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Abstract. Recently, Stockdale, Villarroya, and Wick introduced the ε -maximal operator to prove
the Haar multiplier is bounded on the weighted spaces Lp(w) for a class of weights larger than
Ap . We prove the ε -maximal operator and Haar multiplier are bounded on variable Lebesgue
spaces Lp(·)(Rn) for a larger collection of exponent functions than the log-Hölder continuous
functions used to prove the boundedness of the maximal operator on Lp(·)(Rn) . We also prove
that the Haar multiplier is compact when restricted to a dyadic cube Q0 .

1. Introduction

In [2], the authors prove that the Hardy-Littlewood maximal operator is bounded
on variable Lebesgue spaces Lp(·)(Rn) for log-Hölder continuous exponent functions
p(·) ∈ LH0(Rn)∩ LH∞(Rn) with 1 < p− � p+ < ∞ . In [8], the authors use the ε -
maximal operator and ε -sparse operator to establish the boundedness of the Haar mul-
tiplier on Lp(w) for a class of weights larger than Ap . Motivated by these two results,
in this paper we prove the ε -maximal operator and the Haar multiplier are bounded on
variable Lebesgue spaces for a collection of exponent functions larger than LH0(Rn)∩
LH∞(Rn) . In addition, we prove a local compactness result for the Haar multiplier
similar to the result in [8].

Before stating our results, we briefly outline some of the definitions involved. We
explain them in more detail in Section 2. An exponent function is a measurable function
p(·) : R

n → [1,∞) . Denote the essential infimum and essential supremum of p(·) by p−
and p+ , respectively. Here, we only consider exponent functions where 1< p− � p+ <
∞ . Given an exponent function p(·) , define the variable Lebesgue space Lp(·)(Rn) as
the collection of Lebesgue measurable functions satisfying ‖ f‖p(·) < ∞ , where ‖ f‖p(·)
is the norm given by

‖ f‖p(·) = inf

{
λ > 0 :

∫
Rn

| f (x)/λ |p(x) dx � 1

}
.
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We now define the ε sequences that appear in the operators we are interested in.
Denote the set of all dyadic cubes in R

n by D . Throughout this paper, ε = {εQ}Q∈D

will be a bounded sequence of real numbers εQ indexed by the dyadic cubes. If each
εQ � 0, we say that ε is non-negative. If ε is non-negative, we say that it has the
domination property if for any P,Q ∈ D such that P ⊆ Q , then εP � εQ . Given any ε ,
define the new sequence ε by

ε Q = sup
P∈D
P⊆Q

|εP|.

Then ε is a non-negative sequence with the domination property, and |εQ|� εQ . Given
a non-negative sequence ε and α > 0, define the new sequence εα = {εα

Q}Q∈D .

Given any sequence ε , define the Haar multiplier Tε acting on f ∈ L1
loc(R

n) by

Tε f = ∑
Q∈D

εQ〈 f ,hQ〉hQ. (1.1)

Here, 〈 f ,hQ〉 =
∫
Q f (y)hQ(y)dy , and hQ is the Haar function adapted to Q defined by

hQ = |Q|−1/2
(

χQ − 1
2n χQ̂

)
,

where Q̂ is the dyadic parent of Q . Our goal is to prove that the Haar multiplier is
bounded on Lp(·)(Rn) with assumptions on p(·) configured to the sequence ε .

To do so, we use the dyadic ε -maximal operator Mε as a tool to control the Haar
multiplier. Given a non-negative sequence ε , define Mε for f ∈ L1

loc(R
n) by

Mε f (x) = sup
Q∈D

εQ−
∫

Q
| f (y)|dy χQ(x).

Note that if εQ = 1 for all Q , then Mε becomes the dyadic maximal operator Md . More
generally, we have Mε f � ‖ε‖∞Md f � ‖ε‖∞M f , where M is the Hardy-Littlewood
maximal operator.

In [2, Theorem 3.16], the authors proved the Hardy-Littlewood maximal operator
is bounded on Lp(·)(Rn) when p(·) ∈ LH0(Rn)∩LH∞(Rn) with 1 < p− � p+ < ∞ .
The set LH∞(Rn) denotes the collection of exponent functions p(·) that are log-Hölder
continuous at infinity: there exist constants C∞ and p∞ such that for all x ∈ R

n ,

|p(x)− p∞| � C∞

log(e+ |x|) .

The set LH0(Rn) consists of exponent functions that are locally log-Hölder continuous:
there exists a constant C0 such that for all x,y ∈ R

n with |x− y|< 1/2,

|p(x)− p(y)|� C0

− log(|x− y|) . (1.2)

When p+ < ∞ , LH0(Rn) is equivalent to the Diening condition: there exists a constant
C such that given any cube Q ,

|Q|p−(Q)−p+(Q) � C, (1.3)
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where p−(Q) and p+(Q) are the essential infimum and essential supremum of p(·) on
Q .

Since the dyadic maximal operator is pointwise smaller than the Hardy-Littlewood
maximal operator, LH0(Rn)∩LH∞(Rn) is a sufficient condition for Md to be bounded
on Lp(·)(Rn) . For the dyadic maximal operator, however, we can replace the LH0(Rn)
condition with a weaker dyadic condition that is still sufficient (along with the LH∞(Rn)
condition) for it to be bounded: more precisely, we can assume that the Diening condi-
tion (1.3) holds for dyadic cubes. This fact is implicit in the proof of the boundedness
of the Hardy-Littlewood maximal operator: see, for instance, [2, Section 3.4]. This
dyadic Diening condition was explicitly introduced and studied in [5, 9].

However, we show that we can replace the dyadic Diening condition with an even
weaker local condition that depends on the sequence ε . Given an exponent function
p(·) with p+ < ∞ , we say that p(·)∈ εLH0(Rn) if there exists a constant C depending
only on n , p(·) and ε such that given any cube Q ∈ D with εQ 
= 0,( |Q|

εQ

)p−(Q)−p+(Q)

� C. (1.4)

Note that if εQ = 1 for all Q ∈ D , we obtain the Diening condition (1.3).

REMARK 1.1. Unfortunately, we cannot replace LH∞(Rn) with a condition in-
volving ε in the same way. This is due to the fact that the ε -maximal operator is
pointwise equivalent to the dyadic maximal operator Md near infinity if ε has the
domination property. For in this case, given a bounded function f that is supported on
a dyadic cube Q0 , we have that for almost every x 
∈ Q0 ,

εQ0M
d f (x) � Mε f (x) � ‖ε‖∞Md f (x).

Since the constants εQ0 and ‖ε‖∞ do not depend on any information about εQ for
Q 
= Q0 , any condition near infinity that we use to bound Mε f outside of Q0 will have
to be the same condition we use to bound Md f outside of Q0 , and not a condition
based on the properties of the sequence ε . However, it would still be of interest to find
a dyadic version of the LH∞(Rn) that could be used to prove the boundedness of the
dyadic maximal operator. The very recent results by Lerner [6] may be applicable to
this problem.

We can now state our main results.

THEOREM 1.2. Fix a non-negative sequence ε = {εQ}Q∈D . Given an exponent
function p(·) with 1 < p− � p+ < ∞ , suppose p(·) ∈ LH∞(Rn)∩εLH0(Rn) . Then Mε
is bounded on Lp(·)(Rn): there exists a constant C = C(n, p(·),ε) such that for any
f ∈ Lp(·)(Rn) ,

‖Mε f‖p(·) � C‖ f‖p(·).

THEOREM 1.3. Fix a sequence ε = {εQ}Q∈D . Given an exponent function p(·)
with 1 < p− � p+ < ∞ , suppose p(·) ∈ ε 1/2LH0(Rn)∩ LH∞(Rn) . Then the Haar
multiplier Tε is bounded on Lp(·)(Rn) .
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In our final result we consider the compactness properties of the Haar multiplier
if we restrict the domain from R

n to Q0 ∈ D . Let D(Q0) be the collection of dyadic
cubes contained in Q0 , and define the εLH0(Q0) condition exactly as in (1.4), but for
Q ∈ D(Q0) .

THEOREM 1.4. Fix a cube Q0 ∈ D and a sequence ε = {εQ}Q∈D(Q0) such that

lim
N→∞

sup{ε Q : �(Q) < 2−N} = 0.

Given an exponent p(·) with 1 < p− � p+ < ∞ , suppose p(·) ∈ ε αLH0(Q0) for some
0 < α < 1/2 . Then the Haar multiplier is compact on Lp(·)(Q0) .

REMARK 1.5. In [8, Section 2.4], the authors give a compactness result for weigh-
ted spaces on all of R

n . However, their proof requires that ε Q → 0 as �(Q)→ ∞ . This
is impossible since ε has the domination property unless ε is the zero sequence. But
implicit in their proof is a local compactness result, and our proof is modeled on theirs.

In [4, Section 5], the authors give a different proof of the compactness result
for weighted spaces Lp(w) on R

n using a version of Rubio de Francia extrapolation
for compactness. We conjecture that the corresponding compactness result is true on
Lp(·)(Rn) with the additional assumption that p(·) ∈ LH∞(Rn) .

The remainder of this paper is organized as follows. In Section 2, we state the
necessary definitions and lemmas for variable Lebesgue spaces. We prove Theorem
1.2 in Section 3. In Section 4, we prove Theorems 1.3 and 1.4. Lastly, in Section 5
we show that the εLH0(Rn) hypothesis of Theorem 1.2 is weaker than the local log-
Hölder continuity condition defined in inequality (1.2). We do this by showing there
are exponent functions that are not in LH0(Rn) , but are in εLH0(Rn) for some ε .

Throughout this paper, n will denote the dimension of the underlying space R
n ,

and C will denote a constant that may vary in value from line to line and which will
depend on underlying parameters. If we want to specify the dependence, we will write,
for instance, C(n,ε) . If the value of the constant is not important, we will often write
A � B instead of A � cB for some constant c . We will also use the convention that
1/∞ = 0.

2. Preliminaries

We begin with the necessary definitions related to variable Lebesgue spaces. We
refer the reader to [2] for more information.

DEFINITION 2.1. An exponent function on a set Ω ⊂ R
n is a Lebesgue measur-

able function p(·) : Ω → [1,∞) . Denote the collection of exponent functions on Ω by
P(Ω) . Denote the essential infimum and essential supremum of p(·) on a set E by
p−(E) and p+(E) , respectively. Denote p+(Ω) by p+ and p−(Ω) by p− .
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DEFINITION 2.2. Given p(·) ∈P(Ω) with p+ < ∞ , and a Lebesgue measurable
function f , define the modular associated with p(·) by

ρp(·)( f ) =
∫

Ω
| f (x)|p(x) dx.

In situations where there is no ambiguity we will simply write ρ( f ) .

DEFINITION 2.3. Given p(·) ∈ P(Ω) , define the space Lp(·)(Ω) as the set of
Lebesgue measurable functions f satifying ‖ f‖Lp(·)(Ω) < ∞ , where the norm ‖·‖Lp(·)(Ω)
is defined as

‖ f‖Lp(·)(Ω) = inf{λ > 0 : ρp(·)( f/λ ) � 1}.
In situations where there is no ambiguity, we will write ‖ f‖p(·) instead of ‖ f‖Lp(·)(Ω) .

The following propositions relate the modular and the norm and will be used to
prove Theorem 1.2. The first proposition allows us to conclude a norm is finite when
the modular is finite.

PROPOSITION 2.4. [2, Proposition 2.12] Given p(·) ∈ P(Ω) with p+ < ∞ ,
f ∈ Lp(·)(Ω) if and only if ρ( f ) < ∞ .

PROPOSITION 2.5. [2, Corollary 2.22] Let p(·) ∈ P(Ω) . If ‖ f‖p(·) � 1 , then
ρ( f ) � ‖ f‖p(·) .

We will use our assumption that p(·) ∈ LH∞(Rn) to apply the following lemma
when we prove Theorem 1.2.

LEMMA 2.6. [2, Lemma 3.26] Let p(·) ∈ LH∞(Rn) with 1 < p− � p+ < ∞ .
Let R(x) = (e+ |x|)−n . Then there exists a constant C , depending on n and the LH∞
constants of p(·) , such that given any set E and any function F with 0 � F(x) � 1 ,
for x ∈ E , ∫

E
F(x)p(x) dx � C

∫
E

F(x)p∞ dx+
∫
E

R(x)p− dx, (2.1)∫
E

F(x)p∞ dx � C
∫

E
F(x)p(x) dx+

∫
E

R(x)p− dx. (2.2)

We now recall the definition and basic properties of dyadic cubes. These are well-
known and can be found in [2, Section 3.2].

DEFINITION 2.7. Let Q0 = [0,1)n , and let D0 be the set of all translates of Q0

whose vertices are on the lattice Z
n . More generally, for each k ∈Z , let Qk = 2−kQ0 =

[0,2−k)n , and let Dk be the set of all translates of Qk whose vertices are on the lattice
2−k

Z
n . Define the set of dyadic cubes D by

D =
⋃
k∈Z

Dk.
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PROPOSITION 2.8. Dyadic cubes have the following properties:

1. For each k ∈ Z , if Q ∈ Dk , then �(Q) = 2−k , where �(Q) is the side length of
Q.

2. For each x ∈ R
n and k ∈ Z , there exists a unique cube Q ∈ Dk such that x ∈ Q.

3. Given any two cubes Q1,Q2 ∈ D , either Q1 ∩Q2 = /0 , Q1 ⊂ Q2 , or Q2 ⊂ Q1 .

4. For each k ∈ Z , if Q ∈ Dk , then there exists a unique cube Q̂ ∈ Dk−1 such that
Q ⊂ Q̂ . (Q̂ is referred to as the dyadic parent of Q.)

5. For each k ∈Z , if Q∈Dk , then there exist 2n cubes Pi ∈Dk+1 such that Pi ⊂Q.

The next proposition gives an equivalent characterization of εLH0(Rn) which will
be used in the proof of Theorem 1.2.

PROPOSITION 2.9. Given a non-negative sequence ε = {εQ}Q∈D , p(·)∈ εLH0(Rn)
if and only if there exists C > 0 such that for all Q ∈ D with εQ 
= 0 and almost every
x ∈ Q, ( |Q|

εQ

)p−(Q)−p(x)

� C. (2.3)

Proof. Assume p(·) ∈ εLH0(Rn) . Fix Q ∈D with εQ 
= 0. Observe that if |Q| >
εQ , then for any x∈Q , (2.3) holds with C = 1. Suppose |Q|� εQ . Then for any x∈Q ,
we have ( |Q|

εQ

)p−(Q)−p(x)

�
( |Q|

εQ

)p−(Q)−p+(Q)

� C.

To prove the converse, observe that if |Q| > εQ , then (1.4) holds with C = 1. Suppose
|Q| � εQ . Let δ > 0 be arbitrarily small and choose x0 ∈ Q such that p(x0) + δ >
p+(Q) . Then by the definition of εLH0(Rn) , we have( |Q|

εQ

)p−(Q)−p+(Q)

�
( |Q|

εQ

)p−(Q)−p(x0)−δ
� C

( |Q|
εQ

)−δ
.

If we let δ tend to 0, we see that p(·) ∈ εLH0(Rn) . �
In order to prove Theorem 1.2, we need the following Calderon-Zygmund decom-

position for the ε -maximal operator. This is very similar to the classical Calderon-
Zygmund decomposition for the dyadic maximal operator [2, Lemma 3.9]. For the
convenience of the reader we include the short proof.

LEMMA 2.10. Fix a non-negative sequence ε = {εQ}Q∈D . Let f ∈ L1
loc(R

n) be
such that −

∫
Q | f (y)|dy → 0 as |Q| → ∞ . Given λ > 0 , there exists a (possibly empty)

collection of disjoint dyadic cubes {Qλ
j } j such that

Ωλ = {x ∈ R
n : Mε f (x) > λ} =

⋃
j

Qλ
j , (2.4)
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and for each Qλ
j ,

λ < εQλ
j
−
∫

Qλ
j

| f (y)|dy. (2.5)

If, in addition, ε has the domination property, then

εQλ
j
−
∫

Qλ
j

| f (y)|dy � 2nλ . (2.6)

Proof. If Ωλ is empty, then we choose an empty collection and the conclusions
hold trivially. Suppose Ωλ is nonempty and let x ∈ Ωλ . Then there exists Q ∈ D
containing x such that

εQ−
∫

Q
| f (y)|dy > λ .

Since {εQ}Q∈D is bounded and −
∫
Q | f (y)|dy → 0 as |Q| → ∞ , there is a maximal

dyadic cube with this property. Denote it by Qx . Clearly, Ωλ ⊆⋃x∈Ωλ
Qx . The reverse

inclusion holds as well. To see this, consider any Qx and let z ∈ Qx . Then

Mε f (z) � εQx −
∫

Qx

| f (y)|dy χQx(z) > λ ,

and so z ∈ Ωλ . By the properties of dyadic cubes, any two cubes in {Qx}x∈Ωλ are
equal or disjoint. Since D is countable, there are at most countably many such cubes
Qx . Enumerate these cubes by {Qλ

j } j . Clearly these cubes satisfy (2.4).

Inequality (2.5) is immediate by our choice of {Qλ
j } j . If we assume the domina-

tion property holds, to show (2.6), note that we have εQ̂λ
j

� εQλ
j
. If we combine this

with the maximality of Qk
j , we get

λ � εQ̂λ
j
−
∫

Q̂λ
j

| f (y)|dy � εQλ
j
−
∫

Q̂λ
j

| f (y)|dy � 2−nεQλ
j
−
∫

Qλ
j

| f (y)|dy.

If we multiply by 2n , we get the desired upper bound. �
In order to prove Theorem 1.4, we need a local version of Lemma 2.10. We state

it and briefly outline how to adapt the proof of Lemma 2.10 to prove it.

LEMMA 2.11. Given Q0 ∈ D , a sequence ε = {εQ}Q∈D(Q0) , and f ∈ L1(Q0) ,
for any λ > εQ0

−
∫
Q0

| f (y)|dy, there exists a (possibly empty) collection of disjoint cubes

{Qλ
j } j such that

Ωλ = {x ∈ Q0 : Mε f (x) > λ} =
⋃
j

Qλ
j ,

and for each Qλ
j , inequality (2.5) holds. If, in addition, ε has the domination property,

then inequality (2.6) holds.
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Proof. Choose the collection {Qλ
j } j as in the proof of Lemma 2.10. The lower

bound in inequality (2.5) is immediate. The proof of the upper bound depends on
every Qλ

j having a dyadic parent Q̂λ
j in Q0 , which will hold if and only if Q0 is not

in the collection {Qλ
j } j . Recall that we chose the cubes Qλ

j as the maximal cubes
satisfying εQλ

j
−
∫
Qλ

j
| f (y)|dy > λ . Since we only consider λ > εQ0

−
∫
Q0

| f (y)|dy , Q0 is

not in {Qλ
j } j . Hence, every cube in {Qλ

j } j has a dyadic parent in Q0 , and so the proof
of inequality (2.6) is the same as in the proof of Lemma 2.10. �

The following lemma allows us to apply the Calderon-Zygmund decomposition to
any function in Lp(·)(Rn) when p+ < ∞ .

LEMMA 2.12. [2, Lemma 3.29] Given p(·) ∈ P(Rn) , suppose p+ < ∞ . Then
for all f ∈ Lp(·)(Rn) , −

∫
Q | f (y)|dy → 0 as |Q| → ∞ .

To prove Theorem 1.3, we need some lemmas about the conjugate exponent func-
tion p′(·) , defined pointwise by

1
p′(x)

= 1− 1
p(x)

.

The first two lemmas will allow us to transfer properties of p(·) to p′(·) . The first is
well-known and is an immediate consequence of the definition. See [2].

LEMMA 2.13. Let p(·) ∈P(Rn) with 1 < p− � p+ < ∞ . Then p(·) ∈ LH∞(Rn)
if and only if p′(·) ∈ LH∞(Rn) .

LEMMA 2.14. Let p(·)∈P(Rn) with 1 < p− � p+ < ∞ . Then p(·)∈ εLH0(Rn)
if and only if p′(·) ∈ εLH0(Rn) .

Proof. Since 1 < p− � p+ < ∞ , we have that p+(Q)− p−(Q) and (p′)+(Q)−
(p′)−(Q) are finite for all Q ∈ D . Assume first that p(·) ∈ εLH0(Rn) . Let Q ∈ D .
Since (p′)−(Q)− (p′)+(Q) � 0, we have that if |Q| > εQ , then inequality (1.4) holds
with C = 1. Suppose that |Q| � εQ . To show p′(·) ∈ εLH0(Rn) , it suffices to show
that there is a constant C1 > 0 depending only on p(·) such that for any Q ∈ D , we
have

(p′)+(Q)− (p′)−(Q) � C1(p+(Q)− p−(Q)). (2.7)

For if this is the case, then, since |Q| � εQ , if (2.7) holds, we have( |Q|
εQ

)(p′)−(Q)−(p′)+(Q)

�
( |Q|

εQ

)C1(p−(Q)−p+(Q))

.

Since p(·) ∈ εLH0(Rn) , the right hand side is bounded by a constant depending only
on n , p(·) , and C1 and so p′(·) ∈ εLH0(Rn) .



ε -MAXIMAL OPERATOR AND HAAR MULTIPLIERS ON LEBESGUE SPACES 693

We now prove that inequality (2.7) holds. By the definition of conjugate exponent
functions,

1
(p′)+(Q)

= 1− 1
p−(Q)

and
1

(p′)−(Q)
= 1− 1

p+(Q)
.

But then we have that

(p′)+(Q)− (p′)−(Q) = (p′)+(Q)(p′)−(Q)
[

1
(p′)−(Q)

− 1
(p′)+(Q)

]
= (p′)+(Q)(p′)−(Q)

[
1

p−(Q)
− 1

p+(Q)

]
=

(p′)+(Q)(p′)−(Q)
p−(Q)p+(Q)

[p+(Q)− p−(Q)]

� ((p′)+)2

(p−)2 [p+(Q)− p−(Q)].

This proves inequality (2.7), and so p′(·) ∈ εLH0(Rn) . The proof of the converse is the
same, except we interchange the roles of p(·) and p′(·) . �

The next result allows us to apply the previous two lemmas when proving Theo-
rem 1.3 and Theorem 1.4.

LEMMA 2.15. [2, Theorem 2.34] Given p(·) ∈ P(Ω) with 1 < p− � p+ < ∞ ,
define the associate norm ‖ · ‖′p(·) by

‖ f‖′p(·) = sup

{∫
Ω

f (x)g(x)dx : g ∈ Lp′(·)(Ω),‖g‖p′(·) � 1

}
.

Then for any f ∈ Lp(·)(Ω) , we have ‖ f‖p(·) � ‖ f‖′p(·) .

The final lemma is the variable exponent version of Hölder’s inequality.

LEMMA 2.16. [2, Theorem 2.26] Given p(·) ∈ P(Ω) with 1 < p− � p+ < ∞ ,
for all f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω) , f g ∈ L1(Ω) and∫

Ω
| f (x)g(x)|dx � 2‖ f‖p(·)‖g‖p′(·).

3. Boundedness of the ε -maximal operator

We now prove Theorem 1.2. The proof is adapted from [2, Theorem 3.16].

Proof. We begin the proof by making some reductions. We may assume f is
nonnegative since Mε ( f ) = Mε(| f |) . By homogeneity, we may further assume that
‖ f‖p(·) = 1. From Proposition 2.5, we get that ρ( f ) � 1. Decompose f as f1 + f2 ,
where

f1 = f χ{x: f (x)>1}, and f2 = f χ{x: f (x)�1}.
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Then ρ( fi) � ‖ fi‖p(·) � 1 for i = 1,2. Further, since Mε f � Mε f1 +Mε f2 , it will suf-
fice to show for i = 1,2 that ‖Mε fi‖p(·) � C(n, p(·),ε) . Since p+ < ∞ , by Proposition
2.4 it will in turn suffice to show that for i = 1,2,

ρ(Mε fi) =
∫

Rn
Mε fi(x)p(x) dx � C(n, p(·),ε).

We first consider the estimate for f1 . Let A = 2n . For each k ∈ Z , define

Ωk = {x ∈ R
n : Mε f1(x) > Ak}.

Up to a set of measure zero, R
n =

⋃
k∈Z Ωk\Ωk+1 . Since p+ < ∞ , by Lemma

2.12, f satisfies the hypotheses of Lemma 2.10. Thus, for each k we may form a
collection of pairwise disjoint cubes {Qk

j} j such that (2.4) and (2.5) hold. For each

k , define the sets Ek
j = Qk

j ∩ (Ωk\Ωk+1) . Then for each k , {Ek
j} j forms a pairwise

disjoint collection such that Ωk\Ωk+1 =
⋃

j E
k
j .

We can now estimate as follows:

ρ(Mε f1) = ∑
k

∫
Ωk\Ωk+1

Mε f1(x)p(x) dx

� ∑
k

∫
Ωk\Ωk+1

(Ak+1)p(x) dx

� Ap+ ∑
k, j

∫
Ek

j

(
εQk

j
−
∫

Qk
j

f1(y)dy

)p(x)

dx.

For each k and j , define p jk = p−(Qk
j) . Since for any x∈ R

n , f1(x) > 1 or f1(x) = 0,
we then have ∫

Qk
j

f1(y)dy �
∫

Qk
j

f1(y)p(y)/p jk dy �
∫

Qk
j

f1(y)p(y) dy � 1. (3.1)

By Proposition 2.9, inequality (3.1), and Hölder’s inequality we have

∑
k, j

∫
Ek

j

(
εQk

j
−
∫

Qk
j

f1(y)dy

)p(x)

dx

= ∑
k, j

∫
Ek

j

( εQk
j

|Qk
j|

)p(x)(∫
Qk

j

f1(y)dy

)p(x)

dx

� ∑
k, j

∫
Ek

j

( εQk
j

|Qk
j|

)p jk(∫
Qk

j

f1(y)dy

)p(x)

dx

� (1+‖ε‖∞)p+ ∑
k, j

∫
Ek

j

|Qk
j|−p jk

(∫
Qk

j

f1(y)dy

)p(x)

dx
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� (1+‖ε‖∞)p+ ∑
k, j

∫
Ek

j

|Qk
j|−p jk

(∫
Qk

j

f1(y)p(y)/p jk dy

)p(x)

dx

� (1+‖ε‖∞)p+ ∑
k, j

∫
Ek

j

(
|Qk

j|−1
∫

Qk
j

f1(y)p(y)/p jk dy

)p jk

dx

� (1+‖ε‖∞)p+ ∑
k, j

∫
Ek

j

(
−
∫

Qk
j

f1(y)p(y)/p− dy

)p−

dx

� (1+‖ε‖∞)p+ ∑
k, j

∫
Ek

j

Md [ f p(·)/p−
1 ](x)p− dx

= C(p(·),ε)
∫

Rn
Md [ f p(·)/p−

1 ](x)p− dx.

Since p− > 1, we have ‖Md f1‖Lp− (Rn) � (p−)′‖ f1‖Lp− (Rn) (see [7, Theorem 2.3], [3,
Exercise 2.1.12]). If we combine this with the fact that ρ( f1) � 1, we get that

ρ(Mε f1) � C(n, p(·),ε)ρ( f1) � C(n, p(·),ε).

We now estimate ρ(Mε f2) . Since f2 � 1, we have −
∫
Q f2(y)dy � 1 for all Q∈D .

Thus, for all x ∈ R
n ,

εQ

‖ε‖∞
−
∫

Q
f2(y)dyχQ(x) � 1.

Hence, 0 � ‖ε‖−1
∞ Mε f2 � 1. Let R(x) = (e+ |x|)−n . Since p− > 1, we have p∞ > 1,

and so
∫
Rn Md f2(x)p∞ dx � ((p∞)′)p∞

∫
Rn f (x)p∞ dx . If we combine this with inequali-

ties (2.1), (2.2), and the pointwise bound Mε f2(x) � ‖ε‖∞Md f2(x) , we have that∫
Rn

Mε f2(x)p(x) dx � (1+‖ε‖∞)p+

∫
Rn

[‖ε‖−1
∞ Mε f2(x)]p(x) dx

� C(ε, p(·))
∫

Rn
[‖ε‖−1

∞ Mε f2(x)]p∞ dx+C(ε, p(·))
∫

Rn
R(x)p− dx

= C(ε, p(·))‖ε‖−p∞
∞

∫
Rn

Mε f2(x)p∞ dx+C(ε, p(·))
∫

Rn
R(x)p− dx

� C(ε, p(·))
∫

Rn
‖ε‖p∞

∞ Md f2(x)p∞ dx+C(ε, p(·))
∫

Rn
R(x)p− dx

� C(ε, p(·))((p∞)′)p∞
∫

Rn
f2(x)p∞ dx+‖ε‖p+

∞

∫
Rn

R(x)p− dx

� C(n, p(·),ε)
∫

Rn
f2(x)p(x) dx+C(n, p(·),ε)

∫
Rn

R(x)p− dx.

Since ρ( f2) � 1 and
∫
Rn R(x)p− is finite, we have that

∫
Rn Mε f2(x)p(x) �C(n, p(·),ε) .

This completes the proof of Theorem 1.2. �
We will need a local version of Theorem 1.2 to prove Theorem 1.4. We state the

local version and outline the modifications to the proof. Note that the necessary lemmas
and propositions used to prove Theorem 1.2 still hold when replacing R

n with Q0 .
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LEMMA 3.1. Given Q0 ∈D , fix a non-negative sequence ε = {εQ}Q∈D(Q0) . Given
an exponent function p(·) with 1 < p− � p+ < ∞ , suppose p(·) ∈ εLH0(Q0) . Then
there exists a constant C = C(p(·),ε,Q0) such that for all f ∈ Lp(·)(Q0) ,

‖Mε f‖Lp(·)(Q0) � C‖ f‖Lp(·)(Q0
.

Proof. We make the same reductions as in the proof of Theorem 1.2; thus,
‖ f‖Lp(·)(Q0)

= 1 and we must show that ρ(Mε fi) � C for i = 1,2. Since |Q0| is fi-
nite and Mε f2 � 1, we immediately have that

ρ(Mε f2) � |Q0|.
To estimate ρ(Mε f1) , we modify the argument in Theorem 1.2. Define A =

A(ε,Q0, p(·)) = 1 + 2εQ0‖χQ0‖Lp′(·)(Q0)
. Then by the generalized Hölder’s inequality

in Lemma 2.16,

A = 1+2εQ0‖χQ0‖Lp′(·)(Q0)
‖ f‖Lp(·)(Q0)

� 1+ εQ0 −
∫

Q0

| f (y)|dy.

For each k ∈ N , define Ωk = {x∈Q0 : Mε f1(x) > Ak} ; the above estimate for A shows
that we can apply Lemma 2.11 to form a pairwise disjoint collection {Qk

j} j such that

(2.4) and (2.5) hold. Define the sets Ek
j = Qk

j ∩ (Ωk\Ωk+1) . Then we can repeat the
previous argument to get

ρ(Mε f1) �
∫

Q0\Ω1

Mε f1(x)p(x) dx+
∞

∑
k, j=1

∫
Ek

j

(
−
∫

Qk
j

f1(y)p(y)/p− dy

)p−

dx

� Ap+ |Q0|+
∫
Q0

Md [ f p(·)/p−
1 χQ0 ](x)

p− dx

� C(ε,Q0, p(·))+
∫
Q0

f1(x)p(x) dx

� C(ε,Q0, p(·)).
This completes the proof. �

4. Haar multipliers

To prove the Haar multiplier defined in (1.1) is bounded on Lp(w) , in [8] they
proved it was dominated by a sparse operator. To state their result, first recall that a
collection of cubes S ⊂ D is sparse if for every Q ∈ S , there exists a set EQ ⊂ Q
such that |Q| � 2|EQ| and the family {EQ}Q∈S is pairwise disjoint.

DEFINITION 4.1. Given a sparse collection S and a sequence ε = {εQ}Q∈D , for
all f ∈ L1

loc(R
n) and x ∈ R

n , define the ε -sparse operator Sε by

Sε f (x) = ∑
Q∈S

εQ−
∫

Q
f (y)dy χQ(x).
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THEOREM 4.2. [8, Theorem1.2] Given a sequence ε = {εQ}Q∈D , if f is bounded
with compact support, then there exists a sparse collection S such that for almost ev-
ery x ∈ supp( f ) the associated ε -sparse operator Sε satisfies

|Tε f (x)| � Sε | f |(x).

Proof of Theorem 1.3. We will first prove that ‖Tε f‖p(·) � ‖ f‖p(·) for any f ∈
L∞

c (Rn) . Fix such an f . By Theorem 4.2 it will suffice to show that for any sparse
collection S , the associated ε -sparse operator Sε satisfies

‖Sε f‖p(·) � ‖ f‖p(·).

By Lemma 2.15, there exists g ∈ Lp′(·)(Rn) with ‖g‖p′(·) � 1 such that

‖Sε f‖p(·) � ‖Sε f‖′p(·) � 2
∫

Rn
Sε f (x)g(x)dx.

By Lemma 2.16, we have that∫
Rn

Sε f (x)g(x)dx = ∑
Q∈S

εQ−
∫

Q
f (y)dy

∫
Q

g(x)dx

� 2 ∑
Q∈S

ε 1/2
Q −
∫

Q
f (y)dy ε 1/2

Q −
∫

Q
g(x)dx|EQ|

� 2 ∑
Q∈S

∫
EQ

Mε1/2 f (t)Mε1/2g(t)dt

� 2
∫

Rn
Mε1/2 f (t)Mε1/2g(t)dt

� 4‖Mε1/2 f‖p(·)‖Mε1/2g‖p′(·).

Since p(·) ∈ ε 1/2
Q LH0(Rn)∩LH∞(Rn) , by Lemmas 2.14 and 2.13, we have that

p′(·) ∈ ε 1/2
Q LH0(Rn)∩LH∞(Rn) . Hence, by Theorem 1.2, we have

‖Mε1/2 f‖p(·)‖Mε1/2g‖p′(·) � C‖ f‖p(·)‖g‖p′(·) � C‖ f‖p(·).

Therefore, ‖Tε f‖p(·) � ‖ f‖p(·) for f ∈ L∞
c (Rn) .

Finally, since L∞
c (Rn) is dense in Lp(·)(Rn) (see [2, Theorem 2.72]) and Tε is

linear, the desired inequality for any f ∈ Lp(·)(Rn) follows by a standard approximation
argument. �

Proof of Theorem 1.4. By Theorem 4.2, it suffices to show that for any sparse
collection S ⊂D(Q0) and non-negative sequence ε , the associated ε -sparse operator
Sε is compact on Lp(·)(Q0) . Fix S ⊂ D(Q0) . For each N ∈ N , define the set DN by

DN = {Q ∈ D(Q0) : 2−N � �(Q) � 2N},
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and define the operator Sε,N by

Sε,N f (x) = ∑
Q∈DN∩S

εQ−
∫

Q
f (y)dy χQ(x).

Since Q0 is bounded, DN is a finite collection for all N . Hence Sε,N is a finite rank
operator for all N . We claim that Sε,N converges to Sε in operator norm: i.e., Sε,N f →
Sε f uniformly for all f in the unit ball of Lp(·)(Q0) . Fix such an f ; then

Sε f −Sε,N f = ∑
Q∈Dc

N∩S

εQ−
∫

Q
f (y)dy χQ.

By Lemma 2.15 there exists g ∈ Lp′(·)(Q0) with ‖g‖p′(·) � 1 such that∥∥∥∥ ∑
Q∈Dc

N∩S

εQ−
∫

Q
f (y)dy χQ

∥∥∥∥
p(·)

� 2
∫

Q0

(
∑

Q∈Dc
n∩S

εQ−
∫

Q
f (y)dy χQ(x)

)
g(x)dx.

We argue as in the proof of Theorem 1.3, but we split εQ into one factor of ε1−2α
Q and

two factors of εα
Q before using Lemma 2.16. This gives

∫
Q0

∑
Dc

N∩S

εQ−
∫

Q
f (y)dy χQ(x)g(x)dx � 2 ∑

Q∈Dc
n∩S

−
∫

Q
f (y)dy−

∫
Q

g(x)dx |EQ|

� 2 sup
Q∈Dc

N

ε1−2α
Q ∑

Q∈Dc
N∩S

∫
EQ

Mεα f (z)Mεα g(z)dz

� 2 sup
Q∈Dc

N

ε1−2α
Q

∫
Q0

Mεα f (z)Mεα g(z)dz

� 4 sup
Q∈Dc

N

ε1−2α
Q ‖Mεα f‖p(·)‖Mεα g‖p′(·).

Since p(·)∈ εαLH0(Q0) , by Lemma 2.14 we have that p′(·)∈ εαLH0(Q0) . Thus,
by Lemma 3.1, we have that

‖Mεα f‖p(·)‖Mεα g‖p′(·) � C‖ f‖p(·)‖g‖p′(·) � C.

Therefore, to complete the proof we need to show that supQ∈Dc
N

ε1−2α
Q → 0 as N → ∞ .

Choose N0 such that 2N0 = �(Q0) . Then for all N � N0 , there are no cubes Q∈D(Q0)
such that �(Q) > 2N . Hence Dc

N = {Q ∈ D(Q0) : �(Q) < 2−N} . Since we assume
limN→∞ sup{εQ : �(Q) < 2−N}= 0, we have that supQ∈Dc

N
ε1−2α
Q → 0 as N → ∞ . Thus,

Sε,N → Sε , and so Sε is a limit of finite rank operators. Hence, Sε is compact on
Lp(·)(Q0) (see [1, p. 174]). �
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5. Examples

In this section, we give sufficient conditions on a sequence ε so that a specific
exponent function p(·) is not locally log-Hölder continuous, but is in εLH0(R) and
satisfies the domination property. Let 0 < a < 1 and define

p(x) =

⎧⎪⎨⎪⎩
2, x � 0,

2+(log2
2
x )

−a, 0 < x < 1,

3 x � 1.

This exponent function is not in LH0(R) : see [2, Example 4.44]. Our goal is to
give sufficient conditions on ε so that p(·) ∈ εLH0(R) . For each n ∈ Z , n � 0, define
Qj

n = [ j2−n,( j + 1)2−n) for j = 0, . . . ,2n − 1. Fix a constant 1 � C � 21/(2a−1) and
define ε

Qj
n

by

ε
Qj

n
= 2−nC(n+1)a .

For cubes of the form Q = [0,2k) , k � 1, define εQ = C|Q| . For cubes Q such that
Q∩ [0,1) = /0 , define εQ = C .

Given this sequence ε , we claim that p(·)∈εLH0(R) . Fix n�0. Since (log2(2/x))−a

is an increasing function, it attains its infimum at the left endpoint and its supremum an
the right endpoint of any cube. Consequently, for j = 0, we have

p−(Q0
n)− p+(Q0

n) = −(n+1)−a.

Thus, for the cube Q0
n , we have(

|Q0
n|

εQ0
n

)p−(Q0
n)−p+(Q0

n)

=

(
2−n

εQ0
n

)−(n+1)−a

= (C(n+1)a)(n+1)−a
= C.

For each j 
= 0, we have

p−(Qj
n)− p+(Qj

n) = [n+1− log2 j]−a− [n+1− log2( j +1)]−a.

Thus, for each j , we have that(
|Qj

n|
ε
Qj

n

)p−(Qj
n)−p+(Qj

n)

= (C(n+1)a)p+(Qj
n)−p−(Qj

n)

= C(n+1)a(n+1−log2( j+1))−a
C−(n+1)a(n+1−log2 j)−a

.

This expression is bounded: since

0 <
n+1

n+1− log2( j +1)
� n+1,
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we have that C(n+1)a(n+1−log2( j+1))−a � C(n+1)a . Moreover, since j � 1,

n+1
n+1− log2 j

� 1,

and so we have that C−(n+1)a(n+1−log2 j)−a � C−1 . Hence, for all j = 1, . . . ,2n−1,(
|Qj

n|
ε
Qj

n

)p−(Qj
n)−p+(Qj

n)

� C(n+1)a−1 = C(n, p(·)).

Now consider cubes of the form Q = [0,2k) , k � 1. For these cubes we have( |Q|
εQ

)p−(Q)−p+(Q)

=C−1.

Finally, for cubes satisfying Q∩ [0,1) = /0 , we have that p−(Q)− p+(Q) = 0.
Thus, (|Q|/εQ)p−(Q)−p+(Q) = 1. Hence, p(·) ∈ εLH0(R) .

We now show that the sequence ε has the domination property. First, if Q ⊂
(−∞,0) and P ⊂ Q , then εP = εQ = C . Also, if Q ⊂ [1,∞) and P ⊂ Q , then εP =
εQ = C . If Q = [0,2k) , k � 1, and P ⊂ [1,∞) with P ⊂ Q , then

εP = C � C|Q| = εQ.

If Q = [0,2k) , k � 1, and P = [ j2−n,( j+1)2−n) for some n � 0 and j = 0, . . . ,2n−1,
then P ⊂ Q . If n = 0, then

εP = C � C|Q| = εQ.

If n � 1, then εP � εQ if and only if

log2C � k+n
(n+1)a−1

.

Since (1+n)/[(n+1)a−1] increases as n increases, we have that

k+n
(n+1)a−1

� 1+n
(n+1)a−1

� 2
2a−1

.

But C � 21/(2a−1) , so we have that log2C � k+n
(n+1)a−1 for all k � 1 and n � 1. Hence,

εP � εQ .
Finally, we show that for any n � 0, if Pm

n+1 ⊂ Qj
n , then εPm

n+1
� ε

Qj
n
. For if this

is the case, then the domination property holds for any P,Q ⊂ [0,1) with P ⊂ Q . Let
n � 0 and assume Pm

n+1 ⊂ Qj
n . Then εPm

n+1
� ε

Qj
n

if and only if

log2C � 1
(n+2)a− (n+1)a .

Since 0 < a < 1, 1/[(n+2)a− (n+1)a] increases as n increases, so we have that

1
(n+2)a− (n+1)a � 1

2a−1
.

Thus, by our choice of C , εPm
n+1

� ε
Qj

n
. Hence, the sequence ε has the domination

property.
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