Theorems.

2. Known results

We know the author of paper [1] showed the boundedness of 7, on Morrey spaces.

PROPOSITION 2.1. Let 0 < x <n, 1 <p < pg<eoand 1l <q<gg<oo. Assume
that L =1L — @ and‘;—’:& Then,

9  po n q0 "

||Iaf||///l;lo < C”fH///IfO :

In the paper [25, pp. 138-139], Peréz introduced B),-condition, which character-
izes the boundedness of Orlicz maximal operator Mp : P — LP.

PROPOSITION 2.2. Let 1 < p < oo and B be a Young function. Then, the follow-
ing are equivalent.

“ B(t
(i) B € By, that is, there exists ¢ > 0 such that / ﬁ%dr < oo,

(i) Mg:LP — LP.

In papers [4, p.428] and [16, pp.375-376], the authors introduced the necessary
and sufficient condition for Mp o : L7 — L9.

PROPOSITION 2.3. Let 0 < oe <nand 1 < p < ¢.. Then, the following are equiv-
alent.

(i) B € By with 1 =

1_¢
p n’

(ii) Mpo:LP — L1
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The following result is due to the paper [15, p.249], which concerns the bounded-
ness of the operator Mp o on Morrey space.

PROPOSITION 2.4. Let 0<a<n, 1 <p<pg<Z,0<q<gy<eo, ==

1
P q0 ~ Po
9 _» 5 . yPo q0
and o= o If B» € By, then Mp o : M), — My" .

SR

In the paper [31, p. 535], the authors show the local boundedness of Mp:

PROPOSITION 2.5. Let B and ® be Young functions. Then, the following are
equivalent.

(i) Fora cube Q,

IMp(f20) 00 S If oo (17)

where the implicit constant in inequality (17) is independent of Q and f.

(ii) The functions ® and B satisfy

/IB(£>¢’(s)ds§d)(t) for 1> 1. (18)
1

N

REMARK 2.6. Let 1 < p < co and ®(r) =7. Changing of variables £ = £, we
can replace (18) to the following: For r > 1,

/jB (g) (s”)/ds%tl’/lt Z(—Qdé.

Proposition 2.5 essentially shows the boundedness of Mp in Orlicz-Morrey spaces.
We invoke the following result, which we refer to as the Fefferman-Stein inequal-
ity (see [9, p. 153]).

PROPOSITION 2.7. Suppose that f € LPO(R"), for some py. Assume that 1 <
p <o, 1 < po<p,andthat M*f € LP (R"), Then Mf € LP (R"), and we have the a
priori inequality

M7, S s

L’
here, the implicit constant is independent of f.

To show Theorem 1.4, we use the following pointwise inequality in the paper [3].

PROPOSITION 2.8. Let 0 < ax < n, 1 < pg <o, If B(t) =tlog(e+1) and b €
BMO. Then, for a non-negative locally integral function f,

M*([b,1]f) (x) S IIbllgaro (Touf (x) + Mp.af (x).

To show Theorem 1.4, we study Propositions 2.1-2.8 in the framework of Orlicz-
Morrey spaces.
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3. Main results

We have the following result which relates to [14, Theorem 1.2] (see also [30,
Example 49]). At least, we can drop the assumption ® € V,.

THEOREM 3.1. Let 0 < ox < n, 1 < pg < oo and ® be a Young function with
D(r) StPo. If D € Ay, then, for a locally integral function f,

||Iaf||///£0 S ||MafH///£0 .

REMARK 3.2. In Theorem 3.1, we may replace the condition ® € A, with

/&;)ds<¥ for > 1. (19)
1

S ~Y
Condition (19) corresponds to the case of B(r) =t in condition (18).

By (16), for a Young function B and a locally integral function f, My f < Mp of
holds. Hence, the boundedness of the operator Mp o controls the boundedness of I, on
Orlicz-Morrey spaces. Furthermore, we can show that the boundedness of the operator
Mp ¢ in Orlicz-Morrey spaces:

THEOREM 3.3. Let 0 < ox < n, 1 < py < qo < o which satisfy qlo = % — % Let
B, ® and ¥ be Young functions with ®(t) < 17 and V(1) <190, respectively. If

t 490

t a0

/ B(5)"Wwds SO0)m for 11, (20)
1

then the following holds:
M5 01 a0 < 171 gm0

Y(s)
s

REMARK 3.4. By (12), we may replace ¥/ (s) with

in condition (20).

REMARK 3.5. Theorem 3.3 recovers Proposition 2.4, which is the case of @ (1) =
tP, W(r) =19 for 1 < p < g < eo: Changing of ¢ = ’; for ¢ > 1 in (20), we obtain

t 90 t a0
E 20\t ~ g B(ﬁ)l’o
/IB<S> W (s)ds =1 /1 T

Moreover, if £ = 40
P po

q

t qTO t >
tq/ B(E)'odt:tp.g_g/ B(é)’dﬁ.
1 1

a+1 a+1

This implies that B € B, holds.
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By the property of variable separation (10), we obtain the following Proposi-
tion 3.6.

PROPOSITION 3.6. Let B, ® and Y be Young functions. We consider the follow-
ing conditions (i) and (ii).

(i) Y eV and

W(r)n /1%% <o) for 1> 1. @1)
(ii) BZ% e v’ and
Po
t g
B(:)( ‘*’(5370 %) Y <o) for 1> 1. 22)

If the triplet of Young functions (B,Y,®) satisfies either condition (i) or condition (ii),
then (20) occurs.

Proof.

(i) Changing of £ =< for z > 1, we obtain

[ = [mee ()

Since W € V', using (10), we learn

JrroRe (@) svo [ o | [

Assuming that (21) holds, we see that (20) occurs.

40
0 o

%
(ii) Since B?0 € V', using (10),

El
Po 10

/ltB<£>Z—3T()_<Bt % ( P(s §>: B() (/lt T(s%é)% |

I’o B(S) po S

Assuming that (22) holds, we see that (20) occurs. [

Using Proposition 3.6, we can construct concrete examples that satisfy condi-
tion (20).
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EXAMPLE 3.7. For simplicity, let a and b > 0. We classify @ in the following
five cases, given that

490,

tP 170
B(t)= ———— and ¥Y()=———:
(log(e+1))®* (log(e+1))
(i) Incaseof a > b+ 1, let
tP
D) = ——;-
[log(e+1)] %0
(i) Incaseof a=b+1, let
Py

a0

o) = 1P log(log(e+1))
log(e +1)]”

(iii) Incaseof b—1<a<b-+1,let

D) = o

20 max{a,b}—1"

[log(e+1)]%

(iv) Incaseof a=b—1, let

log(log(e +1))] %
o0 = [
(v) Incaseof a<b—1,let
D(r) = Lﬂo.
[log(e +1)] "

Then, the triplet of Young functions (B,¥,®) satisfies condition (20).

Proof. Let

0. q0 Po

o % ’B(s)l’oﬁ _ P ! B Sb—a@ o
SV o (log(e +1))#” (f st )

Po

L W(s) ds\® P ! a_pds’\
F ::B —a . :71,0 1 e+s —_— .
A </1 B(s) ) (log(e+ )" (f st )
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Changing of x = log(e + s), we obtain

Po
P log(e-+1) & 0
Fl(t) =—n, </ xb—a dx
(log(e +1)) 0" \Jlogler) € =€
and
log(e-+) 0
tP og(e+t P a0
Bt)= ——— (/ x”b—dx>
(]0g(e+t))%a log(e+1) et —e
Since —— is a decreasing function,
P
P log(e+t) q0
Fi(1) S ——— / x| (23)
(log(e +1)) %" \Jiog(e+1)
and
P
P log(e+t) q0
B(t) S ———— / xhax ) . (24)
(log(e+1))a0“ \/log(e+1)

In the cases of (i) and (ii), we use estimate (23). In the cases of (iv) and (v), we use
estimate (24). We consider the case of (iii).

(A) Inthe case of a < b, by (23),

P » ro tP
Fi(r) § ———5 [(log(e+ )" '] ™ = —
(log(e+1)) (log(e+1)) 0
and, by (24),
1P iR 1P
Fa(r) § —— = [ogle+1)* 1] = T
(log(e+1)) (log(e+1)) 40
Since a < b,
tP tP

o Po -t

(log(e+t))(b71)% (log(e+t))(a71)%

(B) In the case of b < a, let @’ = b and b’ = a. By the argument of (A) for ' < ',

we obtain
tP tP tP
= <
_1\Po 1P S /_1)P0
(logle+1)“ Va0 (log(e+1)" V0 (log(e+1))“ 0
1P
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Thanks to the cases (A) and (B), we may take
tP

D(r) = .
(log(e_’_t))(max{u,h}fl)s—g

Next, we investigate the relation between (18) and (20).

PROPOSITION 3.8. Let 1 < po < qo < oo, @y be a Young function which satisfies
Dy € V' and 6(t) be a monotone increasing function for t > 1. We take ®(r) =

4q 4q 4q
Dy(1)0(t) and Y(1) =D <t£> =, <Z£> 0 <Z£> . Assume that for all t > 1,

40 40 40
Y(r) =D (tPO) 0 (tPO) SDy(r)P0(1) (25)
and the condition (18). Then the condition (20) holds.

t
Proof of Proposition 3.8. Lemma 4.6 below implies that if (18) holds, then B (—) <
s
t
cb(—).Forau 1 <s<t,by(12),
s

LN LNy ! ds
/IB(;) ‘”S’dsﬁ/l o(5)" B()) ¥

o(H)" (") w5 L (26)

J
= [l (o (F )0 (F) 5

By (25),
() n(a ()0 ()2
1 Wy s @7
S 1tq>0<§>"g 9(2):)3 IBG)@O(S)%Q(S)%_
By (10),
/IIQO(E)Zgle(E)ZgIB(E)cpo(s)ZEe(s)%
(2O o s (oot e
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Since 6 is a monotone increasing function, for all 1 <s <17,

' [o()" s enworn®

S S
90 _ a0y ! d
<@ (1)1 0 ()70 1/13(2)%@)9@)?5 (29)
~ 27071 ! E /
>~ @ (1) 70 /lB(S>CI)(s)ds.
By (13),

w0 _y (1t %0 _y %0

o (1) /B(E>d>’(s)ds§d)(t)”0 O (1) = D(t) 7. (30)

1

Estimates (26)—(30) show Proposition 3.8. [

EXAMPLE 3.9. In Proposition 3.8, we take @(7) =¢” for 1 < p < py < qo < .
Then, we can list monotone-increasing functions 6(¢) which satisfy (25) as follows:

Fort>1,
4
(i) Inthe case O(r) =1, ®(t) =17 and ¥(¢) — P
(if) In the case 6(r) = {log(e+1)}" for y >0, ®(r) =1” {log(e +1)}" and

90 w\ 7" _ %
W(t)=t"r <log|e+tro <t"r0 {log(e+1)}.

(iii) Inthe case 8(t) = {log (%—Hog(t)) }Y fory=0, ®(t)=1" {log (%—Hog(t)) }Y
and

4 4 14 4 ’
Y1) =" {log (ﬂ +log <z1’3)> } S {log (ﬂ +10g(t)) } -
Po po

_q0
In Theorem 3.3, if ®(¢) =P log (e +1t) and W(r) =¢" 70 log (e +1), then we obtain
the following result.

COROLLARY 3.10. Let 0 < a<n, 1 <p < po<qo<ec and B be a Young

function. Assume that + = L — & and
g0 po 7
L i\p pfo d 4%
/ B(1)" ¢ Frogle+ 9% < (Pogle+ ) for 11,
1 N N

then the following holds:

M50 a0 S 171 gm0
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To show Theorem 1.4, we extend L? spaces in Proposition 2.7 to Orlicz-Morrey
spaces.

THEOREM 3.11. Let 1 < py < oo and ® be a Young function and ®(t) S 1?0, If
O eV, then

IMAI 0 5 |||

Po
M,

aslong as, Mf € #%".

4. Some Lemmas

To show Theorem 3.1, we use the standard argument (for example, see [15]). With-
out loss of generality, we may assume that f(x) >0 a.e. x € R".

LEMMA 4.1. Let 0 < a < n. For a dyadic cube Qq, Let fo = fX30,, fo =
f—fx30, and 2(Qo) ={0Q € Z(R") : Q C Qo}. Then, for x € Qy,

In(fo) ) S D £(Q)"mag(f) xo) (31)
0€2(Qo)
and
()0 5 3 € (3-2°00) “my g, () (32)
k=1

To analyze the right hand side of (31), we introduce the maximal cubes concerning
inclusion as follows:
Let y=m30,(f) and A=2-18". For k=1,2,3,..., set

Dy:=J {Q € 2(Q0);m3p (f) > YAk}~
Considering the maximal cubes concerning inclusion, we can write as follows:

Dy = UQk,j7
J

where the cubes {Qk7 j} C 2(Qo) are nonoverlapping. One says that the dyadic cube
Ok, is maximal concerning inclusion in the set Dy, if O € Z(Qy) satisfies that Oy ; C
Q, then m3p(f) < yA¥. By the maximality of Ok,j and the weak-L!' boundedness of
M, we have the following Lemma (see [15, Lemma 8]).

LEMMA 4.2. Let f be a locally integral function. For a dyadic cube Qy, taking
Y, A, Ok j and Dy (k,j=1,2,...) above,

yAY <mag, () <2'yAN.
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Let Ey:= Qo\Dy and Ey j := O j\Di1. Then, the following properties occur: {Eo}U
{Ek’ j} is a disjoint family of sets, which decomposes Qy, and satisfies

Q0| <2|Eg| and |Qx;| <2|Ex;|.

Moreover, letting

Z0(Qo) :=1{0 € Z2(Qo) : m3g(f) < YA}

and
P1j(00) = {Q € 2(00): 0 € O j A" < msg(f) < yA™*},

we have 90(Qo) and Py j(Qo) are disjoint and

2(Q0) = Zo(Qo) U (U%@J Qo ) (33)

k,j

We invoke the lemma in [26, Proposition 4 in p. 61].

LEMMA 4.3. For a cube Q and measurable function f, we define the norm
Il - qu,( >asfollows:

13 () —sup{lff o lelso <1}

sp{ f 170t |w|m¢gl}

Tof

Then,

<Al g ) <

In [5, p. 118], the following estimate is essential to prove Theorem 3.3 (see also
paper [15]).

LEMMA 4.4. Given o and py, 0 < o <n, 1<p()<—andq0 %—— let B

be a Young function such that t="/*B(t) is almost decreasing and that t~"/*B(t) — 0
as t — oo. Let Qo be a cube and f(x) > 0 a.e. x € R" such that supp (f) C 3Qp. For
every A >0,

{x€ 00 Maa(f130,) () > A}|

1 Cﬂ%Wﬂ@) "
< ___ B| ——————=\d .
™ 4(Qo)* 0 </{xesgo:ce<go)af<x>>u ( A x)
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There is the following lemma in the paper [3 1, p. 537].

LEMMA 4.5. If ® € V,, then for every Qy,
| M(fXQo) H<1>,QO N HfH(I),QO' (34)

Estimate (34) gives that if ® € Vy and ®(t) <170, then
M1z S 1AL g0

To prove Theorem 3.3, we verify the following lemma.

LEMMA 4.6. If condition (20) holds, then B(t) < ®(t) for t > 1 occurs.

Proof. By the convexity of ¥, forall 1 > 1, ¥/ (r) > ¥ (1) > 0 holds.

2t f Z_g 2t i q_g
B - Y (s)d Z‘P/l/ B - ds. 35
| B(E) " woaszwa [T 5(5)" a (5)
Since 2t > 2,
2t a0 2 a0
t Po t PO
Y(1 B(- d>\If’1/B— ds. 36
s o) e
For 1 <s<2,B(%)>B(%) holds.
YA A
! - >v —) .
L1!(1)/1 B<s> ds/‘P(l)B<2> 37)

Assumption (20) and estimates (35)—(37) give B(t) S®(¢) forr > 1. O

To show Theorem 3.3, we invoke the triangle inequality on L”, which we refer to
as Minkowski’s integral inequality (for example, see [11, p. 13]):

LEMMA 4.7. Let 1 < p < oo and Qg be a cube. Then,

(L % F(’“’”d’“)pd”); </ (/OMF(XJ)pdl)%dx.

We invoke the following result from [28, p. 1101]. In Theorem 3.11, we state the
result as the case du = dx and € = 1. Additionally, we suppose @~ !(§) << 1. We
explicitly allude to this assumption whenever we need it.

LEMMA 4.8. For a cube Qy, we define 2y and 2, as

2o :={R: cube, R meets Qo and is not contained in 8Qq} ,
2, : ={R: cube, R meets Qo and is contained in 8Qp} .

Fix M := supgc o, mg(|f|) and assume that A > M. Then there exists Cy > 0 such that
Sfor any sufficiently small 6 > 0, we have

er O0: Mf(x) > 24, M f(x) < 51}‘ <Ci8|{xe800: Mf(x) > A}
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We use the following properties to show Theorem 3.11, which is a direct conse-
quence of { >0:®(r) <a,¥(r)<b}C{r>0:D(t)+¥() <a+b} fora,b>0.

LEMMA 4.9. For m functions A;(A) >0 (i=1,...,m),
m l
infqA>0: Y A< <inf{z >0:4i(A) < . i = lm} (38)
i=1
If 0 < a < b and a positive function A(L) is decreasing for . > 0, then
inf{A >0:A(1) <b} <inf{A >0:A(1) <a}. (39)

Assume that a positive function A;(A) is decreasing for A >0 for i=1,2,....m. If
ai>0fori=1,2,...,m, then

inf{A >0:4;(1) <a;, i=1,2,...,m} =min{inf{A >0:A4;(A) <a}: i=1,...,m}.
(40)

We invoke the following lemma to show Theorem 3.11 (see [22, p. 165] and [28,
p- 1094]).

LEMMA 4.10. Suppose that 1 < p < pg < and Mf € #}°. Then,

#
Note that M f € .Z}° implies that f € .#}°. As in [26, Corollary 5 in p. 26], the
V, -condition implies the growth of Young functions.

LEMMA 4.11. Let 1 < pg <oo. If ® € V5 and ®(t) StP, then there exists o > 1
such that oo < po and
t* <®(r) for t>1.

By (11), Lemmas 4.10 and 4.11, we obtain the following Lemma.

LEMMA 4.12. Let 1 < pg < oo. For a Young function ®(t) StP0, if ® € V' and
a measurable function f such that M f € ///g’, then

f
T T

Proof of Lemma 4.12. By ® € V' C V,, there exists & > 1 such that o0 < pg and
1% <D(r). For 1 < o0 < pp < o0, using Lemma 4.10, we obtain

f j
5] 5]
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LEMMA 4.13. Let O0< o <n, l <p<pg<qo<oo. Fort>1,

40

4 e q q ! 4
/ <£log <e+£>>p0 (sp"’glog (e—l—s”g)) dsfj(tplog(e—kt))%. 41)
1 N N

Proof. Let B(t) =tlog(e+1), @o(r) =17, 0(t) =log(e+1), O(r) = Dy(1)0()

a0 X0) a0
and W(r) :(I)(tm) =177 log <e+t1’0>.
Applying (2)for 6 =1and P=p—1—¢€>0, we obtain,for0 < e <p—1,

"t t ds e (" et
S log (e + E) sPlog (e+s) - <t 57 log(e+s)ds. (42)
1 1

By integration by parts,
!
tp*g/ s og(e+s)ds StP~¢ - 1log(e+1) =t log(e+1) = @(r).  (43)
1

Estimates (42), (43) and Proposition 3.8 give (41). O

5. Proofs of Theorems

Proof of Theorem 3.1. Without loss of generality, we may assume that f(x) >0
a.e. x € R". Fix a dyadic cube Qq. Let fo = fx30, and fo = f — fx30,- Then,

e (H)llo,0 < e (f0)llg,g, + e (f) .0, - (44)

Using (32) in Lemma 4.1, we learn

=3

z |Moc ||q>32kQ0
k=1

e (foo) llav, 00 i” <3'2kQ0>am3.2kQ0( H

®,32%Q, 45)

<M (£)] g0 3 32400
k=1

g <100 ([ Mo (g0 -

By Lemma 4.3,

”Ia (fO)”cI),QO ||Ioc (fO)chp ( dx )

[

- sup{ ][Q T (fo) (g ()1 gl g, < 1}. (46)
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Let g >0 a.e. x € R" such that supp (g) C Qo and ||g|[5 g, < 1. By (31) in Lemma 4.1

and (33) in Lemma 4.2,

o oL
]é U)o S KO mo (N gy /Q g()dy

(47)

(48)

1
—oi | Z4E 3 Juormow) [ el
|Qol 0€%0(Q0)  k.j Q€% ;(Q0) Q0
=1lo+ Y Il ;.
k.j
By Lemma 4.2,
1
IS [ Ma(f))M (gx0,) (x)dx
1Qol JE,
and
1
I S Mo (f)(x)M (g%0,) (x)dx.

7100l Jg,,

Estimates (48) and (49) imply that

Iy +lek’j < , Mo (f)(x)M (ngO) (x)dx.
k.j o

By (13),

| Ma(HE)M (8x0) () < [Ma(Fllog, 1M (2x0) |l g, -

Since ® € A\, by Remark 1.14, ® € V,. By Lemma 4.5 and HgH@QO <1,

||Moc(f)Hq>,Q0 : HM (8%Qo) HE,QO S HMa(f)”rb,QO : Hg”ago < ||Moc(f)||<1>,Q0~

Estimates (46) -(52) and the definition of the norm || - || ,ro give
T

e (fo) 0y < [1Mex (fo)llo,0, < Qo] 7 [ M (fo)I_ 0 -

By (15), (44), (45) and (53), we obtain the desired result. [l

(49)

(50)

(51)

(52)

(53)

Proof of Theorem 3.3. For every cube Qo, let fo = fx30, and f.. = f— fo. Firstly,

we consider Mp  (f.) (x). By a routine argument, for x € Qp,

a 1
Mpafu(x) S sup UQ)* [I£llgo S1Qol" 70 [I£1] r0-

QoCQ
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Lemma 4.6 gives

1
ol Mp.afelly g, S /10 (54)

Next, we consider Mp ¢ (fo) (x). We choose one function F(x) such as the fol-
lowing:
e 0
Qo) || 230, H<1>.,3Q0

We divide | W (Mg F(x))dx into two parts [ and I1:
Qo

= /Ollp/(x) € Qo : Mp.oF(x) > A} dA
and
Il := /i‘l”(/l) {x € Qo : Mp o F (x) > A}|dA.
By |{x € Qo : Mp oF (x) > A}| < |Qol, the estimate of [ is simple:

1< ¥(1)[Qol- (55)

Next, we evaluate /I as follows. Lemma 4.4 gives

40

L_[" CO(Q0)“F (x) @
< ’ Cl(Qo)"F(x) , ) .
s E(Qo)“qo [ ( 3QO\P ()L) ( A X{xA<Cl(Qo) F(x)}dx dAr

(56)
Lemma 4.7 for ;17_3 > 1 gives the following estimates:
40
« ct X 70
/ ( ‘P/(l)qoB (M) X{x:7L<C€(Q0)U‘F(x)}dx) dA
1 \Usg A
CE(Q0)*F (x) 9 % g o7
(Qo X o 0
< / </ ‘-I’/(A)B (M) " dl) dx
300 1 A
By (20),
40
CUQ)“F () conre\E N "
/ (/ ¥'(1)B (M) " d?L) dx
1
i (58)
0 ro
<l (f ocuonrias)

40

o X300 (%) d>%< o
=100l ( (foaQon)" <[00
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Since — =
490 ~ Po

£ estimates (56)-(58) give

11 < Qo

Since Y (Mp oF (x))dx =1+ 11, estimates (55) and (59) show
Qo

||MB,O!FH\P,QO <L
that is,
1M.0. (f0) g g, < £(Q0)* Ifllo 30, -

By (60),
1
Qo[ [|Mp,0: (f0)llw. 0, S IF1l_ 20 -
Estimates (54) and (61) give the desired result. [
Proof of Theorem 3.11. For a constant L > 1, let
1
[MFfI yro := sup Q[P0 [min{L,Mf}||g¢-
- .0
Q)<L
Let Qp a cube that satisfies £(Qp) < L. Then,

o £ )

o[ [[min L. Mf}le, = =2|Qo| 7

D,00

677

(59)

(60)

(61)

:2|Q0|Ploinf{k >0: é/md)’(t) {x € Qo :min{L,Mf(x)} >2At}|dr < 1}.
ol Jo

For the cube Q, we take M in Lemma 4.8 and consider two cases
M L<2M (D) L > 2M .

(I) Since [{x € Qo : min{L,Mf(x)} >2At}| <|Qo|, Case (I) is simple:

L
1 1 2%
|00l | min{L, M} g0, < 2/Qo] 7 inf{?L ~0: /02 @ (1)dr < 1}

1
\Qo\"OL < 2|Qo\"_
o1 T ool

oM
)

. 1
Since M < |Qp| 0 ||f||///lpo (see [28, p. 1099]),

(62)
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(1) Let

Ai= /7 O (1) [{x € Qo : min {L,MF(x)} > 2Ar}|dt
0

and

B:— Aﬁ O (1) [{x € Qo : min{L,MF(x)} > 2Ar}|dr.
A

L
Since if ¢ > R then min{L,Mf(x)} < 2At, we have

/wd)’(t) {x € Qo :min{L,Mf(x)} >2At}|dt =A+B. (63)
0

Since [{x € Qo : min{L,Mf(x)} > 2At}| <|Qo|, the estimate of A is simple:

A< Qoeb(%). (64)

Dividing the set {x € Qp : min{L,M f(x)} > 2At} into two parts, we evaluate B:

B— Af @'(1) Hx € Qo min {L,Mf(x)} > 241, M! f(x) < sm})dz

+/; @'(1) Hx € Qo min{L,Mf(x)} > 241, M* f(x) > 511})61: (©3)

=1y g+ jp 0 -

Applying Lemma 4.8 for [} y; 4 and At > M, we learn

Iyia < /Mﬁ @' (1) j{x € 00 MF(x) > 246, ML F(x) < 57Lt}|dt

f (66)

< sﬁl @' (¢) |{x € 800 : MF(x) > As}d.
i

Divide equally the cube 8Qg into 16" cubes Q1, Q2,...,Q1¢: With their volume
Qi = [Qol/2":

16"

800 = 0:.

i=1
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Then,

5/ O (1) [{x € 800 : Mf(x) > At}|di

L
<5/lq>’

16"

_62 1) {x € Qi: Mf(x) > At}|dt
16"
':VS\QO\ZI Qi®<min{%,M];(x)}>dx.

Note that § = ® (P~ !(§)). Together with the fact that ® € V' estimates (66)
and (67) give

16"
Las sl f o(e t@mn{ 20 e o

i=170i

16"

U{xEQ, MF(x) > Ar}|dr

(67)

Next, we evaluate 11} 7 ; - By {x€ Qo:min{L,Mf(x)} >2At,M*f(x) > SAt}
C {x€Qy: M*f(x) > S8At},

I g5 < A
s

g/wq)’(t)’{erO:Mﬁf(x)>57Lt}‘dt (69)
0

“f(x
:/QO¢<MSJ;( )>dx.

Estimates (64), (65), (68) and (69) give

N

@' (1) ’{x € 0y Mif(x) > (w}’dt

oo

inf{?L >0: \Q s @' (t)|{x € Qo : min{L,Mf(x)} >2At}|dt < 1}

ginf{l>0 d)( ~)+§ ( )min{%7MJ;(x)}>dx (70)

+]€20¢<M;]:l( >)dx<1}.
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Since 0 < 3% < 2++6,1, we use estimates (38) and (39) in Lemma 4.9:
M 16"
infdd>0:® +2 (8)min LMY
A A
i
+][ @(Mf(x>)dx< 1}.
0 oA

. M 1 MEf(x) 1
: — 71
<1nf{l>0.¢<l)<32n,][go¢< 57 )dx<3n, (71)

i= 1,2,...,16"}.

Estimate (40) in Lemma 4.9 gives

inf{x>0:¢<%><3%,][QO¢<M2’;(X)>M<3I—",
][icl)<cl)1(5)m1n{§,Mi(x)}>dx<3%7i:1,2,...,16"}
:min{inf{/l>0:d)<];—71)<3;n}7

ifin0if 8(0) e L1
inf{7L>O][ ( mm{%,MQ(x)})dxg%},

i

|
—_
»
\’H
o))
3
——

(72)
On the other hand, note that
~ 1
fa-0.0(2) < %}:q)— ( )
M f(x) 32" 7
inf{l>0:][ d)( ) ’ij ,
Qo D,00

and for i =1,2,...,16",

inf{/l>0:][’_<D<<D_l(5>mm{%’Mz(X)})dx<3%} (74)

< 32nq)_1 (6) Hmln {LaMf}”(I)Q, .
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By estimates (73) and (74),

inf{)t >0: —/NdD’(t)er Qo :min{L,Mf(x)} >2At}|dt < 1}
Qo

(/1 3 ,
<m1n{<l) 1(3?) M, Mij 32" (8) ||min {L,Mf} g0,
i:1,2,...,16"}
| _ 3om
<mind o' [ — M,3 Mij
3 o ®,00

16"
+32"071(8) Y [Imin {Z,M [} ]| o, -
-1

(75)

5 1
Since M < [Qo| 7 |11 410

Mﬂf”tb,go S ‘QOF% |‘Mjf|‘///£0 and

_1
[min{L,Mf}|lg o, S [Qol 70 HMf||//[£oL, a constant Cp > 0 exists such that

1 n
min{ &' [ — M 32
327

ceia 4 (mnfr S e] oo r).

16)1
MﬁfH +32"07" (8) Y [[min{L,Mf} o,
D,00 i=1

(76)
Estimates (63)—(76) show that
1 . 1
0 Imin (LM} g, < Comin{ U7l 5[], )
MY
FOP(3) M.
that is,

— 3 1
(1-Co®™"(8)) M| g0, < Comm{f L5 M1 H.///;;o }

Since we can choose § > 0 such as Co®~!(8) < 1, we obtain

C() . 1 u
171y < Ty W 5 A b

Estimates (62) and (77) give

!
M1 g S WAL go + M2 -
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By Lemma 4.12, we obtain Theorem 3.11. [J

REMARK 5.1. By éligloq)*l(S) =0, we can choose & >0 so that Co® () < 1.
—0+

Proof of Theorem 1.4. Since |[b, 1] f(x)| < M ([b,1o]f) (x) a.e. x € R",

1B el f1l a0 < M (b, o] )] 20 -

Note that we assume that ¥ € A, N V'. Then, Theorems 3.1, 3.11 and Proposition 2.8
show that

1M (. 1al ) g S [M2 W1l gy 10l (1 g + M)

here,

S 18lsa0 1Mol g -

B(r) =tlog(e+1). Theorem 3.3 gives the desired result. [J
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