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Abstract. We consider a certain class of polynomials with coefficients in ZM , all of which admit
a unique zero. We prove that the zero of each of those can be given by a (multiple) sum involving
the coefficients and a vectorial generalization of the Fuss-Catalan numbers.

We also consider the sequence of the partial sums of the generating function of the d -Fuss-
Catalan numbers. Using the holonomy of this sequence, we study its asymptotic behaviour. The
main difference from the known case d = 2 is, in that one, we have a “closed” expression for
the generating function.

1. Introduction

The Catalan numbers were studied by Euler, in the context of enumerating trian-
gulations of regular polygons [5]. Their study by the Mongolian mathematician Antu
Ming in the eighteenth century was announced in 1988 by Luo in [10] and further
discussed by Larcombe in [9].

These numbers have multiple interpretations and applications, several of which
can be found, for example, in [18], which also covers different generalizations of them.
Throughout this paper we focus on a couple of these, the d -Fuss-Catalan numbers, for
d ∈ N\ {1} , whose element of order n , Cd(n) , is defined by

Cd(n) =
1

(d−1)n+1

(
dn
n

)
, (1)

and a vectorial generalization of the Catalan numbers, which we will define in (4).
Cd(n) , introduced by Fuss in [6], counts, for example, the number of partitions of a
n(d−1)+2-gon into d +1-gons and the number of d -ary trees with n internal nodes
(see [7]). Recall that the Catalan numbers are the 2-Fuss-Catalan numbers.

The first problem we are interested in is finding the zeros of some polynomials in
ZM , the ring of the integers modulo M ∈ N . Consider a polynomial Q = Q(x) with
coefficients in ZM of the form

adx
d + · · ·+a1x+a0, where ai is nilpotent for i � 2 and a1 invertible. (2)
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The Chinese remainder theorem and the Hensel lemma guarantee that there exists
exactly one zero of Q in ZM . In this work, we will find a polynomial P in d + 1
variables such that the zero of any polynomial as in (2) is equal to P(a0,a

−1
1 ,a2, . . . ,ad) .

The coefficients of P are essentially vector generalized Catalan numbers, which are d -
Fuss-Catalan numbers if ai = 0 for 1 < i < d .

The second problem was motivated by sequences presented in OEIS, The On-Line
Encyclopedia of Integer Sequences [17]. For d ∈ N \ {1} , r ∈ R \ {0} , and n ∈ N ,
consider the sequence

X(d,r,n) =
n

∑
k=0

Cd(k)rk. (3)

In connection with the first problem, we will see that, if p is a prime number and
r a multiple of p then, X(d,r,n) is the zero, in Zpn+1 of the polynomial rxd − x+1.

OEIS, in the sequence https://oeis.org/A112696 and onwards, presents re-
currence formulas for

(
X(2,r,n)

)
n∈N

for some values of r , conjecturing them for some
others. In this work, we obtain recurrence formulas for all values of d and r .

We also study the asymptotic behaviour of this sequence, when it diverges. For
d = 2, this was done by Mattarei in [11], using, among other instruments, the generating

function of the Catalan numbers F2(x) = 1−√
1−4x

2x . Elezović, in [3, 4] gives an efficient
algorithm for recursive calculations of asymptotic expansions of several sums including
X(2,1,n) . If d > 2 we do not have a nice expression for Fd(x) , apart from the equality
Fd(x) = 1+ xFd(x)d .

We use some well-known results for holonomic sequences such as the Poincaré-
Perron Theorem in [13, 12], and Corollary 1.6 of [8] to prove that

X(d,r,n) ∼ 1√
2π

√
d

(d−1)
3
2

A(d)r
A(d)r−1

(A(d)r)n n−
3
2 ,

where A(d) = dd

(d−1)d−1 , and A(d)|r| > 1.

2. Preliminaries

The Catalan numbers have a lot of generalizations. In this work we are interested
in the d -Fuss-Catalan numbers, defined in (1), and the natural vectorial generalization,
C�v(�n) , seen, for example, in [2] and a more general case in [14]. C�v(�n) is defined by

C�v(�n) =
1

(�v−�1) ·�n+1

(
�v ·�n
�n

)
=

1
�v ·�n+1

(
�v ·�n+1

�n

)
(4)

where, given s ∈ N , �n ∈ N
s
0 and �v ∈ N

s , �v ·�n denotes the inner product of �n and �v and(�v·�n
�n

)
is the multinomial coefficient (�v·�n)!

n1!···ns!(�v·�n−(n1+···+ns))!
.

C�v(�n) is, for example, the number of ways that �v ·�n people can be seated at a
(round) table in such a way that, for all i = 1, . . . ,s , there exist ni groups of vi people
giving a vi -hand shake with no crossings between different groups [2]. Of course, this
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Figure 1: This is one of the 92810 possible configuration for 18 people to be seated around a
table, as referred to in the text for �n = (3,4) and �v = (2,3) .

is the same as the number of subdivisions of �v ·�n points on a circumference in ni sets
of vi point groups without crossing.

C�v(�n) is also is the number of polygonal dissections of an (�v−�1) ·�n+2-gon into
n1 + · · ·+ ns polygons with ni of them having vi + 1 edges, for i = 1, . . . ,s . This can
be found, for example, in [15].

Analogously with what happens with the Catalan numbers [16] and Fuss-Catalan
numbers [6], these generalized Catalan numbers satisfy a recurrence relation that is an
easy consequence of a result of Rhoades in [14] stating, in particular, that, if �r ∈ N

s
0 ,

�v ∈ N
s , m ∈ N then

∑
�r1+···+�rm=�r

C�v(�r1) · · ·C�v(�rm) =
m

m+�v ·�r
(

m+�v ·�r
�r

)
. (5)

LEMMA 1. For s ∈ N , �n ∈ N
s
0 and �v ∈ N

s we have

∀�n ∈ N
s
0 \ {�0} C�v(�n) =

s

∑
i=1

⎛
⎝ ∑

�r1+···+�rvi=�n−�ei

C�v(�r1) · · ·C�v(�rvi)

⎞
⎠ 1 (6)

where �ei is the unit-vector with 1 in its ith coordinate.

Proof. For i = 1, . . . ,s such that ni > 0, using (5) for m = vi and �r =�n−�ei , we
obtain

∑
�r1+···+�rvi=�n−�ei

C�v(�r1) · · ·C�v(�rvi) =
vi

vi +�v · (�n−�ei)

(
vi +�v · (�n−�ei)

�n−�ei

)

=
vi

�v ·�n
(

�v ·�n
�n−�ei

)

=
(�v ·�n)!

(�v ·�n)n1! · · ·ns!
(
(�v−�1) ·�n+1

)
!
vini

1As �n �=�0 the sum is never empty, although the second summation is, if ni = 0 .
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and then

s

∑
i=1

∑
�r1+···+�rvi=�n−�ei

C�v(�r1) · · ·C�v(�rvi) =
(�v ·�n)!

n1! · · ·ns!
(
(�v−�1) ·�n+1

)
!
,

completing the proof. �
Recall that a sequence (an)n∈N is holonomic of order s (s ∈ N) and degree t

(t ∈ N0 ) if there exist p0, p1, . . . , ps polynomials in n such that p0 never vanishes (to
simplify), the maximum of their degrees is t and

∀n ∈ N

[
n > s ⇒ p0(n)an =

s

∑
i=1

pi(n)an−s

]
.

It is well known (the proof can be made, for example, using the Stirling approxi-
mation) that

Cd(n) ∼ 1√
2π

√
d

(d−1)
3
2

(
dd

(d−1)d−1

)n

n−
3
2 . (7)

In the article [1] one can find good approximations of binomials of the form
(dn

n

)
.

3. The zero of polynomials of particular kind

As it was said in the Introduction, any polynomial of the form (2) has a unique
zero in ZM . This is a consequence of the following result, which is just a version of
Hensel’s Lemma applied to this kind of polynomials, and of the Chinese Remainder
Theorem.

LEMMA 2. Let p be a prime number and Q = Q(x) a polynomial of the form
adxd + · · ·+a1x+a0 , where p divides ai for i � 2 and p do not divide a1 . Then, for
all k ∈ N , the congruence Q(x) ≡ 0 mod pk has a unique solution.

Proof. If k = 1 then the result is trivial as Q(x)≡ 0 mod p is equivalent to a1x+
a0 ≡ 0 mod p and a1 is invertible modulo p . For m � 1, if xm is the unique solution
of Q(x) ≡ 0 mod pm , then all solutions of Q(x) ≡ 0 mod pm+1 are of the form x =
xm + spm , with s ∈ Z . As p divides ai for i � 2 and pm divides Q(xm) ,

Q(x) ≡ 0 mod pm+1 ⇔ Q(xm)+a1pms ≡ 0 mod pm+1

⇔ Q(xm)
pm +a1s ≡ 0 mod p

and the conclusion follows as this last congruence has only one solution modulo p . �
We now present an expression for the zero of polynomials of the form (2), for

M ∈ N . All the operations in this section are made in the ring ZM and it is clear that all
the “infinite” sums referred to here only have a finite number of non-zero terms.
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Let d � 2 and �v = (v2, . . . ,vd) ∈ N
d−1 . Consider, for �x = (x2, . . . ,xd) whose

coordinates are all nilpotent in ZM , the (finite) sum in ZM

y�v(�x) = ∑
�n∈N

d−1
0

C�v(�n)xn2
2 · · ·xnd

d , where �n = (n2, . . . ,nd) . (8)

Notice that y�v(�x) is always invertible as it is a sum of 1 with a nilpotent element.

LEMMA 3. With the above notation,

y�v(�x) = 1+ x2y�v(�x)v2 + · · ·xdy�v(�x)vd . (9)

Proof. It is easy to see by comparing the terms of the sums that, for i = 2, . . . ,m ,

xi · y�v(�x)vi = ∑
�n∈N

d−1
0

⎛
⎝ ∑

�r1+···+�rvi=�n

C�v(�r1) · · ·C�v(�rvi)

⎞
⎠xn2

2 · · ·xnd
d · xi

= ∑
�n∈N

d−1
0 ,ni�1

⎛
⎝ ∑

�r1+···+�rvi=�n−�ei

C�v(�r1) · · ·C�v(�rvi)

⎞
⎠xn2

2 · · ·xnd
d

and then, denoting by z the right side of (9),

z = 1+
d

∑
i=2

⎛
⎝ ∑

�n∈N
d−1
0 ,ni�1

⎛
⎝ ∑

�r1+···+�rvi=�n−�ei

C�v(�r1) · · ·C�v(�rvi)

⎞
⎠xn2

2 · · · xnd
d

⎞
⎠

= 1+ ∑
�n∈N

d−1
0 \{�0}

⎛
⎝ d

∑
i=2

∑
�r1+···+�rvi=�n−�ei

C�v(�r1) · · ·C�v(�rvi)

⎞
⎠xn2

2 · · · xnd
d

and the conclusion follows using (6) and the fact that C�v(�0) = 1. �

We are now in the conditions to show an (algebraic) expression for the zero of a
polynomial as in (2), whose existence and uniqueness are guaranteed by Lemma 2 and
the Chinese Remainder Theorem.

THEOREM 1. Let M ∈ N and P(x) = adxd + · · ·+ a1x + a0 be a polynomial in
ZM as in (2). Then the unique zero x of the polynomial is equal to the (finite) sum

x0 = −a−1
1 a0 ∑

�n=(n2,...,nd)∈N
d−1
0

(−1)�v·�nC�v(�n)a(�v−�1)·�n
0 a−�v·�n

1 an2
2 · · ·and

d , (10)

where �v = (2,3, . . . ,d) and �1 = (1, . . . ,1) .
Moreover x0 is invertible if and only if a0 is invertible.
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Proof. We find a solution x0 of the form x1y , where y = y�v(�x) is defined in (8)
for x2, . . . ,xd nilpotents. Using equality (9),

P(x1y) = 0 ⇐⇒
d

∑
i=2

aix
i
1y

i +a1x1y+a0 = 0

⇐⇒
d

∑
i=2

aix
i
1y

i +a1x1(1+ x2y
2 + · · · xdy

d)+a0 = 0

⇐⇒
d

∑
i=2

(aix
i
1 +a1x1xi)yi +a1x1 +a0 = 0.

So, if we choose{
x1 = −a0a

−1
1

xi = −aia
−1
1 xi−1

1 = (−1)iai−1
0 a−i

1 ai, i � 2,

we obtain the referred solution.
The last observation is an immediate consequence of the fact that y is invertible,

as mentioned before. �
For example, the zero of the polynomial adxd + a1x + a0 is, with the previous

notation, equal to the sum

x0 = − ∑
k∈N0

(−1)dkCd(k)a
(d−1)k+1
0 a−dk−1

1 ak
d .

In particular, if p is a prime number and r a multiple of p then, for n ∈ N0 ,

n

∑
k=0

Cd(k)rk

is a solution of the congruence rxd − x+1 mod pn+1 .
The rate of growth, in n , of this sum, for all r �= 0, follows from Theorem 3.

REMARK 1. Suppose we have a polynomial Q(x) = ∑d
i=0 aixi in ZM such that ai

are nilpotent for i � d−2, and ad−1 and ad are invertible, which can be seen as a kind
of reverse form of (2).

Q may have more than one solution, as we can see, for example, if Q(x) =
x3 + x2 + 3x+ 9 and M = 27, but only one is invertible. To prove this, consider the
polynomial Q∗(y) = ∑d

i=0 aiyd−i , of the form (2), noticing that ydQ(y−1) = Q∗(y) , for
invertible y .

4. Holonomic sequences related to Fuss-Catalan numbers

For d ∈ N \ {1} , r ∈ R \ {0} and n ∈ N , consider X(d,r,n) defined in (3). We
intend to obtain a recurrence relation for the sequence

(
X(d,r,n)

)
n∈N

, generalizing
some cases referred to in OEIS, as mentioned in the Introduction.
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For n,k ∈ N , we let (n)k denote the falling factorial ∏k−1
i=0 (n− i) (= n!

(n−k)! ).

Notice that (n)k is a polynomial in n of degree k .

THEOREM 2. Let d ∈ N\ {1} , and r ∈ R\ {0} . Then
(
X(d,r,n)

)
n∈N

is a holo-
nomic sequence of order 2 and degree d−1 . More precisely, for p0(n) =

(
(d−1)n+

1
)
d−1 , p2(n) = d

(
dn−1

)
d−1 and p1 = p0 + rp2 , we have

∀n ∈ N\ {1} p0(n)X(d,r,n) = p1(n)X(d,r,n−1)− rp2(n)X(d,r,n−2).

Proof. As

p1(n)X(d,r,n−1)− rp2(n)X(d,r,n−2)

= p0(n)
n−1

∑
k=0

Cd(k)rk + p2(n)
n−1

∑
k=0

Cd(k)rk+1 − p2(n)
n−2

∑
k=0

Cd(k)rk+1

= p0(n)
n−1

∑
k=0

Cd(k)rk + p2(n)Cd(n−1)rn

= p0(n)X(d,r,n)− p0(n)Cd(n)rn + p2(n)Cd(n−1)rn,

we only need to prove that p0(n)Cd(n) = p2(n)Cd(n−1) . In fact,

Cd(n)
Cd(n−1)

=
((d−1)(n−1)+1)

(dn
n

)
((d−1)n+1)

(d(n−1)
n−1

)
=

((d−1)(n−1)+1)
((d−1)n+1)

(n−1)!
(
(d−1)(n−1)

)
!
(
dn
)
!

n!
(
(d−1)n

)
!
(
d(n−1)

)
!

=

(
(d−1)(n−1)+1

)
!
(
dn
)
!

n
(
(d−1)n+1

)
!
(
d(n−1)

)
!

=

(
dn
)
d

n
(
(d−1)n+1

)
d−1

=
d
(
dn−1

)
d−1(

(d−1)n+1
)
d−1

,

which concludes the proof. �
The following observation will be useful in the next section.

REMARK 2. Notice that a constant sequence satisfies the recurrence referred to
in the previous theorem. As a consequence, if (Zn)n is a non-constant solution of the
recurrence, then 〈(Zn)n,(1)n〉 is a basis of the space of solutions of the recurrence.

Notice also that the characteristic polynomial of the recurrence, p0(n)x2− p1(n)x−
rp2(n) , has the zeros 1 and rp2(n)

p0(n) and that

lim
n→∞

rp2(n)
p0(n)

=
rdd

(d−1)d−1 .
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5. Asymptotics for generating functions of the Fuss-Catalan numbers

We are now in conditions to establish the asymptotic behaviour of the sequence

(X(d,r,n))n , when |r|dd

(d−1)d−1 > 1 which, using (7), is when it diverges.

We use the following asymptotic behaviour: if a,b ∈ Z , with a �= 0, then

n+1

∏
j=2

(a j +b) = an
n+1

∏
j=2

( j + b
a ) = an Γ(n+2+ b

a )

Γ(2+ b
a)

∼ Γ(n)
Γ(2+ b

a)
ann2+ b

a (11)

as Γ(x+ α) ∼ Γ(x)xα when x → +∞ .

REMARK 3. In order to apply Corollary 1.6 of [8] in the next theorem we draw
the attention to the fact that, if p and q are two polynomials of the same degree s and
q is never zero in N , then

∞

∑
n=1

∣∣∣∣ p(n+1)
q(n+1)

− p(n)
q(n)

∣∣∣∣< ∞,

as the degree of the polynomial, in n , p(n+1)q(n)− p(n)q(n+1) is at most 2s−2.

THEOREM 3. With the above notation, if A(d) = dd

(d−1)d−1 and A(d)|r| > 1 ,

X(d,r,n) ∼ 1√
2π

√
d

(d−1)
3
2

A(d)r
A(d)r−1

(A(d)r)n n−
3
2 .

Proof. By Remark 2, the zeros of the characteristic polynomial of the recurrence
equation converge, when n tends to infinity, to different numbers, namely A(d)r and
1. Therefore, and using Remark 3 for p = pi , i = 1,2 and q = p0 , we are in the
conditions to apply Corollary 1.6 of [8]. In particular, there exists a solution (Yn)n of

the recurrence equation such that Yn ∼ ∏n+1
j=2

rp2( j)
p0( j) . Notice that, using (11), we have

n+1

∏
j=2

rp2( j)
p0( j)

=
n+1

∏
j=2

rd(d j−1)d−1

((d−1) j +1)d−1
= (rd)n

d−1

∏
i=1

n+1

∏
j=2

d j− i
(d−1) j +2− i

∼ rndn
d−1

∏
i=1

Γ(2+ 2−i
d−1)

Γ(2− i
d )

(
d

d−1

)n

n−
i
d − 2−i

d−1

= kd rndn
(

d
d−1

)(d−1)n

n−
3
2 , where kd =

(
d−1

∏
i=1

Γ(2+ 2−i
d−1 )

Γ(2− i
d )

)

= kd

(
dd

(d−1)d−1 r

)n

n−
3
2 .

As 〈(Yn)n,(1)n〉 is a basis of the space of solutions of the recurrence, there exist
a,b ∈ R such that, letting Xn denote X(d,r,n) , (Xn)n = a(Yn)n +b(1)n and then

Xn ∼ aYn ∼ akd(A(d)r)nn−
3
2 . (12)



ASYMPTOTICS FOR FUNCTIONS OF THE F-C NUMBERS 849

To calculate akd , using (7), we have

Xn−Xn−1

Yn
=

Cd(n)rn

Yn
−→

n

1

kd
√

2π

√
d

(d−1)
3
2

and, on the other hand, using (12),

Xn−Xn−1

Yn
=

Yn −Yn−1

Yn
−→

n
a

(
1− 1

A(d)r

)
,

from where we obtain

akd =
1√
2π

√
d

(d−1)
3
2

A(d)r
A(d)r−1

,

concluding the proof. �

REMARK 4. Although it is not relevant, we would like to point out that kd referred

to in the above proof is equal to 1√
2π

(
d

d−1

)d+ 1
2 .
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