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ASYMPTOTICS FOR GENERATING FUNCTIONS
OF THE FUSS-CATALAN NUMBERS

ASSIS AZEVEDO* AND DAVIDE AZEVEDO

(Communicated by S. Varosanec)

Abstract. We consider a certain class of polynomials with coefficients in Zj;, all of which admit
aunique zero. We prove that the zero of each of those can be given by a (multiple) sum involving
the coefficients and a vectorial generalization of the Fuss-Catalan numbers.

We also consider the sequence of the partial sums of the generating function of the d -Fuss-
Catalan numbers. Using the holonomy of this sequence, we study its asymptotic behaviour. The
main difference from the known case d = 2 is, in that one, we have a “closed” expression for
the generating function.

1. Introduction

The Catalan numbers were studied by Euler, in the context of enumerating trian-
gulations of regular polygons [5]. Their study by the Mongolian mathematician Antu
Ming in the eighteenth century was announced in 1988 by Luo in [10] and further
discussed by Larcombe in [9].

These numbers have multiple interpretations and applications, several of which
can be found, for example, in [18], which also covers different generalizations of them.
Throughout this paper we focus on a couple of these, the d-Fuss-Catalan numbers, for
d € N\ {1}, whose element of order n, Cy(n), is defined by

Caln) = m (‘2") (M

and a vectorial generalization of the Catalan numbers, which we will define in (4).
Cy(n), introduced by Fuss in [6], counts, for example, the number of partitions of a
n(d —1)+2-goninto d + 1-gons and the number of d-ary trees with n internal nodes
(see [7]). Recall that the Catalan numbers are the 2-Fuss-Catalan numbers.

The first problem we are interested in is finding the zeros of some polynomials in
Zu , the ring of the integers modulo M € N. Consider a polynomial Q = Q(x) with
coefficients in Zy; of the form

agx! + -4+ ax+ap, where g is nilpotent for i > 2 and a; invertible.  (2)
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The Chinese remainder theorem and the Hensel lemma guarantee that there exists
exactly one zero of Q in Zy . In this work, we will find a polynomial P in d+ 1
variables such that the zero of any polynomial as in (2) is equal to P(ao, al_1 ,a2, ..., dq).
The coefficients of P are essentially vector generalized Catalan numbers, which are d -
Fuss-Catalan numbers if ¢; =0 for 1 <i<d.

The second problem was motivated by sequences presented in OEIS, The On-Line
Encyclopedia of Integer Sequences [17]. For d € N\ {1}, r € R\ {0}, and n € N,
consider the sequence

X(d,r,n) = Z Cy(k)r*. (3)
k=0

In connection with the first problem, we will see that, if p is a prime number and
r amultiple of p then, X(d,r,n) is the zero, in Z .1 of the polynomial e —x+1.

OEIS, in the sequence https://oeis.org/A112696 and onwards, presents re-
currence formulas for (X (2,r, n))n ¢y for some values of r, conjecturing them for some
others. In this work, we obtain recurrence formulas for all values of d and r.

We also study the asymptotic behaviour of this sequence, when it diverges. For
d =2, this was done by Mattarei in [ 1 1], using, among other instruments, the generating
function of the Catalan numbers F(x) = 1_27@ . Elezovi¢, in [3, 4] gives an efficient
algorithm for recursive calculations of asymptotic expansions of several sums including
X (2,1,n). If d > 2 we do not have a nice expression for Fy(x), apart from the equality
Fy(x) = 14+ xFy(x)?.

We use some well-known results for holonomic sequences such as the Poincaré-
Perron Theorem in [13, 12], and Corollary 1.6 of [8] to prove that

1 Vd  Ald)r 03
VER (@ 1) Aldyr—1 AW

X(d,r.n) ~

where A(d) = #, and A(d)|r| > 1.

2. Preliminaries

The Catalan numbers have a lot of generalizations. In this work we are interested
in the d-Fuss-Catalan numbers, defined in (1), and the natural vectorial generalization,
C;(i1), seen, for example, in [2] and a more general case in [14]. Cy(i7) is defined by

1 Vi 1 Veni+1
Gi)=——=——| 5 |=== " “)
o) (V—l)-ﬁ+l<n) v-n+l< it )

where, given s € N, 7i € Nj and vV € N*, -7 denotes the inner product of 7i and V' and
(F7)!
nylong (Vi—(ny+-+ng))!
Cy(i1) is, for example, the number of ways that V-7 people can be seated at a
(round) table in such a way that, for all i = 1,...,s, there exist n; groups of v; people

giving a v;-hand shake with no crossings between different groups [2]. Of course, this

(V'ﬁﬁ) is the multinomial coefficient
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Figure 1: This is one of the 92810 possible configuration for 18 people to be seated around a
table, as referred to in the text for it = (3,4) and Vv = (2,3).

is the same as the number of subdivisions of V-7 points on a circumference in n; sets
of v; point groups without crossing.

C;(i) is also is the number of polygonal dissections of an (¥— 1) -7i 4 2-gon into
ny +---+ng polygons with n; of them having v;+ 1 edges, for i =1,...,s. This can
be found, for example, in [15].

Analogously with what happens with the Catalan numbers [16] and Fuss-Catalan
numbers [6], these generalized Catalan numbers satisfy a recurrence relation that is an
easy consequence of a result of Rhoades in [14] stating, in particular, that, if 7 € Ng,
ve N, meN then

. . m m+v-r
>, GF) - Glfn) = ——== q< - ) S)
7 7 _z m-+v-r r
Fi+-+Fp=r

LEMMA 1. For se N, ii € Nj and vV € N* we have

viie N\ {0} Gi(it) =Y, > GG ! (6)
=1 \ Pty =ii—;

where &; is the unit-vector with 1 in its " coordinate.

Proof. For i =1,...,s such that n; > 0, using (5) for m = v; and 7 =7 —¢&;, we
obtain

. . Vi vi+V-(H—¢;
Z Cﬁ(rl)'“cv(rv,-):_ﬂilﬂﬂ_<l ﬂ(gl l))

?1+-~-+?vi:ﬁ7§i

TAs 7i # 0 the sum is never empty, although the second summation is, if 7; =0.
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and then

S - - v-i)!

Y Y GH)-Gy) = ( )4

s P -y ((\7— 0)-7i+ 1)!
completing the proof. [J

Recall that a sequence (a,)nen is holonomic of order s (s € N) and degree ¢
(t € Np) if there exist pg,p1,...,ps polynomials in n such that py never vanishes (to
simplify), the maximum of their degrees is ¢ and

VneN

s
n>k¢%®%=2m@%4.
i=1

It is well known (the proof can be made, for example, using the Stirling approxi-

mation) that
=Y ()
T - \@=17 1) "

In the article [1] one can find good approximations of binomials of the form (‘ff) .

(1IN

(7

3. The zero of polynomials of particular kind

As it was said in the Introduction, any polynomial of the form (2) has a unique
zero in Zyy. This is a consequence of the following result, which is just a version of
Hensel’s Lemma applied to this kind of polynomials, and of the Chinese Remainder
Theorem.

LEMMA 2. Let p be a prime number and Q = Q(x) a polynomial of the form
agx? + -+ ayx+ag, where p divides a; for i >?2 and p do not divide a;. Then, for
all k € N, the congruence Q(x) =0 mod p* has a unique solution.

Proof. If k=1 then the result is trivial as Q(x) =0 mod p is equivalent to a;x+
ap =0 mod p and a; is invertible modulo p. For m > 1, if x,, is the unique solution
of Q(x) =0 mod p™, then all solutions of Q(x) =0 mod p"*! are of the form x =
Xm+sp™, with s € Z. As p divides a; for i >2 and p™ divides Q(xy,),

0(x)=0 modp™™ = Q(xy)+ap™s=0 modp™"!
& M—i—alszo mod p
pm
and the conclusion follows as this last congruence has only one solution modulo p. [

We now present an expression for the zero of polynomials of the form (2), for
M € N. All the operations in this section are made in the ring Z; and it is clear that all
the “infinite” sums referred to here only have a finite number of non-zero terms.
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Let d > 2 and V= (vy,...,v4) € N~ Consider, for X = (xa,...,x;) whose
coordinates are all nilpotent in Zj,, the (finite) sum in Zy,

@) = Y Gi)x5? X, where ii = (ny,...,ng). (8)
AeNg !

Notice that y;(X) is always invertible as it is a sum of 1 with a nilpotent element.
LEMMA 3. With the above notation,

Vi(®) = 1+ x0y5(X)"2 + - - xqv5(%) . ©)

Proof. Tt is easy to see by comparing the terms of the sums that, for i =2,...,m,

Xy =Y Y, Gi(f)---Go(Ry) | X
a1 \ Pt =
— 2 2 Cy(F1) -~ Cy(y,) x;Z...de

AENG—L =1 \ it 47, =1
and then, denoting by z the right side of (9),

d
=14 > > Ci(F)--- Gy(7y) | X7+

=2 \feNd 21\t 7y =i =8

d
=1+ 2 > > Ci(F) -+ Gy(7y) | X2 X

AENG I\{0} \ =271+ 47y, =1—;

and the conclusion follows using (6) and the fact that C5(0) =1. O

We are now in the conditions to show an (algebraic) expression for the zero of a
polynomial as in (2), whose existence and uniqueness are guaranteed by Lemma 2 and
the Chinese Remainder Theorem.

THEOREM 1. Let M € N and P(x) = agx® + --- +ajx+ag be a polynomial in
Zy as in (2). Then the unique zero x of the polynomial is equal to the (finite) sum

Xo = —aflao 2 (_1)v'ﬁcv(ﬁ)a(()V7I)Iﬁalﬂmagz . '03‘5 (10)
fi:(nz,...,nd)EN571

where V= (2,3,....d) and 1= (1,...,1).
Moreover xq is invertible if and only if aq is invertible.
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Proof. We find a solution x( of the form x;y, where y = y3(X) is defined in (8)
for x,,...,x4 nilpotents. Using equality (9),

d
P(x1y) =0<= » aixxiy'+aixiy+ap=0
i=2
d . .
= Eaix’ly’ +ax (1 +xay 4 xdyd) +ap=0
i=2

d
— Z(a,-x’l + ayx1x;)y' +ayxy +ap =0.
i=2

So, if we choose

X1 = —apa;
xi=—aia; X = (=Viay la ', i>2,
we obtain the referred solution.

The last observation is an immediate consequence of the fact that y is invertible,
as mentioned before. [

For example, the zero of the polynomial azx? + ajx + ag is, with the previous
notation, equal to the sum

d—1)k+1 —dk—
x0=— ¥ (~1)*Cakjag" " ar*dl.
keNy

In particular, if p is a prime number and » a multiple of p then, for n € Np,
> Calk)r*
k=0

is a solution of the congruence rx¢ —x+1 mod p"*!.
The rate of growth, in n, of this sum, for all r # 0, follows from Theorem 3.

REMARK 1. Suppose we have a polynomial Q(x) = Y% a;x’ in Zy such that a;
are nilpotent for i < d —2, and a4 and a, are invertible, which can be seen as a kind
of reverse form of (2).

QO may have more than one solution, as we can see, for example, if Q(x) =
X 4+x2+3x+9 and M = 27, but only one is invertible. To prove this, consider the
polynomial Q*(y) = ¥4 ,a;y?~", of the form (2), noticing that y/Q(y~!) = Q*(), for
invertible y.

4. Holonomic sequences related to Fuss-Catalan numbers

For d e N\ {1}, r e R\ {0} and n € N, consider X(d,r,n) defined in (3). We
intend to obtain a recurrence relation for the sequence (X (d,r,n)) generalizing
some cases referred to in OEIS, as mentioned in the Introduction.

neN?
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For n,k € N, we let (n); denote the falling factorial Hf:ol (n—i) (= 2 1)
Notice that (n); is a polynomial in n of degree k.

THEOREM 2. Let d € N\ {1}, and r € R\ {0}. Then (X(d,r,n)),_y is a holo-
nomic sequence of order 2 and degree d — 1. More precisely, for po(n) = ((d —1)n+
l)d_l, p2(n) = d(dn— l)d_l and py = po+rpa, we have

Vne N\ {1} po(n)X(d,r,n)=pi(n)X(d,r,n—1)—rpa(n)X(d,r,n—2).
Proof. As
p1(n)X(d, rn—l)—rpz( )X (d, rn—2)

= po(n ECd )+ pa(n sz k)t — pa(n) ECd k)r<t

ZCd )+ pa(n)Cy(n— 1)7"

= po(n)X (d,r,n) po(n)Ca(n)r" + pa(n)Cy(n —1)r",

we only need to prove that po(n)Cy(n) = p2(n)Cy(n—1). In fact,
Caln) (= 1)(n— 1)+ 1))
Can=1)  ((d—Dn+1)("" )
(d=1)(n—=1)+1) (n—=1((d—1)(n—1))! (dn)!

)
(d— )n+1) n'((d Dn)! (d(n—1))!
!

n((d— 1)n—|—1)d_1
N d(dn— 1)£171
((d=1n+1), |’

which concludes the proof. [

The following observation will be useful in the next section.

REMARK 2. Notice that a constant sequence satisfies the recurrence referred to
in the previous theorem. As a consequence, if (Z,), is a non-constant solution of the
recurrence, then ((Z,)n, (1)) is a basis of the space of solutions of the recurrence.

Notice also that the characteristic polynomial of the recurrence, po(n)x*> — py(n)x—

rp2(n), has the zeros 1 and 2 2(( )) and that

d
lim rpa(n) _ rd -
n— po(n)  (d—1)4"
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5. Asymptotics for generating functions of the Fuss-Catalan numbers

We are now in conditions to establish the asymptotic behaviour of the sequence

(X(d,r,n)),, when @ Irltid r > 1 which, using (7), is when it diverges.

We use the following asymptotic behaviour: if a,b € Z, with a # 0, then

o ntl C(n+2+2)  T(n) , 5.0

. _on - b — N a’l a
jl:[2(a]+b)—a Jl;[Z(]—ka) a roLh) 1H(z_’_g)an (11)

as ['(x+ o) ~ T'(x)x* when x — oo,

REMARK 3. In order to apply Corollary 1.6 of [8] in the next theorem we draw
the attention to the fact that, if p and ¢ are two polynomials of the same degree s and
q is never zero in N, then
p(n+1) p(n)

—=| <o,

(n+1) q(n)

Il

as the degree of the polynomial, in n, p(n+ 1)q(n) — p(n)q(n+1) is at most 2s — 2.

THEOREM 3. With the above notation, if A(d) = —%~— and A(d)|r] > 1,

d
(d- 1>
1 Vd  Ad)r

V2R (d—1)3 Ald)r—1 Al

X(d,rn) ~

Proof. By Remark 2, the zeros of the characteristic polynomial of the recurrence
equation converge, when n tends to infinity, to different numbers, namely A(d)r and
1. Therefore, and using Remark 3 for p = p;, i = 1,2 and g = pgy, we are in the

conditions to apply Corollary 1.6 of [8]. In particular, there exists a solution (Y,), of

n+1 rp2(J)
J=2 po(j) *

the recurrence equation such that ¥, ~ [T’ Notice that, using (11), we have

n+l d—1n+1 ..
rp2(J rd(dj—1)4_ . dj—i
= (rd _
Hzpo< =i, =" T G5

oy ‘lr(“d__i)( LY i
L re-4) \d-1

d (d—1)n 2 11—~(2_,’_d i)
— r}’l " 2 h = -
=kyr'd (d—l) n- 2, whereky H ra-1)

i=1 —d
d? "
=k ((d—l)dl ’) "

d
As {(Y,)n,(1),) is a basis of the space of solutions of the recurrence, there exist
a,b € R such that, letting X,, denote X (d,r,n), (Xu)n = a(¥y)u +b(1), and then

(1IN

Xy ~ a¥y ~ akg(A(d)r)"'n 3. (12)
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To calculate ak,, using (7), we have

and,

X=X, 1 Cyln)r" 1 Vd
= —
Y, Y, no k21 (d—l)%

on the other hand, using (12),

Xn_anlen_Ynfl_>a 1— 1
Y, Y, n ’

from where we obtain

akd = 3

concluding the proof. [

to in the above proof is equal to T

REMARK 4. Althoughitis notrelevant, we would like to point out that &, referred
1 (L)‘”%
d—1
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