athematical
nequalities
& fapplications
Volume 26, Number 4 (2023), 1039-1053 doi:10.7153/mia-2023-26-64

WEIGHTED WEAK ESTIMATE FOR COMMUTATORS OF
FRACTIONAL TYPE PARAMETRIC MARCINKIEWICZ
INTEGRALS OVER NON-HOMOGENEOUS METRIC SPACES

SHUAIJUN FENG AND XIANGXING TAO™

(Communicated by I. Peri¢)

Abstract. Let (2,d) be a metric space satisfying the geometrically doubling condition, and u
be a Borel measure satisfying the upper doubling condition. In this paper, the authors prove the
weak type weighted L? (@) boundedness of the commutators ﬂﬁ” .4 generated by the RBM o(u)

function b and the fractional type parametric Marcinkiewicz integral operator Jg , ,, which is
defined over the non-homogeneous metric space (£ ,d, ).

1. Introduction

As it’s well-known that Stein [14] first introduced the classical Marcinkiewicz
integral over Euclidean space R"(n > 2), and then Hérmander [9] introduced the para-
metric Marcinkiewicz integral, and the fractional Marcinkiewicz integral is also consid-
ered by many researchers, see Lin-Lin-Tao-Yu [13] for example among others. These
Marcinkiewicz integral operators can be uniformly written as fractional type parametric
Marcinkiewicz integral operator in the following form,

1
2 2

d
fo)a| S xR )

1 / Qx—y)

R [ e S s

Hha (W =14 [

where p > 0 and o > 0, and that € is homogeneous of degree zero in R", integrable
and has mean value zero on the unit sphere S"~!. If let p = 1, ¢ = 0 in (1) then it is just
the Marcinkiewicz integral ug. If oo =0 in (1) then it is the parametric Marcinkiewicz
integral ug. Hormander [9] proved the LP(1 < p < o) boundedness for ,ug whenever
Q is Lipschitz continuous. In 1990, Torchinsky and Wang [16] first studied the L”
boundedness for the commutator Lg; generated by the Marcinkiewicz integral g
and a BMO function b. In 2009, Lin-Lin-Tao-Yu [13] showed that, if Q satisfies a
class of Dini condition, then the fractional Marcinkiewicz integral ug ¢, i.e, the case
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p =1 in (1), is bounded from L”(1 < p < 2) to LY with é =
from H? to H? for 23104 <p<landO<a< 1.

In this paper, we will consider commutators of some fractional type paramet-
ric Marcinkiewicz integral on the non-homogeneous metric space, and discuss the
weak weighted boundedness of these generalized Marcinkiewicz integral operator over
metric space. To this end, let’s recall some necessary concepts by starting with the
Hytonen’s non-homogeneous metric space.

Hytonen [10] introduced the non-homogeneous space (£ ,d,u), which is the
metric space satisfying the following geometric doubling condition and the upper dou-
bling condition.

L £, and bounded
p n

DEFINITION 1. [3,2] A metric space (2 ,d) is said to satisfy the geometrically
doubling condition if there exist some Ny € N such that, for all balls B(x,r) C 27,
there exists a finite ball covering {B(x;, %)}l of B(x,r) such that the cardinality of this
covering is at most Np.

DEFINITION 2. [10] A metric measure space (£ ,d,u) is said to satisfy the
upper doubling condition if u is a Borel measure on 2~ and there exists a dominating
function A : 2" x (0,00) — (0,°) and a positive constant C; such that, foreach x€ 2",
r — A(x,r) is non-decreasing and, for any x € 2", r > 0,

,u(B(x,r))g/l(x,r)gc,l/l(x,r/Z). (2)

Furthermore, in [1 1], it shows that there exists a dominating function A such that
A <A, C; <G andforany x,y € 27, d(x,y) <r,

A(x,r) S C3A (7). 3)

Hence we can assume that the dominating function A satisfies both (2) and (3).
Suppose that o, 8 € (1,e0), aball BC 2" is called (¢, 3)-doubling if u(aB) <
Bu(B). It is proved in [10] that, if (Z",d,u) satisfies the upper doubling condition

and > clfgza = 0", then for any ball B, there exist some j € NU{0} so that a/B is
(o, B)-doubling. Furthermore, if (2",d,u) satisfies the geometrically doubling con-
dition and 8 > o with n =1log, Ny, Hytonen [10] also proved that there exist (a, 8)-
doubling balls centered at x and the doubling ball can be arbitrary small. More than
that, for any preassigned r > 0, their radius can be chosen to be the form o~/ for
J€N. Forany o € (1,) and ball B, B* denote the smallest (a,f)-doubling ball

of the form a/B with j € N, where
Bo, = max{c®, >’} + 30" +30V.

In the following discussion, if there is no special statement, for any v € (1,%0) and
B C %, B always denote the smallest (300, 830y ) -doubling ball which have the form
of (30v)/B, je€N.

In [8], Hu et al. introduced the following A} weight.
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DEFINITION 3. [8] For v € [1,), p € (1,o0) and p’ = p/(p— 1), anonnegative
u-measurable function  is said to belong to AY, if there exists a positive constant C
so that, for every ball BC 2",

{ﬁ /B w(x)d“(x)} { ﬁ /B[“’(x)] P dp () }H <c, @)

and @ is said to belong to A?, if there exists a positive constant C so that, for every
ball BC 27,

< Cinf )
x) Cylng(y)

and let A%(u) = U A(u).

In this paper, we will use some notations introduced by Bui and Duong [1]. For
two balls B and R in .2" such that B C R, let

Np r

u(6'B)
—1+ZAC

(cp,6'rp)’

&)

where Np g denotes the smallest integer satisfying 6VBRrg > rp.
For any v € (0,°0) and any two balls BC R C 2, let

(v)
Np g k
~(v) | : u(v*B)
Kypi=1+ —_
st 3 Hen v

(v)
where Ng)lg is the smallest integer satisfying VVBRrg > rg and for any a € R, |a] is

the largest integer which is less than or equal to . It is easy to deduce that

N 1 log, 2)+1
B0ois Y n(v'B)
B.R =1 A (CB, UkrB)

Now we recall the definition of RBMO(u) introduced in [10].
DEFINITION 4. [10] For p € (1,%0), a function f € L] (u) is said to belong to

the space RBMO(u) if, for any ball B C 2", there exists a positive constant C and a
number fp such that

l /
— x) — fpldu(x) <C, (6)
TpE) 0 ol an(
and for any two balls BCRC 2,

|fB — fr| < CdpR, (7
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where

dp(x)

O0(B,R)=1 _—
(B.R) =1+ 2rR\B A(cp,d(x,cp))

The RBMO(u) norm || f||ggmo(u) of f is the infimum of the positive constant C
in (6) and (7). It’s worthy to point out that the norm || f||ggro(u) does not depend on
p,see [10].

LEMMA 1. [11] For p € (1,) and f € L} (u), f € RBMO(u) if and only if

loc

for any doubling balls B C R, there exists a positive constant C such that

1
u(pB)

170 = mgflautx) <c,
and
impf —mgf| < CSpp,

where we denote by mpf = ﬁ Jpfx)u(x).

LEMMA 2. [0] Let p € (1,0) and r € [1,00), If f € RBMO(W), then there exists
a positive constant C such that for any ball B,

1 1/r
{u(pB) /B|f(x) —mgflrdu(X)} < C| fllrBmo(u)-

We now give the definition of fractional type parametric Marcinkiewicz integral
over the non-homogeneous metric space (2 ,d, ). Let K(x,y) be a locally integrable
function in (2" x 2 )\{(x,x) :x € 2"} satisfying, for any x,y € 2" with x #y,

) IHB
Kl <0 ®)
and if d(x,y) > 2d(x,x),
, , d (x,2)) P
|K(x,y) —K(x ,y) |+ |K (y,x) — K(y,x) |< C[d(x,y)}a)t(x,d(x,y)) , 9)

for some f§ € [0,), 6 € (0,1] and the positive constant C.
For p € (0,%0), ¢q € (1,0), the fractional type parametric Marcinkiewicz integral
operator .73 ,, , with the kernel K (x,y) is then defined by

1
q q
?} . (10)

T D0 = { [ |5 [ s F0lauy
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Let b € RBMO(u), we consider the commutators generated by b and the frac-
tional type parametric Marcinkiewicz integral operator 7 ,, ,, which is defined by

T pa(HE)
1
<l 1 K(x,y) 1 dt }5
= —_ — 2= [b(x)—D d — . 11
s o a2l o) 44 an
In [15], the authors proved the boundedness in L”(u) of the commutators %prg
if the kernel K(x,y) satisfies some Log-Dini condition and that .7, » is bounded on
L>(u). Zhou [4] proved some similar results under the following Hormander type
condition for the kernel K(x,y) satisfying

= . o
igg i=1l/ir<d(x,y)<6f+1r[| (x.) (x,y)|

d(yy)<r
+ K (%) — K (,%)|] Ty ke <C

In this paper, we devote to give the weak type weighted boundedness of the com-
mutator ﬂﬁh p.q 38 follows.

THEOREM 1. Let v € [l,0) and 0 € A}, 1 < p < oo, and let K(x,y) satisfy (8)

and (9). Suppose that T , , is bounded on L?(u), then for the commutator %”.p.q,

we have

supt [ ({ve 2 7, (1) > )] £ Wl

t>0

2. Some lemmas

For a u-measurable real function f and a ball B with u(B) # 0, we let my(B) be
a real number such that infgcp mp(|f — &|) is attained. Moreover, my(B) satisfies

u({xeB: f(x) >mys(B)}) < u(B)/2

and

u({xeB: flx) <ms(B)}) < u(B)/2.

In the case that u(B) =0, set my(B) = 0. For a complex-valued f, we then take
my(B) = mpey(B)+impys(B), where i is imaginary unit. It is known that, for acomplex
number z, Re(z) and Im(z) denote the real part and the imaginary part, respectively.

For any u-measurable function f and ball B, when u(B) > 0, define m& ;1;)3( f)
by setting

mg () = inf{t > 0: p({y € B: |f(y)| > 1}) < su(ovB)}
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where s € (0, 1) o €[1,%0) and v € [1,%0), while u(B) =0, set mg . 5(f) = 0. By the
definition of mO 5 B( f), we give the following John-Stromberg-type maximal operator,
which is defined as

Mg"(f)(x) = sup mg s (f),
B>x,B(300, 30y )-doubling

and the John-Stromberg-type sharp maximal operator corresponding to Mg ;” (f) is de-
fined as

Mg (f) (x) s=supmd (f—mf(§)>
B>x
my(B) —my(R)
+ sup %
XEBCR KBR

B.R(30v,B30y )-doubling >

Forany f € L], (1) and x € 2", maximal operator M., is denoted by

as) s { L [ rancs))

where v € [1,), N,0 € (1,%0) and r € (0,0). Moreover, sharp maximal operator
MPV:9t is given by

M ) s (oo

0) =) auy))

’mf(B) —mg(R)| .

+ sup —
XEBCR Kl(?vlg
B.R(300,B30y )-doubling :

Similar to Lemma 2.6 in [8], we can easily get the following lemma, where we omit the
details.

LEMMA 3. For v € [l,%0), 1 € [Sv,%0), p € (1,%0) and w € AJ(u), My is
bounded from LP(w) to LV ().

LEMMA 4. By the definition of mg ;1_)3( f), it is clear to see that for any constant
C,

0)=Clan) ).

mg g (f=C) <5~ (
Particularly, we take C = m f(B) then we obtain

o0 fas 1 1 -~
mip (f—my(B)) <s ( TooE) o 1) —me(B)] du(y)) (12)
and from (12), it follows that

Mg fx) < 57" MU (). (13)
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LEMMA 5. The following properties about Kp g are useful when we make esti-
mates over non-homogeneous metric spaces, which were proved in [6, 1].

(1) Forany p € [1,00), there exists a positive constant cp, relying on p, such that,
forall balls B C R with ry < prg,Kpr < cp.

(2) There exists a positive constant ¢, such that, for all balls B, Ky 5 < ¢

Using the properties of Kp g, from [5] we can easily find that Elgulg ~ KpR.

LEMMA 6. [8] For v, p € [l,), n € [5V,%) and @ € A}, there exist constants
C, so that, for every ball B and u-measurable set A C B,

w(A) >l [ww((nA;)]p'

LEMMA 7. [7] Let f € RBMO(u),q € (0,%°) and forall x € 2",

BECRICE
fq(’“”‘{q,fg iF1/(x)] >

Then f, € RBMO(l) and there exists a positive constant C, which is independent of
[ such that || fq || rByo(w)<Cl fllgsroqn

LEMMA 8. [8] Let v € [1,), o € [1,30], 51 € (0,B5../4), p € (0,%0) and
o € A2(W). In the case that W(Z) = eo, f € LPO™(u) for some pg € (0,0), and for
all R € (0,0),

sup o({xe 2 :|f(x)|>1}) <
t€(0,R)

Then there exists a constant Cy € (0,1) which depend on s\ and ®, and a positive
constant C such that for any s, € (0,Cops1),

55/ ey < €557 e

LP=(w )

LEMMA 9. [8] Let v,p € [1,0), 0 € [1,30] and s € (0,Bs,.), then for any u-
measurable functions f and t € (0,00),

(1) Ixe 2 |f(x)] > 1} C {xe 2 MG () = t} UE with u(E) = 0.
(2) For € Aj(1), there exists a positive constant C which is independent of f
and t, such that

) ({x €2 MTP(f)(x) > z}) <CsPo({xe 2 :|f(x)] > 1)).

We need the following boundedness of g , , in [12].
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LEMMA 10. [12] For p € (0,%0), B € [0,0) and q € [1,%°), let K(x,y) satisfy (8)
and (9), and T ,, , is defined as (10). Suppose that T ,, , is bounded on L* (i), then
forany p € (1,0), it is bounded on LP and also bounded from L' (u) into L' (u).

To prove Theorem 1, we should first establish the following pointwise estimate.
LEMMA 11. Let § € [0,%0), p € (0,00), g € (1,00) and K(x,y) satisfy (8) and

(9). Suppose that Tg ,, , is bounded on L*(w), then for any v € [1,%0), o € (5,30],
there exists a constant C, such that for any function f € L*(u) and x € 2,

MU0 (T (1) (0) < O (1)),

Proof. Let
hg :=mp [Tp pq ((b—mz(b))fxs8))] -

To prove Lemma 11, it is sufficient to prove for any ball B, x € B,
1
— [ |T —h ) d <M, o 14
108 Ju [ TN s AR () S M, () (14)
and for any two balls B C R, R is a doubling ball,
|\hg —he| S KM, g, (f)(x). (15)

First, we estimate (14). It follows that

m /B |75 (N0) ~ s dua(5)

s W/B’b@) —mp(b)] Tpp.o (1) )1 (y)

+m/ ‘%7074((b_m§(b))f1) (y)du(y)
+H O'UB /| qu((b mB( ))f2) hB’d,U.
::Al "‘Az—|—A37

where, f1 = fX(sp), f2 = fX(sB)-- By Holder’s inequality, Lemma 2 and Lemma 10,
we see that

ws e [ g )] [Tt

1
u(ovB)

1/r

1/r
< Wlaawiown | 7055 o Tooa DV O)

<M, g, ().
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To estimate A,, by Holder’s inequality, the L?-boundedness of %.p’q( f), Lemma 2
and Lemma 5, we conclude that

B)\/

2 X

GUB

1/2
|:/’ qu b mB( ))fl]( )’ (Y):|
1/2
< [m [ 1600 =m0 5107w
12
+ [W/J(mgg(b) —mg(b)) f (y)|2du(y)]

1/2
ST [ﬁ [ o) —mg;(b)fdu(y)]

1/2
1= [ GvB) J,Imsae “duly ﬂ
5 1}
Sl (bRBMO(u) + [Hﬁgul})} )
5 Hf||L°°(u)

where we utilize the fact that ’msﬂé(b) —mg(b)| < c (KB,B+KSB 5+ Ks, 53) <c. To

estimate Az, we observe that

}yﬁ,p,q((b_mB( ))f2) hB}
=|Tp p.q ((b—mg(b ))fz)( ) —mg [T pq (b —mz(0) )]

< |z [ (0= ms4) 2) 0
~Tp pg ((b—mp(b)) f2) (x)| du(x)
For x,y € B, we obtain

1 (b= (b)) 1) )~ T (b= (1) 1) 5]
< (/om / L’Z)— [b(z) —my(b)] f(z)du(z)

dy2)<t |d(y,2)|1 P
X, p J %
) /‘1(“)“ % [6(z) =my(b)] fo(2)dp(2) m>
) K(v,2)
<</° /d<yz> d(x2) W[b(z)—mg(b)]

T dr g
x f2(z)du(z) m)
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s

K(x,
[l(x 2)<t<d(y,2) # [b(z) _mE(b)]

T dt 7
x f2(2)du(z) m)

- </0°° />maX{d(yz <|d([;(y;|l)_p - |d(-[’(C»(JZC;|Z1>_p>

< [b(z) - m(®)] Sr2)dp()[? L) 5

1a(B+p)+1
=B+ B+ Bs.

As in the estimate for B, by Minkowski inequality, (8), and note that, for y € B and
z2€ Z\kB(k > 1), A(y,d(v,2)) ~ A(y,d(cB,z)) ~ A(cp,d(cp),z). It follows that

/J\SB dli ?1 —p |b(z) —mz(b)| | (2)

1
dt 4
g </d(y 2)<r<d(x,2) M) du(z)

Mo (0) = mg(b)] £l 2

1
T‘I A CB75krB) /5k+lB

< g .

> k+1 u(5¥'B) & 1
kz, 1N == ) 54 7 (c5,5%75) +2||fHL°° ||b||RBM0(u)5Tq

S Mz

where, for p > 1, if we take m = [log, 5p], from (2), we know that

k+1
ROSB) _ LM an D) _
)L(CB,SkrB) h l(cB,SkrB) A
With the similar argument, we also have By < [|f|/=(,)- Next we estimate B3, from

Minkowski inequality, and note that for any x,y € B and z € (5B)¢, d(x,z) ~ d(y,z) ~
d(cp,z), then it follows that

K(n)  Kxz
B X /KZ\SB d(y,i))ip d(x, z)l P [b(2) = m(b)]
« dt 3
<[ i) aut@
S [y K0 = K2 [66) i)

x |f<z>|d(Tl>BHdu<z>
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1 1
+/%\SB‘K(X’Z)| 'd(y,z)lp = deare | 1@ —msd)
Q) )
:= B31 + B3,

Similar to the discussion with By, we conclude that B3y < || f][;=(,- Itis easy to show
that

1 ’d(x,z)lfp —d(y,z)1*0|
2\5B A(cp,d(cp,z)) d(x,2) =P
X |b(z) —mg(b)| 1/ (2)|du(z)

o k+1 1
S 2 5k A (cp,5%rp) /5k+1 [ (@)ldu(z)

By S

k=1
- 1 1
3 e 570) s [P0 20| @l

& k1 u(SKHB)
<y 29 7 .
SO 7 (c5.5575) 11l

=

1
+1;1 5% 161l repo(u) I1f 1| 2= ()

Sl =) -

From B3, and Bj3;, we obtain Bz < || ]| 1=(u)» Which completes the estimate of (14).
Next, we consider (15). Note that

[~ he | < |mg | Ty pq (b= m5(0)) £ 08|
= ms [Ty pq (b= ma®) f25505) ||

+ e [T g (= me)) f2508)|

= e[ g (b=m5(®)) f2500595 )|

+|ms :‘7[37041 <(b—m§

—

(b)) fXSNB\5B>:
(b))

+ |y -‘%,P,q <(b—m§

fX5NB\5R>
=C1+C+CG3+Cy,

where, N =Np g+ 1. Similar with A3, we conclude that C < || ||y, - From Hélder’s
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inequality, Lemma 5 and Lemma 10, we see that

Ca S e (me(6) = m5(®)) Ty g (12715
S % /R TBpa (f%%\sNB) (v)du(y)

rdu(y)> v

rdu(y)) "

S 2w ([ | %500 (7208) 0)

1
S Ker (m /SR ‘%,p,q (f%%\s”B) )
S K rM, g () (x)-

With the same argument of By, we get C3 < || f1[=(,,) - As for Cy, it follows that

“%ﬁ,q ((b - mR(b))fXSNB\5R> ‘
b(z) —mz(b) +m=_(b) —mg(b
<ifle- [, 22 “;((ZB 6@5 iline
e 7y oy )~ )

5VB 1
Sl e 1 g [ 166) ~meze(®ian(a)

S Il

hence we obtain Cy < || f||;- . Combining (14) and (15), we prove the Lemma 11. O

3. Proof of the Theorem 1

In order to prove Theorem 1, we first estimate that for R € (0,%) and w € A},

sup Po({xe 2 : Ty, (f)x) >1}) <e. (16)
1€(0,R) o

Fix xo € Z . Take [ € (0,°0) be large enough such that supp(f;) is contained in
the ball B(xp,!), then we have

sup 1P ({x € B(x0,2): T3, (f)(x) >1}) S RP0(B(x0,21)) <. (17)
t€(0,R) o

From Lemma 7 and a standard limit argument, without loss of generality, we can
suppose that b is bounded function. We note that, for any x € 2"\B(xo,2/) and
y € B(xo,1), d(x,x0) ~ d(x,y). From (8), Minkowski inequality and (3), for any
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x € Z'\B(xy,2l), we observe that,

Thoa 10 < [ 5ol 1ot~ b0y

o Ml
~ A(xo0,d(x,x0))
C.

= 18
A(x0,d(x,x0))’ (18)

where C. is a positive constant just depending on f. Note that u(.2") = e, thus for
Xo € %,

lim A (xg,r) = lim u (B (xp,r)) = ee.
F—c0 F—>00

Therefore, we easily see that for any ¢ € (0,00), there exists r; € (0,0) such that % <
A(xo,7¢). If there exists 7 € (0,00) such that for any r € (0,e0), % < A(xo,r), then for
all 1 € (7,00) and r € (0,00), % < A(xg,r). Let

A . _ C.

f:=inf< 1 € (0,00): - < A(xo,r) holds for any r € (0,00) p.
On the other hand, suppose that does not exist ¢ € (0,c0) such that for any r € (0,),

% < A(xg,7), let f = oo. In the case that ¢ € (0,c0), and forany 7 € (7,0) and x € 2
satisfying

Cx

(<
A(x0,d(x,x0))

19)

we get that d(x,x9) = 0 and hence x = xj. Therefore, for any 7 € (0,e0] and # € (0,7),
there exists 7, € (0,°°) such that

Alxo,re) = % and  A(xo,71/2) < % (20)

This indicates that for all x € 2 satisfying (19), we have d(x,xo) < r; . More than that,
notice that for all x € 2°\B(xo,21),

1 1
< .
A(xp,d(x,x0)) ~ A(x0,1)

This indicates that for 7 > C,/A(xo,1), there is no point x € 2 \B(xp,2l) such that
Tg () x) > 1.
Thus, by (18), (2), Lemma 6 with @ € A} and (20), we conclude that if 7 <



1052 S. FENG AND X. TAO

C./A(x0,1), then

s )t”w ({x € 2\B(x,20): T, (f)(x) > z})

= su o (dxe Z\B(xp,20): TP (f)(x) >t
tE(O,C*/E(xO,l)] <{ \ ( 0 ) B,p,q( )( ) })

C.
< sup tpw<{xe,%”:7>t})
1€(0.C, /A (x0.0)] A (xo,d (x,x0))

< sup Yo (B(xp,r1))+ sup Yo ({xo})
1€(0,7] 1€(7.C/A(x0.0)]

<1+ s PoBOon)+ s 2o B0n)
te(O,f},r,e(O,l] te(O,f],r,e(l,oo)
B P
<1+ sup  t?w (B (xo,l)) [—“( (xo,Svr,))]
1 (0.7]) e (te) (B (xo,1))
1

p

Similarly, if 7 > Cy/A (xo,1), we have

e )tl’w ({x € 2\B(x0,20): TP, (f)(x) > z}) < oo,

which, along with (17), implies (16).
From Lemma 9, Lemma 8, (13), Lemma 11 and Lemma 3, we have

==

suprm ({xe A %€p7q(f)( ) >t}>

t>0

==

Ssupro ({ve 2: M5 (74,,0) ) >1})

t>0

<

< suprw
>0

xe 2 Mgt (yﬁpq(f)) (x) >z})

<

t>0

<

< suprw
>0

S ”fHLP(w)

({
Ssupro ({xe 2 M7 (0, (1) () >1})
({

xeZ: M, g U f)(x)>t}>

which completes the Theorem 1.
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