athematical
nequalities
& Papplications

Volume 26, Number 4 (2023), 977-993 doi:10.7153/mia-2023-26-60

VILENKIN-FOURIER SERIES IN VARIABLE LEBESGUE SPACES

DAVITI ADAMADZE AND TENGIZ KOPALIANT*

(Communicated by I. Peric)

Abstract. Let S,f be the nth partial sum of the Vilenkin-Fourier series of f € L'(G). For
1 < p_ < py < oo, we characterize all exponent p(-) such that if f € LP0)(G), S,f converges
to f in L’V)(G).

1. Introduction

Let {pi}i=0 be a sequence of integers, p; > 2. Let G =I1;? ;Z,, be the direct
product of cyclic groups of order p;, and u the Haar measure on G normalized by
1(G) = 1. Each element of G can be considered as a sequence {x;}, with 0 <x; < p;.
Set mog =1, my = 1'[5.:01 pi, k=1,2,.... There is a well-known and natural measure
preserving identification between group G and closed interval [0,1]. This identification
consists in associating with each {x;} € G, 0 < x; < p;, the point Z?;Oxim;rll. If we
disregard the countable set of p;-rationals, this mapping is one-one, onto and measure-
preserving.

For each x = {x;} € G, define ¢ (x) = exp(2mix;/pi), k=0,1,.... The set {y,}
of characters of G consists of all finite product of ¢, which we enumerate in the fol-
lowing manner. Express each nonnegative integer n as a finite sum n = Y~ ; oyniy,
with 0 < oy < pg, and define y,, = H‘;;Oq),f‘ k. The functions y, form a complete or-
thonormal system on G. For the case p; =2, i=0,1,..., G is the dyadic group, ¢
are Rademacher functions and y, are Walsh functions. In general, the system {y,} is
a realization of the multiplicative Vilenkin system. In this paper, there is no restriction
on the orders {p;}.

For f € L'(G),let S,f, n=0,1,..., be the nth partial sum of the Vilenkin-Fourier
series of f. When the orders p; of cyclic groups are bounded Watari [19] showed that
for f€LP(G), 1 < p <oo,

lim/ 1S,/ — f1Pdu = 0.
n—e |G

Young [17], Schipp [14] and Simon [15] showed independently that results concerning
mean convergence of partial sums of the Vilenkin-Fourier series are still valid even if
the orders p; are unbounded.
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Let {Gy} be the sequence of subgroups of G defined by
Go=G, Gy =110} x 12,7, k=1,2,....

On the closed interval [0,1], cosets of Gy are intervals of the form [jm, ', (j +
l)mljl], j=0,1,....m— 1. By .% we denote the set of generalized intervals. This
set is the collection of all translations of intervals [O,jmk_jl], k=0,1,... j=1,....p.
Note that a set I belongs to .% if (1) for some x € G and k, I C x+ Gy, (i) I is a
union of cosets of Gy, and (iii) if we consider x+ Gy as a circle, [ is an interval. Let
F_1 ={G}. For k=0,1,..., let % be the collection of all I € # such that [ is a
proper subset of a coset of Gy, and is a union of cosets of Gy ;. The collections .%
are disjoint, and # = U, _|.%;. For I € %, we define the set 31 € .# as follows. If
I=G,let31=G. For I € %, k=0,1,..., there is x € G such that [ C x+ G. If
u(l) = @, let 3l =x+Gy. If u(I) < @, consider x + Gy as a circle. Then I is
an interval in this circle. Define 31 € .%; to be the interval in this circle which contains
I atits center and has measure ((37) =3u(I). Inall cases, for I € #, u(3I) <3u(l).

We say that w is a weight function on G if w is measurable and 0 < w(x) < oo
a.e. Gosselin [7] (case sup; p; < o= ) and Young [18] (no restriction on the orders p;)
characterized all weight functions w such thatif f € L (G), 1 < p <o, S, f converges
to f in L(G). Here L% (G) denotes the space of measurable functions on G such that

Hf”p,w = (fG |f|de‘LL)1/p < oo,

DEFINITION 1.1. (see [18]) (i) We say that w satisfies A,(G) condition, 1 <
p <oo,if

_ e L TPy )p_l o
[W}AP‘?;TQP-(MI)/IW"’“)(ua)/zw dw) <D

(ii) We say that w satisfies A;(G) condition if

1 . 1
wla, = sup —/wd,u essinfyw(x < oo,
Wla, = sup s | waia (essinfpe()

For the case where the orders of cyclic groups are bounded, Gosselin [7] defined
A,(G) condition, as the one where (1.1) condition holds for all I that are cosets of
Gy, k=0,1,2,.... For this case A, conditions, defined by Young and Gosselin, are
equivalent (see [18]).

THEOREM 1.2. ([18]) Let w be a weight function on G. For 1 < p < oo, the
following statements are equivalent:

(i) we A,(G),

(ii) There is a constant C, depending only on w and p, such that for every f €
LL(G), we have

[ Isurirwau <c [ 71wy,
G G
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(iii) For every f € L},(G), we have
lim/ 1S, f — f1Pwdp = 0.
n—ee |G

In this paper we characterize all exponents p(-) such that if f € LP()(G), then
partial sums S, f of the Vilenkin-Fourier series of f € LP()(G) converge to f with
LP1) -norm. Now we give a definition of variable Lebesgue space. Let p(): G —
[1,00) be a measurable function. The variable Lebesgue space LP()(G) is the set of all
measurable functions f such that for some A > 0,

P /2) = (5012 dp < e

L0 (G) is a Banach function space equipped with the Luxemburg norm

1Fllpey = inf{A >0 pp) (f/A) <1}

We use the notations p_(I) = essinfye;p(x) and p(I) = esssup,;p(x) where
I CG. If I =G we simply use the following notation p_,p. . The function p’(-)
denotes the conjugate exponent function of p(-), i.e., 1/p(x)+1/p'(x) =1 (x € G).
In this paper the constants C, ¢ are absolute constants and may be different in different
contexts and x4 denotes the characteristic function of set A.

Very recently the convergence of partial sums of the Walsh-Fourier series in
LP0)(]0,1)) space was investigated by Jiao et al. [8]. We denote by Cbog the set of
all functions p(-) : [0,1) — [leo), for which there exists a positive constant C such that

‘]|P—(1)*P+(1) <C

for all dyadic intervals I = [k27",(k+1)27") (k,n € N 0 < k <2"), here |I| denotes
the Lebesgue measure of 7. Note that this condition may be interpreted as a dyadic ver-
sion of log-Holder continuity condition of p(-) (or on dyadic group). The log-Hélder
condition is a very common condition for solving various problems of harmonic analy-
sis in LPC)(R") (see [2], [5]).

THEOREM 1.3. ([8]) Let p(-) € C¥% with 1 < p_ < py <o, If f € LPV)([0,1)),
then for partial sums S,f of the Walsh-Fourier series of f € LP1)([0,1)) we have

sup [1Suf oy < Cllfll pey-
neN

Since Walsh polynomials are dense in L(")([0,1)), Theorem 1.3 implies that S,, f
converges to the original function in L”() ([0, 1))-norm (for more details see [8] and the
recent book [13], chapter 9).

In order to extend techniques and results of constant exponent case to the setting
of variable Lebesgue spaces, a central problem is to determine conditions on an ex-
ponent p(-) under which the Hardy-Littlewood maximal operator is bounded on L ()
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(see monographs Cruz-Uribe and Fiorenza [2] and Diening et.al. [5]). We now define
the Hardy-Littlewood maximal function that is appropriate for the study of Vilenkin-
Fourier series. For f € L'(G), let

1
M = — du.
0= ey 1

This maximal function was introduced first by P. Simon in [16]. He showed that
the maximal operator is bounded in L”(G), 1 < p < oo and is of weak type (1,1).
Young [ 18] obtained the following analogue of Muckenhoupt’s theorem [11].

THEOREM 1.4. Let w be a weight function on G. For 1 < p < o, the following
two statements are equivalent:

(i) we A,(G),

(ii) There is a constant C, depending only on w and p, such that for every f &
LL(G), we have

[apywau<c [ |rrwan.
G G

In case p =1 the following two statements are also equivalent:
(iii) w € A1 (G),
(iv) There is constant C, depending only on w, such that for every f € L'(G)

/ wdp < Cy‘l/ |flwdu, y>0.
{Mf>y} G

DEFINITION 1.5. We say that the exponent p(-), 1 < p_ < p4 < o satisfies the
condition 7 (G), if there is a constant C such that for every I € .#,

1
mllm\\p«)\\mlly(.) <C. (1.2)
The condition (1.2) plays exactly the same role for averaging operators in variable
Lebesgue spaces as the Muckenhoupt A, conditions for weighted Lebesgue spaces (see
[9], [10], for Euclidian setting). We show that the <7 (G) condition is necessary and
sufficient for the LP()(G) boundedness of Hardy-Littlewood maximal function. One of
the main result of the present paper is the following theorem.

THEOREM 1.6. Assume for the exponent p(-) we have 1 < p_ < p4 < eo. Then
the following two statements are equivalent:

(i) p(-) € 4(G),

(ii) There is a constant C, depending only on p(-) such that for every f € LP")(G),
we have

”Mpr() < C”pr()

By the symmetry of the definition, p(-) € «7(G) if and only if p(-) € &/(G) and
from Theorem 1.6 we have that, even though, M is not a linear operator, the bounded-
ness of M implies the “dual” inequality.
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COROLLARY 1.7. Let for exponent p(-) we have 1 < p_ < py < oo. Then the
maximal operator M is bounded on LPC)(G) if and only if M is bounded on LP'O)(G).

We prove the following theorem (in the Euclidean setting see [2], Theorem 4.37
and [5], Theorem 5.7.2).

THEOREM 1.8. Let for the exponent p(-) we have 1 < p_ < py < oo. Then the
following statements are equivalent:

(i) Maximal operator M is bounded on LP")(G),

(ii) There exists ry, 0 < ro < 1, such that if ro < r < 1, then maximal operator M
is bounded on L'"")(G).

Hereafter, we will denote by .% a family of pairs of non-negative, measurable
functions. Given p, 1 < p < oo if for some w € A,(G) we write

| rerwwdu < [ gwrwan, (f.9 €,
G G

then we mean that this inequality holds for all pairs (f,g) € - such that the left hand
side is finite, and that the constant C may depend on p and [w]s, . If we write

1f1lpc) < Cpyllgllpey, (fr8) €5

then we mean that this inequality holds for all pairs (f,g) € . such that the left-hand
side is finite and the constant may depend on p(-).

Using this convention we can state the Rubio de Francia extrapolation theorem in
the following manner.

THEOREM 1.9. Suppose for some po > 1 the family . is such that for all w €
A1(G)

| remwixan<c [ gorw@du, (f.g)€ 5.
G G

If for the exponent p(-), we have py < p— < p+ < oo and the maximal operator M is
bounded on LP)/P0) (G), then

”pr() < Cp(-)Hng(-)7 (f7g) €.

Firstly, Theorem 1.9 was proved in [4] (Theorem 1.3) for variable exponent Lebes-
gue spaces on R” and maximal operator M defined on cubes (balls) in R", with sides
parallel to the coordinate axes. In [3] the Rubio de Francia extrapolation theorem is
proved for general Function spaces, using A; weights and maximal operator M de-
fined by any Muckenhoupt basis (see Definition 3.1 in [3]). By Theorem 1.4 the set of
generalized intervals .% is a Muckenhoupt basis. Considering the following equality

(Lp(') (G)) Y
[3].

Now, we can formulate the main result of the present paper.

p
" = 1p0)/po (G), Theorem 1.9 is direct consequence of Theorem 4.6 from
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THEOREM 1.10. Let for exponent p(-) we have 1 < p_ < py < oo. Then the
following statements are equivalent:

(i) p(-) € (G),

(ii) There is a constant C, depending only on p(-), such that for partial sums S, f
of the Vilenkin-Fourier series of f € LP")(G) we have

sup HSnf”p() < C”pr()
neN

(iii) Partial sums S,f of the Vilenkin-Fourier series of f € LP(')(G) converge to
the original function in LP () space.

2. Preliminaries

The fundamental properties of A,(G) weights were investigated by Gosselin [7]
and later by Young [18] (in this paper there is no restriction on the orders p;). We
formulate some properties of these weights (see [18]).

Note that if w € A,(G), then L},(G) C L'(G). We also mention that if w € A,,(G),
1 <p<oo,and p < g <o then we Ay(G). A important property of A,(G) weights
is the reverse Holder inequality.

PROPOSITION 2.1. ([18]) Let w € A,(G), 1 < p <oo. Then there exist s > 1
and a constant C such that for any I € 7,

1/s
(ﬁ%wﬁiu) < %/deu.

The following proposition is a consequence of the reverse Holder inequality.

PROPOSITION 2.2. ([18]) (i) Suppose w € Ap(G), 1 < p < eo. Then there exists
1 < s < p such that w € As(G).
(ii) Suppose w € A, (G), 1 < p < oo, then w € Aw(G).

DEFINITION 2.3. ([18]) Let Iy € .% . We say that a weight w (i.e. a nonnegative
integrable function) satisfies A..(lp) condition if for any € € (0,1) there exists 6 €
(0,1) such that for any generalized interval I C Iy and for any measurable subset E C I,
W(E) < eu(l) implies w(E) < dw(I) (for any measurable set A, w(A) = [, wdu and
wa = ﬁ Jawdp).

It is well known fact that the class A.. in Euclidian case can be defined in many
equivalent ways. The most classical definition is due to Muckenhoupt [12]. It is said
that a locally integrable function w : R" — [0,00) is in Ao class if for each € € (0,1)
there exists 0 € (0,1) such that |[E| < €|Q| = w(E) < dw(Q) holds, whenever Q is a
d-dimensional cube and E is its arbitrary measurable subset of Q. Note that w satisfies
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the above condition if and only if it belongs A,, class for some p € (1,00). Coifman and
Fefferman [ 1] proposed another approach based on verifying the following inequality

5 <c(8)’

where Q, E are as before, while C, € > 0 are constants depending only w. Note that the
two conditions lead to same class of weights. For More detailed information we refer
the reader to [6].

To prove the main result we need analogous result for Vilenkin group. It should
be noted that we give the proof which we had not found in literature.

PROPOSITION 2.4. Let w € Aw(Iy), where Iy € F . There exist positive constants
C,& > 0 such that for any generalized interval I C Iy and measurable subset E C I,

WE) _ o (W)Y
w(l) “(ua)) | —

For proving the result we need modified form of the Calderén-Zygmund decom-
position lemma (see [17], Lemma 2).

LEMMA 2.5. Given an interval 1 € .F and a function f € L'(G), then for t >
|fl1, there exists a collection 1; of disjoint generalized intervals 1; C I such that

1
t<—/‘f‘d“<3tv VI,
.“(Ij) I /

and for almost every x € I\ U; I, |f(x)| <1.

Proof of Proposition 2.4. Fix a generalized interval I C Iy and for integer k > 0
define the sequence #; = 10w; = 10%t;. Using Lemma 2.5 For each k we may find
Calder6n-Zygmund generalized intervals If of w in following manner. First con-

struct Calderén-Zygmund generalized intervals IO relative to [ at height #y (Calderén-

Zygmund generalized intervals of rang 0). Denote Qo= UI? For any fixed I? interval
find Calderén-Zygmund generalized intervals (of rang 1) of w and height #;. Denote
by I} the intervals of rang 1 and Q; = UI} . Note that Q; C Qo C /. In this manner we

may construct collection Ij-‘ Calder6n-Zygmund generalized intervals and the set €2
with properties:

a) Qk+1 CQ, k=0,1,2,...,

b) # < leg <34, k=0,1,2,...,

c) wlx) < ty, x € 1\Q.

Note that from the construction for any i there exists j such that [ C If.

Then

QI = ¥ u) <y Xowth
1Hl crt ek

Sl (1) = b,

e
S fwdy) < o M= 10
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Hence, by A (Iy) condition with € =3/10, there exists 6 > 0 such that w(€;,; N
15) < dw(I}), and if we sum over all j, we obtain w(Q;;1) < w(€x) and conse-
quently we have that w(€y) < 85 1w(I).

For almost every x € I\ €, w(x) < . For fixed €

1 e L wix)+E 15 w(x)He
= s [ ) e 3 [ w)'an

15 1 c
<2 /I\QO W+ s B (@)

=

E oo

Xy / 1 (k+1) e sh+1
w(x)du+—— ) 10 150 T w(l).
R Jng, "y & 10T 68wl

Fix € > 0 so that 106 < 1, we obtain that last term is bounded by

<

1 1 l+e
tg—/wxdu—i-CuI*ltgwl SC(—/W}Cdﬂ) .
oy o ce)iwn < (g @
Hence, given € > 0 the weight satisfies Reverse Holder inequality.

Finally if we use Holder’s inequality for w(E) = [ w(x)du and Reverse Holder’s
inequality for 1+ ¢ we get (2.1). [J

For 0 < r < oo define M, f(x) = M(|f|")(x)!/”. For brevity, hereafter we will write
f1 instead of [} fdu/u(I).

As a consequence of the reverse Holder inequality we get that if w € A,(G) for
some p, then there exists s > 1 such that M,w(x) < CMw(x). We need a sharper ver-
sion of this inequality.

PROPOSITION 2.6. Given w € A1(G), if so =1+ m, then for 1 < s < so and
1
for almost every x,

Mow(x) < 4Mw(x) < 4[w]a, w(x). (2.2)

1

This type of estimates is well known in Euclidian setting. For the sake of com-
pleteness we will give a proof for the Vilenkin group.

We need an inequality that is the reverse of the weak (1,1) inequality for maximal
operator M.

LEMMA 2.7. Given a function f € L'(G), for every interval I € F and t > |f|;,
1
uxel: MA@ >h)> o [ erm
3t J{xer:|f()|>1}

Proof. t = |f|r; if t > || f]|r=, then this result is true. Otherwise, by Lemma 2.5,
let I; be the Calderén-Zygmund intervals of f relative to / and ¢. For every x € [;

1
MF) > /I fldu > 1.
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Since |f(x)| <t for almost every x € I\ U; [;, we have
1
ulxer: Mf >1h) > Lu) > 53 [ 1fld
J Jol
1
> —

|f(x)]du. O
3t /{xelz LF(0)|>1}

Proof of Proposition 2.6. Let € = (8[w]a,)~!, so = 1+ ¢, and fix an interval /
and xo € 1. To prove the first inequality of (2.2) it is sufficient to show that

o) /Iw(x)sod,u < 4Mw(xp)%.

We have that
1
g e = o [
— e(u(D)” / w(fx e L wlx) > 1))
w(xo)
=e(u(n)! /M YW{xel:wx)>rt})dt
0 oo

+g(u(1))71/Mw(xo)teflw({xez: w(x) > 1})dt

Using Lemma 2.7 we obtain

/ w{xel:w(x)>t})dr

/ / dudt
{xel:w(x)>t}

(1) / w({x € I Mw(x) > 1})dr

3e 1 1+£
= Trend d
l+eu(l / H

38[ ]1+8 1
< a0 1+8d .
l+e u(l /Iw(x) H

M
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From above estimates we get

I4e
1 1+e e, €MW1 / l+e
— [ w(x du < Mw(x +—— [w(x du.
“(,)/Iu 1 < Mw(xo) e e ean
Since for all x > 1, x!/% <2, we have
S TR T R
l+e — 8 At S 4

and consequently the first inequality in (2.2) is valid. The second inequality in (2.2) is
clear. O

3. Proof of Theorem 1.6

Given a generalized interval / € .% define the averaging operator A; by

= M/Ifdma(x)

PROPOSITION 3.1. Given a exponent p(-), 1 < p_ < py < oo, there exists a con-
stant C > 0 such that for any interval 1 € F

ALf 1 oy < ClIf Nl
ifand only if p(-) € & (G).

The proof of Proposition 3.1 is essentially the same as for averaging operator de-
fined by cubes for Euclidean setting (see for example [2], Proposition 4.47).

Lemma 3.2 shows that the condition p(-) € </ (G) is actually sufficient for mod-
ular inequality. Analogous estimate for the case L? 9 (R"™) was obtained by Kopaliani
[9]. The proof in [9] is based on some concepts from convex analysis. Lerner in [10]
gave a different and simple proof. In this paper our approach is based on the adaptation
of Lerner’s proof [10].

LEMMA 3.2. Given exponent p(-) such that 1 < p_ < py < o, suppose p(-) €
(G). Let f € LPY)(G). If there exists an interval I € F and constants cy,c; >0
such that |f|; = c1 and ||f| () < c2, where c1,¢2 > 0, then there exists a constant ¢
depending only on p(-),c1,cy such that

Jusuyrap<e [t

Proof. Using the condition p; < oo we may consider only the case ¢; =c¢; = 1.
Since p/, < oo, there exists o > 0 such that

[ au = | |)la. 3.1)
1 (@)
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Since |f]; > 1, we have o > 1. By generalized Holder inequality
@i <2011l

we get [, a0 -1lqu < 2{| 21l () and consequently,
o< C/”lep’() 3.2)

Given this value o, we have that

/Iflz /( / ldu)p(X)du (3-3)
_ (ﬁ[(ﬁ/ﬁxﬁ’(wP’(X)d“>p(X)_ld‘u> /Iocl’,(y)d,u.

For each x € I partition I into Ej(x) ={y e l: p'(y) > p'(x)} and Ex(x) =
I\E|(x). Using (3.2) and the estimate o > 1, we obtain

/ o' 0P ) gy = o 0P gy 1 o' 0P gy
1 Ei(x) Ey(x)

< clllally)” ™ + ur).
In view of p(-) € A(G), we have

1 /( 1 /p’(y)—p’( )d )p(x>ld (3.4)
—_— —_— o x .
w) Ji \u() i H H
L @) a
<y o)
w0 Ji \p( 2P0 H
.\ P)-1
<cre) <_1> X,H,,,(_))pw) "
<c+ (
1

< c—|—c
||%1Hp

/Otp’(y)d,u — 2a/\f(x)|d‘u _/ap/(y)d“ (3.5
1 1 1

<2 o, FOldi
{yel:2a|f(y)|>a?' 0)}
<e [IFo)Idu.
1

From (3.3), (3.4) and (3.5) we obtain desired estimate. [

Further,
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COROLLARY 3.3. Let 1 < p_ < py < o and p(-) € </ (G). Suppose that & <
t < &/ lxllpy, where &,6 >0 and I € F. Then "% € A (I) with Aw constant
depending only on p(-), &,&.

Proof. Let I' C I, where I')] € . and E C I' be any measurable subset with
w(E) > u(l')/2. Define f=tyg. Then

L wE) &
= gy e =15 > 5

el o)
el

Therefore, f satisfies the hypotheses of Lemma 3.2 with ¢y = &;/2, ¢, = & and
there exists a constant ¢ depending only on p(-),&;, &, such that

1
- p() p()
21”/10t d,ugc/t du,

which proves that t*™) € A..(I). O

1Al pey = tllxell o) < &2 <&

Proof of Theorem 1.6. The part (ii) = (i) of Theorem 1.6 follows immediately
from Proposition 3.1 and from the fact that | f|;x;(x) < Mf(x) for any interval [ € ..

Implication (i) = (ii). Suppose f € LP*)(G) and [fll,¢) < 1. Tt is sufficient
to proof that there exists a positive constant C (independent of f') such that for any
nonnegative function g € L” ()(G), with gl ey <1

[ Mrwetoan <c. (3.6)
For each positive integer k set
Qi ={xeG : Mf(x) > 3*}.

Note that
Mf(x)g(x)du <C. (3.7)
G\Q
Define Dy = ;\Q;41. Let F; be an arbitrary compact subset of D;. We will
prove that
Mf(x)g(x)dp < C. (3.8)
UFy
By simple limiting argument from (3.8) and from (3.7) we obtain (3.6).
Let u(Fy) > 0. There exists a finite collection of generalized intervals Iy, o € Ay,
Fi C Ugeado, such that |fz, > 3% a € A and for all fixed o, there exists xo € Iy,
such that Mf(x,) < 3!, Note that if Iy, and Iy, belong to distinct .%;’s and are
not disjoint (((Iy, N1g,) > 0) then one is a subset of the other. Consequently without
loss of generality we may assume that in collection I, o € Ay if u(ly, Niy,) >0
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for some a; and oy, then I, and I, belong to the same .%;’s (for some /). By
Vitali covering lemma, we may select from collection Iy, € A the finite collection
of pairwise disjoint intervals {/}} j € {1,...,Ni} such that Fy C U;31}.

Without loss of generality we may assume that p(F;) > 0 for all k > 1. Define the
sets Ef = 3I{ N Fy Ef = 315\ Us<;3If) NF, j > 1. Note that the sets E/ are pairwise
disjoint and U,E} = Fk

Define

Using the above definition, we get

| @i <3S S [ edu<3 ¥ Sy [ el
UFr =17 JEj =1 j '/E
=3 [ Te <6111l

and consequently for proving (3.8), it is sufficient to show that ||Tg|| /.y <C.
Note that Ij-‘ C Qp = U? yDiyq and hence Tg = ¥;”, T;g, where

Tig(x 220;, &)y, @ (=0,1...)

where o i(g) = ﬁfquw
J

Let S ={(j,k) : ajx(g) > 1} and S5 = {(j.k) : oulg) <1}
By condition p € &/ (G) and Holder inequality implies that for any interval I € .%
HXSI”p(.) < CH}C[HP(.). We have

ik(8) < —= gl py g xeell iy S — 1l
ik(g) < il sl gxgell iy < il .
7 ”(If) E_/ p(-) E_, () ”(If> 31_/ p(+)

C C
< < .
H?Cy;pr’(') ||%1;c||p/(.)

Let (j,k) € .#1. Then by Corollary 3.3 oz (g)”'™) € A (I}) and by Lemma 3.2,
(see, also (2.1))

, *nD ¢ ,
[y aney Wdp < o SL_ Sl [ uxte)”
KDy u (Ij) no

J

*ND ¢ )
e[ e o
J J
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If (j,k) € %5, then we have

Lo @ Vau< [ aglgdu
1Dy 1Dy

“nbD
- %/Ekg(x)du. (3.10)
J J

We need estimate u(lf NDyyy) for 1 > 2. Let x € If and I € . be an arbitrary
interval such that x € I. Observe that either I C 31;‘ or Ij-‘ C 31. If the second inclusion
holds, then 31N Dy # 0 and hence

flr <3|flar <3-351 <3 (1> 2).

Therefore, if |f|; > 3!, then I C 31}c . From this and from weak type property of M,
we get

WD) < v e 1 M(f7)@) > 31} < 57 / |fldu

D P c
Ceir W e < Cprmllf) < Spu(r)). (3.11)

By estimates (3.9), (3.10), (3.11), when [ > 2 we obtain

T, Vdu = / r'q
/( ig(x u= 2 - u
ey /g Wap+c3? Y [ gx)du

EA
j k EJI (j k)E.ﬂz

3l“</g du+/g du)
Where oo = min{1,e}.

Using the fact that [|g||1 < 2[[xc)ll (. and ng(x)pl(x)du < 1 we obtain
ITigll ) < C37P (12 2).

For [ = 0,1 if we use a trivial estimate u(I§ N Dyy;) < p(I5), analogously will be
obtained the estimate [|7;g||,»(.) < C. Finally we obtain

ITgllp() < 2 1Tl -
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4. Proof of Theorem 1.8

The implication (ii) = (i) is straightforward. Fix ro,r9 < r < 1, and let s =
1/r. by Holder’s inequality, we have that M f(x) < M(|f]*)(x)'/* = M, f(x). Note that
17Fllp) = 1712, and

1M £ 1y < UML) lpey = ML 0 < CUP I = CILAlLp-

To prove that (i) = (i), we first construct a A;(G) weight using the Rubio de
Francia iteration algorithm. Given h € LP()(G), define

< Mn(x

2 IIMII" ’

where for k > 1, MK =MoMo---oM denotes k iterations of the Maximal operator
M and MY f = | f |. The function %h(x) has the following properties:

(a) Forall x € G, |h(x)| < Zh(x);

(b) Z is bounded on LP)(G) and |||, < 2|[A]l p(:

(c) Xh EAl(G) and [%h]Al < ZHMHLP(‘)(G)

The proof of properties (a),(b),(c) are the same, as Euclidian setting (see [2],
pp.157) and we omit it here. By property (c) and Proposition 2.6 there exists so > 1
such that for all s, 1 < s < 50,

M;(Zh)(x) < Msy (Z2h)(x) < 8[IM |l 1y () Zh(x)-

Let ro =1/so. Fix r such that o <r < 1. Let s=1/r.
By properties (a) and (b) we have

1MLy = 1L 513 = 1M
< UMy < CIMI 00 12T
< ClIA T = Cl - O

5. Proof of Theorem 1.10

Since Vilenkin polynomials are dense in LP( )(G) (1 < p_ < py <oo) the proof
of equivalence of (i7) and (iii) is straightforward. The 1mphcations (i) = (ii) fol-
lows from Rubio de Francia extrapolation theorem (Theorem 1.9), if we use Young’s
weighted estimates for partial sum S, f of the Vilenkin-Fourier series (Theorem 1.2),
Theorem 1.6, Theorem 1.8 and corollary 1.7.

Proof of (ii) = (i). Consider I € .Z. Thereis x € G such that I is a proper subset
of x+ Gy and [ is a union of cosets of Gy . First consider the case u(l) < u(Gy)/2.
Take oy = [u(Gy)/2u(I)], where [a] is the largest integer less than or equal to a. We
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have oy > 1. Let f € LP(')(G) be a nonnegative function with supportin /. We use the
following estimate (see [18], pp. 286-287): for x € I,

0 S (10N 0) > s [0 = 3o Aup ),

We have

— —1)/2 1 2
HALF o) < ClOe ™ Saume (PO ™) o0y < CUAILp(o-

From this estimate we obtain in standard way (1.2) in case u(I) < u(Gy)/2 (see

Proposition 3.1).

Consider the case u(I) > u(Gy)/2. Note that every coset of Gy, is in .%;_; and

w(Gr) < u(Gy—1)/2 and consequently (1.2) holds for all cosets of G;. We have
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