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CONSTRUCTING RIESZ-FISCHER SEQUENCES FROM
A MINIMAL SEQUENCE IN A HILBERT SPACE J7

ELIAS ZIKKOS

(Communicated by I. Peri¢)

Abstract. In this paper we prove that if U = {u,} is a minimal sequence in a separable Hilbert
space .7, then multiplying each vector u, by an appropriate constant c,, yields a family of
functions P := {c, -uy}, such that P is a Riesz-Fischer sequence in ..

If U is a minimal and complete sequence in .%, therefore having a unique biorthogonal
sequence V = {v,} in J#, then P is a complete Riesz-Fischer sequence in .’ and its unique
biorthogonal family {v,/c,} is a Bessel sequence in .77 .

1. Introduction and result

Let % be a separable Hilbert space endowed with an inner product (,-, ) and a
norm || - ||. Let U := {uy }nes be a countable family of vectors in .7 with J C Z. We
say that

(i) U is complete if the closed span of U in .5 is equal to JZ .

(ii) U is minimal if each u, does not belong to the closed span of the remaining
vectors of U in .. That is, denoting the distance of u, from span(U \ u,) in ¢ by

D, = inf u, —gl|, 1
L P M)

then D, >0 forall n € J.

REMARK 1. It is well known that {u,},c; is a minimal sequence in 7 if and
only if it has a biorthogonal sequence {v, }nes in .7, that is

( ) 1, m=n,
Vi, Um) =
e 0, m#n.

An exact sequence in #, that is a sequence which is both complete and minimal, has
a unique biorthogonal sequence in .77 .
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(i) U is uniformly minimal if

D
inf —— > 0. 2
neJ HM,,H

(iv) U is a Bessel sequence if there is a positive constant B so that the following
upper frame condition holds:

S ()P <B-IfIF  Vfe .

neJ

REMARK 2. One may consult the books of Young [1 1], Christensen, [3], and Heil
[4] for further reading on the above topics.

We also say that U = {u,},c; is a Riesz-Fischer sequence (see [11, Chapter 4,
Section 2]) if the moment problem

(f,un) = ay nelJ

has a solution f € J# for every sequence {a,},cs in the space I%(J) where

2(J) = {{an}ng: Y lan? < oo}.

neJ

We point out that (see [11, Chapter 4, Section 2, Theorem 3]) U is a Riesz-Fischer
sequence in # if and only if there exists a positive number A so that for any finite
scalar sequence {f3,} we have

AY B2 < |3 Bua [

a result attributed to Nina Bari.

REMARK 3. It follows from the above inequality and (1) that a Riesz-Fischer
sequence is also a minimal sequence.

Our goal in this article is to show that we can always construct a Riesz-Fischer
sequence from a given minimal sequence U in 47, if we multiply each vector u, by
an appropriate constant ¢, . We will prove the following result.

THEOREM 1. Let U = {uy, }ney be a minimal sequence in 7 and let {Dy}necy be
the Distances as in (1). Choose numbers {cy}ney so that

1
2 5e o < 3)

nelJ
Then the family
= A{Pnt Pn= o ntnes
is a Riesz-Fischer sequence in the closed span of P in €. Moreover, there is some
A > 0 so that the following lower frame condition holds:

ARSI p)P Y f €span(P) in . )

neJ



CONSTRUCTING RIESZ-FISCHER SEQUENCES 763

The proof of Theorem 1 is given in Section 3 followed by some corollaries in case
U is an exact sequence or uniformly minimal. The article ends with two examples in
Section 4.

2. Connecting Riesz-Fischer sequences with Bessel sequences

In Casazza et al. [2], we find the following nice connection between Bessel se-
quences and Riesz-Fischer sequences.

PROPOSITION A. [2, Proposition 2.3, (ii)] The Riesz-Fischer sequences in 7
are precisely the families for which a biorthogonal Bessel sequence exists.

Combining Proposition A with [3, Proposition 3.5.4] gives the following sufficient
condition so that two biorthogonal families {v, },c; and {uy},c; are Bessel and Riesz-
Fischer sequences respectively. We point out that Lemma 1 plays a crucial role for
proving Theorem 1.

LEMMA 1. Consider two biorthogonal families {uy tney and {vy}ney in 7 and
suppose there is some M > 0 so that

N A vnvm)| <M for all meJ.
neJ

Then {vy,}ney is a Bessel sequence in 7 and {uy}ney is a Riesz-Fischer sequence in

.

We also note that the lower frame bound (4) follows from Casazza et al. [2,
Theorem 3.2], restated below.

THEOREM A. Suppose that a family U = {uytney in F is a complete Riesz-
Fischer sequence in . It then satisfies the following lower frame condition: there is
some A > 0 so that

AP Wfou)* Ve 2.

neJ

REMARK 4. Some other interesting results on general sequences in 57, includ-
ing Bessel sequences and Riesz-Fischer sequences, classifying them by frame-related
operators are given in [1]. We point out that a sequence which is both Bessel and
Riesz-Fischer is called a Riesz sequence (see Seip [8, p. 138]). It is well known, that
a complete Riesz sequence in .77 is a Riesz basis for 7. A nice characterization of
such bases was given recently by Stoeva [9].

3. Proof of Theorem 1 and some Corollaries

3.1. Proof of Theorem 1

First we establish the known result that a minimal sequence has a biorthogonal
sequence.
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Consider a minimal family U in % and let {D, },c; be the Distances as in (1).
Then span(U \ u,) in S is a proper closed subspace of ¢, hence there exists a unique
element in span(U \ u,) in ¢ that we denote by g, so that

D, = H”n_CInH'

The function u, — g, is orthogonal to all the elements of the closed span of U \ u,,
in 47, hence to g, itself. Therefore

(Un = Gny tn — Gn) = (tn — Gy tn)-

Hence

Define now 0 0
L unll) —qall
0= o
It then follows that (v,,u,) =1 and v, is orthogonal to all the elements of the

system U \ u,. Thus, the family {v, : n € J} is biorthogonal to the family U in .7#.
Since ¢, € span(U \ u,) in 7, then v, € span(U) in J# . One also has

[Vl l
vl = —.
Dy,
Next, for every n € J define
va(t)
r) .=
ra(t) o

Then clearly the family {r, : n € J} is biorthogonal to the family P = {c,-u,: n€ J}
in 2. Also, since v, € span(U) in s, then r, € span(P) in 7 as well. Moreover,
one has

1
|[7al| = -
Dy, - [cnl
Hence X |
Tnstm)| < . Vumeld.
[Py )| Dy -lenl Don-Jo]
Now, for every fixed n € J consider the series
2|<rn7rm>|~
meJ
We then get
1 1
|<rnarm>|< : .
rr% D"'|Cn| ,,%Dm'|cm|

Condition (3) implies the existence of a positive number M so that

S |(rasrm)| <M forallneJ.
meJ
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Since span(P) in ¢ is itself a Hilbert space and each r, belongs to span(P) in .77, it
then follows by Lemma 1 that {r,} and {p,} are Bessel and Riesz-Fischer sequences
respectively in span(P) in J7.

Moreover, since the family P is complete in Span(P) in ¢, then the lower frame
condition (4) follows from Theorem A. The proof of Theorem 1 is now complete.

3.2. Riesz-Fischer sequences from exact sequences or from uniformly
minimal sequences

Next we state two corollaries of Theorem 1 in case U = {uy},es is not just a
minimal sequence in .7, but it is either exact or uniformly minimal.

Firstly, from Theorem 1, Proposition A, and the definition of a Bessel sequence,
we get the following result.

COROLLARY 1. Let U = {uy}ney be an exact sequence in J, therefore it has
a unique biorthogonal sequence V = {vy}ucy. Let the sequence {cy}necy satisfy (3).
Then the family {cy - un}nes is an exact Riesz-Fischer sequence in ¢ and its unique
biorthogonal family {Z:Z tner is a Bessel sequence in . Thus, there are some positive
constants A and B so that the following lower frame and upper frame conditions hold:

S {focn u)> ZA|fIF Ve A,

neJ

and

S ZIP<BfP Ve o

neJ

Secondly, if U is a uniformly minimal sequence, combining Theorem 1 with (2)
gives the following.

COROLLARY 2. Let U = {uy}ney be a uniformly minimal sequence in 7 and
choose numbers {c, }ney so that

1

neJ H“nH : |Cn|

Then the family P = {cy, - uy }ney is a Riesz-Fischer sequence in Span(P) in .

If in addition inf,ecj||uy|| > 0, then the family P is a Riesz-Fischer sequence in
span(P) in A for any sequence {c,}ney such that {1/c,}ney belongs to the space
1'(J) where

1) = {{an}ng: Y lan| < oo} :

neJ
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4. Examples

We end this paper with some examples involving either exponential systems {e"}
or {e*'}, A, € R, in the classical L?(a,b) spaces.

4.1. Example 1

Consider the exponential system {e/*}*_ where

n—+ Alf n>0
=<0 n=0.
n— % n<0
The system {e'},,c7 is a uniformly minimal sequence in L?(—1, ) (see [7, Theorem
5]) and it is also complete in L?>(—m, ) (see [11, Chapter 3, Section 2, Theorem 4]).
Hence it is exact in L?>(—m, 7).

REMARK 5. We note that by [10] the unique biorthogonal family to an exact ex-
ponential system {e*'},cz in L*(—m, m) is itself exact.

We also point out that the system {e*'},7 is not a Riesz-Fischer sequence: if it
were, it would also be a Bessel sequence (see [5, Proposition 1]). Combined with its
completeness would mean that the system is a Riesz basis for L?(—, 1) but this is not
the case (see [7, Theorem 4]).

On the other hand, it follows by Corollary 2 that the family
{ea-e* Yz where  {1/cptnes €1'(J)

is an exact Riesz-Fischer sequence in L?>(—7, ). In other words, for every sequence
{a,}*.. in the space 1?(Z), there exists a function f € L?(—m, ) so that

T .
f(6)-cp-éMdt=a, nel.
—T

4.2. Example 2

Let {A,};_, be a strictly increasing sequence of positive real numbers, diverging
to infinity, satisfying the following two conditions:

@M X 1/ Ay < oo,

(II) There is some ¢ > 0 so that A,,, 1 — A, > ¢ forall n € N,

Assuming these, and inspired by the celebrated Miintz-Szdsz theorem, Luxem-
burg and Korevaar [6], studied the properties of the exponential system {e’ln’}:’: | in
the spaces L”(a,b) for p > 1 and —eo < a < b < oo. They proved (see [6, relation
(1.9)]) that the distance D, of the function e*’ from the closed span of the remaining
exponential functions in L?(a, b), satisfies the following lower bound: for every € > 0,

there is a positive constant me which does not depend on n € N, so that

Dy > my - e, (5)
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As a result, they characterized (see [6, Theorem 8.2]) the closed span of the system
{eM"}>_ | inthe LP(a,b) spaces as follows.

THEOREM B. Let {A,};>_, satisfy conditions (I) and (II). Let f be in the space
LP(a,b). Then f belongs to the closed span of the system {e*'}*_, in LP(a,b) if and
only if f(x) = g(x) almost everywhere on (a,b), where g is an analytic function in the
half plane Rz < b, admitting the Dirichlet series representation

g(z) = 2 ane’® a, €C, VzeRz<b,
n=1
with the series converging uniformly on compact subsets of the half plane Rz < b.
Combining the above with Theorem 1 yields the following result.
THEOREM 2. Let {A,};7_, be a strictly sequence of positive real numbers diverg-

ing to infinity satisfying conditions (I) and (II). Consider the space L*(a,b) and
choose non-zero constants c, for n =1,2,... such that,

o = 0(e™) where o <b. (6)
Cn

oo .

Then, the system {cy - e’l"’}nzl is a Riesz-Fischer sequence in W({e’l"’};"zl) in
L*(a,b). In fact, for every sequence A = {a,}>_, in the space 1>(N), there exists an
analytic function fy in the half-plane Rz < b, admitting a Dirichlet series representa-
tion of the form

fa (Z) = 2 dAJ,eA"Z, dAﬂ eC,
n=1

converging uniformly on compact subsets of the half-plane Rz < b, such that fa €
L?*(a,b) and

b
/ fa(t)-cn-'di =a, neN. 7
a

Proof. Choose € = (b— ) /4 where o < b asin (6). Then, combining the lower
bound (5) with (6), shows that condition (3) holds. Hence, it follows from Theorem 1
that the system {c, - e* ~_, is a Riesz-Fischer sequence in spﬁ{e’l"’};": L in L%(a,b).
Thus, for every sequence A = {a,}"_, in the space 1?(N), there is a function f; in
span{e™}_ | in L?(a,b) so that (7) is valid. By Theorem B, any function in this
closure extends analytically in the half-plane Rz < b, as a Dirichlet series. [

For example, for a fixed real number o < b and every sequence A = {a,};;_, in
the space [>(N), there exists a Dirichlet series

fA (Z) = 2 dA,nen3za dA,n € (Cv
n=1
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analytic in the half-plane Rz < b, with f4 € L? (a,b), so that

b 3 3
/ fa(t)-€"'dt =a,-e*" neN.
a
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