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CONSTRUCTING RIESZ–FISCHER SEQUENCES FROM
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(Communicated by I. Perić)

Abstract. In this paper we prove that if U = {un} is a minimal sequence in a separable Hilbert
space H , then multiplying each vector un by an appropriate constant cn , yields a family of
functions P := {cn ·un} , such that P is a Riesz-Fischer sequence in H .

If U is a minimal and complete sequence in H , therefore having a unique biorthogonal
sequence V = {vn} in H , then P is a complete Riesz-Fischer sequence in H and its unique
biorthogonal family {vn/cn} is a Bessel sequence in H .

1. Introduction and result

Let H be a separable Hilbert space endowed with an inner product 〈, ·, 〉 and a
norm || · || . Let U := {un}n∈J be a countable family of vectors in H with J ⊂ Z . We
say that

(i) U is complete if the closed span of U in H is equal to H .
(ii) U is minimal if each un does not belong to the closed span of the remaining

vectors of U in H . That is, denoting the distance of un from span(U \ un) in H by

Dn := inf
g∈span(U\un)

||un−g||, (1)

then Dn > 0 for all n ∈ J .

REMARK 1. It is well known that {un}n∈J is a minimal sequence in H if and
only if it has a biorthogonal sequence {vn}n∈J in H , that is

〈vn,um〉 =

{
1, m = n,

0, m �= n.

An exact sequence in H , that is a sequence which is both complete and minimal, has
a unique biorthogonal sequence in H .
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(iii) U is uniformly minimal if

inf
n∈J

Dn

||un|| > 0. (2)

(iv) U is a Bessel sequence if there is a positive constant B so that the following
upper frame condition holds:

∑
n∈J

|〈 f ,un〉|2 � B · || f ||2 ∀ f ∈ H .

REMARK 2. One may consult the books of Young [11], Christensen, [3], and Heil
[4] for further reading on the above topics.

We also say that U = {un}n∈J is a Riesz-Fischer sequence (see [11, Chapter 4,
Section 2]) if the moment problem

〈 f ,un〉 = an n ∈ J

has a solution f ∈ H for every sequence {an}n∈J in the space l2(J) where

l2(J) :=

{
{an}n∈J : ∑

n∈J
|an|2 < ∞

}
.

We point out that (see [11, Chapter 4, Section 2, Theorem 3]) U is a Riesz-Fischer
sequence in H if and only if there exists a positive number A so that for any finite
scalar sequence {βn} we have

A∑ |βn|2 �
∣∣∣∣∑βnun

∣∣∣∣2 ,

a result attributed to Nina Bari.

REMARK 3. It follows from the above inequality and (1) that a Riesz-Fischer
sequence is also a minimal sequence.

Our goal in this article is to show that we can always construct a Riesz-Fischer
sequence from a given minimal sequence U in H , if we multiply each vector un by
an appropriate constant cn . We will prove the following result.

THEOREM 1. Let U = {un}n∈J be a minimal sequence in H and let {Dn}n∈J be
the Distances as in (1) . Choose numbers {cn}n∈J so that

∑
n∈J

1
Dn · |cn| < ∞. (3)

Then the family
P := {pn : pn = cn ·un}n∈J

is a Riesz-Fischer sequence in the closed span of P in H . Moreover, there is some
A > 0 so that the following lower frame condition holds:

A · || f ||2 � ∑
n∈J

|〈 f , pn〉|2 ∀ f ∈ span(P) in H . (4)
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The proof of Theorem 1 is given in Section 3 followed by some corollaries in case
U is an exact sequence or uniformly minimal. The article ends with two examples in
Section 4.

2. Connecting Riesz-Fischer sequences with Bessel sequences

In Casazza et al. [2], we find the following nice connection between Bessel se-
quences and Riesz-Fischer sequences.

PROPOSITION A. [2, Proposition 2.3, (ii)] The Riesz-Fischer sequences in H
are precisely the families for which a biorthogonal Bessel sequence exists.

Combining Proposition A with [3, Proposition 3.5.4] gives the following sufficient
condition so that two biorthogonal families {vn}n∈J and {un}n∈J are Bessel and Riesz-
Fischer sequences respectively. We point out that Lemma 1 plays a crucial role for
proving Theorem 1.

LEMMA 1. Consider two biorthogonal families {un}n∈J and {vn}n∈J in H and
suppose there is some M > 0 so that

∑
n∈J

|〈vn,vm〉| < M for all m ∈ J.

Then {vn}n∈J is a Bessel sequence in H and {un}n∈J is a Riesz-Fischer sequence in
H .

We also note that the lower frame bound (4) follows from Casazza et al. [2,
Theorem 3.2], restated below.

THEOREM A. Suppose that a family U = {un}n∈J in H is a complete Riesz-
Fischer sequence in H . It then satisfies the following lower frame condition: there is
some A > 0 so that

A · || f ||2 � ∑
n∈J

|〈 f ,un〉|2 ∀ f ∈ H .

REMARK 4. Some other interesting results on general sequences in H , includ-
ing Bessel sequences and Riesz-Fischer sequences, classifying them by frame-related
operators are given in [1]. We point out that a sequence which is both Bessel and
Riesz-Fischer is called a Riesz sequence (see Seip [8, p. 138]). It is well known, that
a complete Riesz sequence in H is a Riesz basis for H . A nice characterization of
such bases was given recently by Stoeva [9].

3. Proof of Theorem 1 and some Corollaries

3.1. Proof of Theorem 1

First we establish the known result that a minimal sequence has a biorthogonal
sequence.
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Consider a minimal family U in H and let {Dn}n∈J be the Distances as in (1) .
Then span(U \un) in H is a proper closed subspace of H , hence there exists a unique
element in span(U \ un) in H that we denote by qn , so that

Dn = ||un−qn||.
The function un−qn is orthogonal to all the elements of the closed span of U \un

in H , hence to qn itself. Therefore

〈un−qn,un−qn〉 = 〈un−qn,un〉.
Hence

(Dn)2 = 〈un −qn,un〉.
Define now

vn(t) :=
un(t)−qn(t)

(Dn)2 .

It then follows that 〈vn,un〉 = 1 and vn is orthogonal to all the elements of the
system U \ un . Thus, the family {vn : n ∈ J} is biorthogonal to the family U in H .
Since qn ∈ span(U \ un) in H , then vn ∈ span(U) in H . One also has

||vn|| = 1
Dn

.

Next, for every n ∈ J define

rn(t) :=
vn(t)
cn

.

Then clearly the family {rn : n ∈ J} is biorthogonal to the family P = {cn ·un : n ∈ J}
in H . Also, since vn ∈ span(U) in H , then rn ∈ span(P) in H as well. Moreover,
one has

||rn|| = 1
Dn · |cn| .

Hence

|〈rn,rm〉| � 1
Dn · |cn| ·

1
Dm · |cm| ∀ n,m ∈ J.

Now, for every fixed n ∈ J consider the series

∑
m∈J

|〈rn,rm〉|.

We then get

∑
m∈J

|〈rn,rm〉| < 1
Dn · |cn| · ∑

m∈J

1
Dm · |cm| .

Condition (3) implies the existence of a positive number M so that

∑
m∈J

|〈rn,rm〉| < M for all n ∈ J.



CONSTRUCTING RIESZ-FISCHER SEQUENCES 765

Since span(P) in H is itself a Hilbert space and each rn belongs to span(P) in H , it
then follows by Lemma 1 that {rn} and {pn} are Bessel and Riesz-Fischer sequences
respectively in span(P) in H .

Moreover, since the family P is complete in span(P) in H , then the lower frame
condition (4) follows from Theorem A. The proof of Theorem 1 is now complete.

3.2. Riesz-Fischer sequences from exact sequences or from uniformly
minimal sequences

Next we state two corollaries of Theorem 1 in case U = {un}n∈J is not just a
minimal sequence in H , but it is either exact or uniformly minimal.

Firstly, from Theorem 1, Proposition A, and the definition of a Bessel sequence,
we get the following result.

COROLLARY 1. Let U = {un}n∈J be an exact sequence in H , therefore it has
a unique biorthogonal sequence V = {vn}n∈J . Let the sequence {cn}n∈J satisfy (3) .
Then the family {cn · un}n∈J is an exact Riesz-Fischer sequence in H and its unique
biorthogonal family { vn

cn
}n∈J is a Bessel sequence in H . Thus, there are some positive

constants A and B so that the following lower frame and upper frame conditions hold:

∑
n∈J

|〈 f ,cn ·un〉|2 � A · || f ||2 ∀ f ∈ H ,

and

∑
n∈J

|〈 f , vn

cn
〉|2 � B · || f ||2 ∀ f ∈ H .

Secondly, if U is a uniformly minimal sequence, combining Theorem 1 with (2)
gives the following.

COROLLARY 2. Let U = {un}n∈J be a uniformly minimal sequence in H and
choose numbers {cn}n∈J so that

∑
n∈J

1
||un|| · |cn| < ∞.

Then the family P = {cn ·un}n∈J is a Riesz-Fischer sequence in span(P) in H .
If in addition infn∈J ||un|| > 0 , then the family P is a Riesz-Fischer sequence in

span(P) in H for any sequence {cn}n∈J such that {1/cn}n∈J belongs to the space
l1(J) where

l1(J) :=

{
{an}n∈J : ∑

n∈J

|an| < ∞

}
.
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4. Examples

We end this paper with some examples involving either exponential systems {eiλnt}
or {eλnt} , λn ∈ R , in the classical L2(a,b) spaces.

4.1. Example 1

Consider the exponential system {eiλnt}∞−∞ where

λn =

⎧⎪⎨
⎪⎩

n+ 1
4 n > 0

0 n = 0

n− 1
4 n < 0

.

The system {eiλnt}n∈Z is a uniformly minimal sequence in L2(−π ,π) (see [7, Theorem
5]) and it is also complete in L2(−π ,π) (see [11, Chapter 3, Section 2, Theorem 4]).
Hence it is exact in L2(−π ,π) .

REMARK 5. We note that by [10] the unique biorthogonal family to an exact ex-
ponential system {eiλnt}n∈Z in L2(−π ,π) is itself exact.

We also point out that the system {eiλnt}n∈Z is not a Riesz-Fischer sequence: if it
were, it would also be a Bessel sequence (see [5, Proposition 1]). Combined with its
completeness would mean that the system is a Riesz basis for L2(−π ,π) but this is not
the case (see [7, Theorem 4]).

On the other hand, it follows by Corollary 2 that the family

{cn · eiλnt}nnZ where {1/cn}n∈J ∈ l1(J)

is an exact Riesz-Fischer sequence in L2(−π ,π) . In other words, for every sequence
{an}∞−∞ in the space l2(Z) , there exists a function f ∈ L2(−π ,π) so that∫ π

−π
f (t) · cn · eiλnt dt = an n ∈ Z.

4.2. Example 2

Let {λn}∞
n=1 be a strictly increasing sequence of positive real numbers, diverging

to infinity, satisfying the following two conditions:
(I) ∑∞

n=1 1/λn < ∞ .
(II) There is some c > 0 so that λn+1−λn > c for all n ∈ N .
Assuming these, and inspired by the celebrated Müntz-Szász theorem, Luxem-

burg and Korevaar [6], studied the properties of the exponential system {eλnt}∞
n=1 in

the spaces Lp(a,b) for p � 1 and −∞ < a < b < ∞ . They proved (see [6, relation
(1.9)]) that the distance Dn of the function eλnt from the closed span of the remaining
exponential functions in L2(a,b) , satisfies the following lower bound: for every ε > 0,
there is a positive constant mε which does not depend on n ∈ N , so that

Dn � mε · e(b−ε)λn . (5)
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As a result, they characterized (see [6, Theorem 8.2]) the closed span of the system
{eλnt}∞

n=1 in the Lp(a,b) spaces as follows.

THEOREM B. Let {λn}∞
n=1 satisfy conditions (I) and (II) . Let f be in the space

Lp(a,b) . Then f belongs to the closed span of the system {eλnt}∞
n=1 in Lp(a,b) if and

only if f (x) = g(x) almost everywhere on (a,b) , where g is an analytic function in the
half plane ℜz < b, admitting the Dirichlet series representation

g(z) =
∞

∑
n=1

ane
λnz an ∈ C, ∀ z ∈ ℜz < b,

with the series converging uniformly on compact subsets of the half plane ℜz < b.

Combining the above with Theorem 1 yields the following result.

THEOREM 2. Let {λn}∞
n=1 be a strictly sequence of positive real numbers diverg-

ing to infinity satisfying conditions (I) and (II) . Consider the space L2(a,b) and
choose non-zero constants cn for n = 1,2, . . . such that,

1
|cn| = O(eαλn) where α < b. (6)

Then, the system {cn · eλnt}∞
n=1 is a Riesz-Fischer sequence in span({eλnt}∞

n=1) in
L2(a,b) . In fact, for every sequence A = {an}∞

n=1 in the space l2(N) , there exists an
analytic function fA in the half-plane ℜz < b, admitting a Dirichlet series representa-
tion of the form

fA(z) =
∞

∑
n=1

dA,ne
λnz, dA,n ∈ C,

converging uniformly on compact subsets of the half-plane ℜz < b, such that fA ∈
L2(a,b) and ∫ b

a
fA(t) · cn · eλnt dt = an n ∈ N. (7)

Proof. Choose ε = (b−α)/4 where α < b as in (6) . Then, combining the lower
bound (5) with (6) , shows that condition (3) holds. Hence, it follows from Theorem 1
that the system {cn ·eλnt}∞

n=1 is a Riesz-Fischer sequence in span{eλnt}∞
n=1 in L2(a,b) .

Thus, for every sequence A = {an}∞
n=1 in the space l2(N) , there is a function fA in

span{eλnt}∞
n=1 in L2(a,b) so that (7) is valid. By Theorem B, any function in this

closure extends analytically in the half-plane ℜz < b , as a Dirichlet series. �

For example, for a fixed real number α < b and every sequence A = {an}∞
n=1 in

the space l2(N) , there exists a Dirichlet series

fA(z) =
∞

∑
n=1

dA,ne
n3z, dA,n ∈ C,



768 E. ZIKKOS

analytic in the half-plane ℜz < b , with fA ∈ L2(a,b) , so that

∫ b

a
fA(t) · en3t dt = an · eα ·n3

n ∈ N.
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