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ON THE JACOBI–DUNKL COEFFICIENTS OF LIPSCHITZ

AND DINI–LIPSCHITZ FUNCTIONS ON THE CIRCLE

OTHMAN TYR ∗ AND RADOUAN DAHER

(Communicated by I. Perić)

Abstract. In this paper, we consider E the set of infinitely differentiable 2π -periodic functions
on the circle T = R/2πZ . We use the distributions in E , as a tool to prove the continuity of the
Jacobi-Dunkl operator. We obtain a generalization of the classical Titchmarsh theorem for the
Jacobi-Dunkl coefficients of a set of functions satisfying Lipschitz conditions, with the use of the
generalized Jacobi-Dunkl translation operator defined by Vinogradov. In addition, we introduce
the discrete Jacobi-Dunkl Dini-Lipschitz class and we obtain an analogue of Younis’ theorem in
this occurrence.

1. Introduction

Let {ck}k∈Z be a sequence of complex numbers such that

∑
k∈Z

|ck| < ∞. (1)

Then
f (x) := ∑

k∈Z

cke
ikx,

is a continuous 2π -periodic function and ck , k ∈ Z are the Fourier coefficients of f .
It is well known that many problems for partial differential equations are reduced to a
power series expansion of the desired solution in terms of special functions or orthogo-
nal polynomials (such as Laguerre, Hermite, Jacobi, Jacobi-Dunkl, etc., polynomials).
In particular, this is associated with the separation of variables as applied to problems
in mathematical physics (see [22, 25]).

One of classical problems in harmonic analysis and approximation theory consists
in finding necessary and sufficient conditions on the Fourier coefficients ck,k ∈ Z of a
function to belong to a generalized Lipschitz class.

In 1937, E.C. Titchmarsh [26, Theorem 85] characterized the set of functions in
L2(R) satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate
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growth of the norm of their Fourier transform, he proved that if f ∈ L2(R) with 0 <
δ < 1, then the following statement(∫

R

| f (t +h)− f (t)|2dt

)1/2

= O(hδ ) as h → 0,

is equivalent to ∫
|λ |�N

| f̂ (λ )|2dλ = O(N−2δ ) as N → ∞,

where f̂ stands for the Fourier transform of f .
Later, Younis generalized this theorem by replacing O(hδ ) by

O

(
hδ

(log 1
h )γ

)
, 0 < δ < 1, γ > 0.

In 1967, R. P. Boas [4] found necessary and sufficient conditions on the Fourier
coefficients ck , k ∈ Z , satisfying the condition (1), to ensure that f belong to a gen-
eralized Lipschitz class. More precisely, in the case {ck}k∈Z ⊂ R

+ (that is for cosine
series with non-negative coefficients), he showed that f ∈ Lip(δ ) , 0 < δ < 1, if and
only if

∞

∑
k=n

ck = O(n−δ ),

or, equivalently,
n

∑
k=1

kck = O(n1−δ ).

After the publication of these articles, this theory has been widely studied by several
authors. It is extended to functions of several variables on R

n and on the torus group
T

n was studied by Younis [28, 29], and has also been generalized to general compact
Lie groups [28]. Recently, it has also been extended to the case of compact Groups [8].
Titchmarsh’s theorem [26] was also extended by Bray [5] to higher dimensional Eu-
clidean spaces in a more general setting using multipliers by modifying the technique
given in the seminal paper of Platonov [19] in the case of rank one noncompact sym-
metric spaces. For an overview of extensions of this theorem in different settings we
refer to [1, 8, 9, 10, 11, 12, 14, 16, 17, 19, 24, 27].

To our knowledge, these theorems for the discrete Jacobi-Dunkl transform have
not derived yet. In our current research, we are concerned with the Jacobi-Dunkl ex-
pansions on I = [−π ,π ] . By using some elements and results related to the discrete
harmonic analysis associated with Jacobi-Dunkl transform introduced in [7], we try to
explore the validity of these results in case of functions of the wider Lipschitz class

in the weighted spaces L
(α ,β )
2 . For this purpose, we use the generalized Jacobi-Dunkl

translation operator which was defined by Vinogradov in [21].
We conclude this introduction by giving the organization of this paper.
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In the next Section, we state some basic notions and results from the discrete har-
monic analysis associated with the Jacobi-Dunkl transform that will be needed through-
out this paper.

In Section 3, we consider E the set of all infinitely differentiable 2π -periodic
functions on the circle T = R/2πZ , we also define E ′ the set of even distributions
on T (that is, continuous linear functionals on E ) and we prove that the Jacobi-Dunkl
differential operator Λα ,β is a continuous linear operator on the space E .

In Section 4, we study among other things the validity of Titchmarsh’s theorem

in the case of functions of Lipschitz class in the space L
(α ,β )
2 , while in Section 5, we

extend this theorem to Younis’s theorem in the case of functions of Dini-Lipschitz class.

2. Preliminaries

In this Section, we will recall some properties of Jacobi and Jacobi-Dunkl poly-
nomials, we present the information we need about the discrete harmonic analysis on
the image under the Jacobi-Dunkl transform. For this purpose, we refer the reader to
[2, 3, 6, 7, 15, 20, 21].

Throughout the paper, N , Z and R are the sets of non-negative integers, integers
and real numbers respectively, fe and fo are the even and odd parts of a function f ,
i.e.,

fe(t) =
f (t)+ f (−t)

2
and fo(t) =

f (t)− f (−t)
2

, t ∈ I.

We shall always assume that α and β are arbitrary real numbers with

α � β � −1
2
, α �= −1

2
, and set ρ := α + β +1.

We shall consider functions f (t) on I := [−π ,π ] . It is convenient to extend them
to 2π -periodic functions on R or, equivalently, regard each f (t) as function on the
circle T = R/2πZ . Unless otherwise stated, I stands for the closed interval [−π ,π ]
and I0 stands for the open interval (−π ,π) .

The Jacobi polynomials ϕ(α ,β )
n are defined by

ϕ(α ,β )
n (t) := R(α ,β )

n (cos(t)), (2)

for all n ∈ N and t ∈ [0,π ] , with x �→ R(α ,β )
n (x) is the normalized Jacobi polynomial of

degree n such that R(α ,β )
n (1) = 1, and are defined as (for more details see [23]).

R(α ,β )
n (x) =

Γ(α +1)
Γ(n+ ρ)

n

∑
k=0

(
n
k

)
Γ(n+ ρ + k)
Γ(α +1+ k)

(
x−1

2

)k

. (3)

Note that for all n ∈ N and t ∈ [0,π ] , we have

|ϕ(α ,β )
n (t)| � 1 and ϕ(α ,β )

n (−t) = ϕ(α ,β )
n (t). (4)
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The Jacobi operator B = Bα ,β defined on C 2 (I0) is given by

B f :=
1
A

(A f ′)′ = f ′′ +
A′

A
f ′,

where A = Aα ,β is the weight function given in the relation

A(θ ) := (1− cosθ )α(1+ cosθ )β |sinθ |, α � β � −1
2
, α �= −1

2
. (5)

For 1 � p < ∞ , we consider the Banach space L
(α ,β )
p of all measurable functions

f (t) on I with finite norm

‖ f‖p :=
(∫ π

−π
| f (t)|pA(t)dt

)1/p

.

For p = ∞ , we define the Banach space L
(α ,β )
∞ = C (I) to be the set of all contin-

uous functions f (t) on I endowed with the norm

‖ f‖∞ = max
t∈I

| f (t)|.

For all n ∈ N , ϕ(α ,β )
n is the unique even C ∞ -solution in (0,π) of the differential

equation
B f (t) = −λ 2

n f (t), f (0) = 1, f ′(0) = 0,

where
λn = λ (α ,β )

n := sgn(n)
√
|n|(|n|+ ρ), n ∈ Z.

The Jacobi function ϕ(α ,β )
n , n ∈ N satisfies the following inequalities.

LEMMA 1. The following inequalities are valid for Jacobi functions ϕ(α ,β )
n :

a) For t ∈ [0,π/2] , we have

1−ϕ(α ,β )
|n| (t) � k1λ 2

n t2, ∀n ∈ Z. (6)

b) For t ∈ [0,1] and t|n| � 1 , we have

1−ϕ(α ,β )
|n| (t) � k2λ 2

n t2, ∀n ∈ Z. (7)

Proof. See [18, Proposition 3.5 and Lemma 3.1]. �

LEMMA 2. The following inequality is true

1−ϕ(α ,β )
|n| (t) � k3, (8)

for t|n|� 1 , where k3 is a certain constant.
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Proof. See [18, Proposition 3.3 ]. �
The Jacobi-Dunkl operator Λ = Λα ,β is defined on I by

Λ f :=
1
A

(A f )′ = f ′ +
A′

A
fo, (9)

with
A′(t)
A(t)

=
(

α +
1
2

)
cot

t
2
−
(

β +
1
2

)
tan

t
2
, t ∈ I0 \ {0} . (10)

Note that if f is even, then Λ f = f ′ , if f is odd, then Λ f = (A f )′/A and if f is an
even C ∞ -function, then we have

Λ2 f = B f .

From [7], for all n ∈ Z , the differential-difference equation{
Λ f (t) = iλn f (t), n ∈ Z,

f (0) = 1,
(11)

admits a unique C ∞ -solution ψ(α ,β )
n (t) on I . It is related to the Jacobi polynomial and

to its derivative by

ψ(α ,β )
n (t) :=

⎧⎨⎩ϕ(α ,β )
|n| (t)− i

λn

d
dt

ϕ(α ,β )
|n| (t) if n ∈ Z

∗,

1 if n = 0.

We note that, for all n ∈ Z and t ∈ I , we have

ψ(α ,β )
−n (t) = ψ(α ,β )

n (−t) = ψ(α ,β )
n (t) and |ψ(α ,β )

n (t)| � 1. (12)

For all n, p ∈ Z , we have the orthogonality formula given by (see [7])∫ π

−π
ψ(α ,β )

n (t)ψ(α ,β )
p (t)A(t)dt = (w(α ,β )

n )−1δn,p, (13)

where

w(α ,β )
n =

(∫ π

−π
|ψ(α ,β )

n (t)|2A(t)dt

)−1

: w(α ,β )
0 =

Γ(ρ +1)
22ρΓ(α +1)Γ(β +1)

,

and

w(α ,β )
n =

(2|n|+ ρ)Γ(α + |n|+1)Γ(ρ + |n|)
22ρ+1(Γ(α +1))2Γ(|n|+1)Γ(β + |n|+1)

, ∀n ∈ Z
∗.

By using the relation (see [7])

d
dt

ϕ(α ,β )
|n| (t) = − λ 2

n

4(α +1)
sin(2t)ϕ(α+1,β+1)

|n|−1 (t),
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the function ψ(α ,β )
n can be written in the form

ψ(α ,β )
n (t) = ϕ(α ,β )

|n| (t)+ i
λn

4(α +1)
sin(2t)ϕ(α+1,β+1)

|n|−1 (t). (14)

The discrete Jacobi-Dunkl transform (or the Jacobi-Dunkl coefficients) of a function f

in L
(α ,β )
1 is defined by (see [7])

cn( f ) :=
∫ π

−π
f (t)ψ(α ,β )

n (t)A(t)dt, ∀n ∈ Z. (15)

Now, we consider the Jacobi-Dunkl expansion of f given by

f (t) =
+∞

∑
n=−∞

cn( f )ψ(α ,β )
n (t)w(α ,β )

n , ∀t ∈ I. (16)

THEOREM 1. (Parseval formula) If f ∈ L
(α ,β )
2 , then we have

‖ f‖2 =

(
+∞

∑
n=−∞

|cn( f )|2w(α ,β )
n

)1/2

. (17)

Proof. See [7, Theorem 3.4]. �
In the following, we need to recall some results cited by Vinogradov in [21], where

he introduced the generalized Jacobi-Dunkl translation operator [21, Lemma 1]. First,
we will introduce some notations that we require. We denote by

xλ
+ :=

{
xλ if x > 0, λ ∈ R,

0 if x � 0,

x+ := x1
+.

aα ,β :=
∫ 1

0
r2β+1(1− r2)α−β−1dr =

Γ(β +1)Γ(α −β )
2Γ(α +1)

, α > β > −1.

bβ :=
∫ π

0
(sinθ )2β dθ =

√
πΓ(β + 1

2 )
Γ(β +1)

, β > −1
2
.

cα ,β := aα ,β bβ =
√

πΓ(α −β )Γ(β + 1
2 )

2Γ(α +1)
, α > β > −1

2
.

Gα ,β :=

⎧⎪⎪⎨⎪⎪⎩
R\ {2nπ}n∈Z

if α > β � − 1
2 ,

R\ {nπ}n∈Z
if α = β > − 1

2 ,

/0 if α = β = − 1
2 .

For h, t ∈ Gα ,β and θ ,χ ∈ I ,

σh,t,θ (χ) :=
cos θ

2 cos(χ)− cos h
2 cos t

2

sin h
2 sin t

2
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and

Q(h, t,θ ,χ) := 1− cos2
h
2
− cos2

t
2
− cos2

θ
2

+2cos
h
2

cos
t
2

cos
θ
2

cos(χ).

For α > β > − 1
2 ,

W (h, t,θ ) :=
|sin h

2 sin t
2 sin θ

2 |−2α

2ρ+2cα ,β

∫ π

0

(
1−σh,t,θ + σθ ,h,t + σt,θ ,h

)
(χ)

×Qα−β−1
+ (h,t,θ ,χ)sin2β (χ)dχ .

For α > β = − 1
2 ,

W (h, t,θ ) :=
|sin h

2 sin t
2 sin θ

2 |−2α

2α+7/2aα ,− 1
2

[
(
1−σh,t,θ + σθ ,h,t + σt,θ ,h

)
(0)Qα− 1

2
+ (h,t,θ ,0)

+
(
1−σh,t,θ + σθ ,h,t + σt,θ ,h

)
(π)Qα− 1

2
+ (h,t,θ ,π)].

For α = β > − 1
2 ,

W (h, t,θ ) :=

(
1− cos2(h)− cos2(t)− cos2(θ )+2cos(h)cos(t)cos(θ )

)α− 1
2

+

2bα |sin(h)sin(t)sin(θ )|2α

×
(

1+
sin(h+ t)
sin(θ )

)(
1− cos(θ )− cos(h)cos(t)

sin(h)sin(t)

)
.

The generalized Jacobi-Dunkl translation operator is defined for f ∈ L
(α ,β )
2 and

t,h ∈ I by

T h f (t) :=

⎧⎨⎩
∫ π

−π
f (θ )W (h,t,θ )A(θ )dθ if h,t ∈ Gα ,β ,

f (t +h) if h /∈ Gα ,β or t /∈ Gα ,β .

It is also shown that for f ∈ L
(α ,β )
2

cn(T h f ) = ψ(α ,β )
n (h)cn( f ), (18)

for all n ∈ Z , h ∈ I , and the product formula

T hψ(α ,β )
n (t) = ψ(α ,β )

n (h)ψ(α ,β )
n (t), (19)

holds.

THEOREM 2. If f ∈ L
(α ,β )
2 , then T h f ∈ L

(α ,β )
2 and we have

‖T h f‖2 � ‖ f‖2, ∀h ∈ I. (20)
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Proof. See [21, Theorem 3]. �

For every f ∈ L
(α ,β )
2 , we define the differences Δm

h f of order m , m = 1,2, . . . ,
with step h , 0 < h < π by:

Δm
h f (t) = (T h +T −h−2IL2)

m f (t),

where IL2 is the identity operator in L
(α ,β )
2 .

3. Auxiliary results

In order to get our results, we will need some auxiliary results.
Throughout the paper c1 , c2 , c3, . . . are positive constants, which may be differ-

ent in different formulas and may depend on α,β and other parameters (we usually
indicate them)

We note that the procedure for proving the results in this Section is similar to that
in Platonov’s paper [18].

We denote by E = E (I) , the set of all infinitely differentiable 2π -periodic func-
tions on R such that for all k = 0,1, . . . ,

Nk( f ) :=
k

∑
j=0

sup
t∈I

|∂ j
t f (t)| < +∞,

where f ∈ E and ∂t is the operator of differentiation with respect to t .
The topology of E is defined by the semi-norms Nk , k ∈ N .
We define another system of seminorms on E by putting

Ñk( f ) :=
k

∑
j=0

sup
t∈I

|∂ j
t (Λ f )(t)|, k ∈ N.

Let E ′ = E ′(I) be the set of distributions on I (that is, continuous linear functionals on

E ). The spaces L
(α ,β )
2 are embedded in E ′ by the formula

〈 f ,ϕ〉2 :=
∫ π

−π
f (t)ϕ(t)A(t)dt,

for all f ∈ L
(α ,β )
2 and ϕ ∈ E .

LEMMA 3. For every k ∈ N , there is a number c1 = c1(k) > 0 such that for all
f ∈ E , we have

sup
t∈I

|∂ k
t (Λ f )(t)| � c1Nk+1( f ). (21)

Proof. Let f ∈ E and k ∈ N . It follows from (9) that

∂ k
t (Λ f )(t)

= ∂ k+1
t ( f )(t)+

(
α +

1
2

)
∂ k
t

((
cot

t
2

)
fo(t)

)
−
(

β +
1
2

)
∂ k
t

((
tan

t
2

)
fo(t)

)
.
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Thus, we have the inequality

sup
t∈I

|∂ k
t (Λ f )(t)| � sup

t∈I
|∂ k+1

t f (t)|+
(

α +
1
2

)
sup
t∈I

∣∣∣∂ k
t

((
cot

t
2

)
fo(t)

)∣∣∣
+
(

β +
1
2

)
sup
t∈I

∣∣∣∂ k
t

((
tan

t
2

)
fo(t)

)∣∣∣ .
Let us estimate each term on the right-hand side of the above inequality. Clearly,

sup
t∈I

|∂ k+1
t f (t)| � Nk+1( f ).

Since fo(0) = 0, one can represent fo(t) in the form

fo(t) =
∫ t

0
[ fo(s)]′ds =

∫ t

0
f ′e(s)ds = t

∫ 1

0
f ′e(tu)du.

Then (
cot

t
2

)
fo(t) = t

(
cot

t
2

)∫ 1

0
f ′e(tu)du. (22)

We put for a moment

a(t) :=

⎧⎪⎪⎨⎪⎪⎩
t cot

t
2

for t ∈ I0 \ {0},
2 for t = 0,

0 for t = −π or t = π .

Clearly a(t) ∈ C ∞(I) . Put
Aj = max

t∈I
|∂ j

t a(t)|.
By Leibniz’s formula and relation (22), we have

∂ k
t

((
cot

t
2

)
fo(t)

)
=

k

∑
j=0

(
k
j

)
∂ k− j
t (a(t))

(∫ 1

0
u j f ( j+1)

e/o (tu)du

)
, (23)

where
(k

j

)
is the binomial coefficient and

f ( j+1)
e/o (tu) =

⎧⎨⎩ f ( j+1)
e (tu) if j is even,

f ( j+1)
o (tu) if j is odd.

It is also clear that,∣∣∣∣∫ 1

0
u j f ( j+1)

e/o (tu)du

∣∣∣∣ � sup
t∈I

| f ( j+1)
e/o (t)| � 1

2

(
sup
t∈I

| f ( j+1)(t)|+ sup
t∈I

| f ( j+1)(−t)|
)

= sup
t∈I

| f ( j+1)(t)| �
k+1

∑
j=0

sup
t∈I

| f ( j)(t)| = Nk+1( f ).
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Then, it follows from (23) that∣∣∣∂ k
t

((
cot

t
2

)
fo(t)

)∣∣∣� c2Nk+1( f ), (24)

where c2 = ∑k
j=0

(k
j

)
Ak− j. On the other hand, we note that

sup
t∈I

∣∣∣∂ k
t

((
tan

t
2

)
fo(t)

)∣∣∣
� sup

t∈[−π ,0]

∣∣∣∂ k
t

((
tan

t
2

)
fo(t)

)∣∣∣+ sup
t∈[0,π ]

∣∣∣∂ k
t

((
tan

t
2

)
fo(t)

)∣∣∣ . (25)

We estimate each term on the right-hand side of (25) separately. Since the function
fo(t) is odd and 2π -periodic, we have fo(−π)=− fo(π) and fo(−π)= fo(π) , whence
fo(±π) = 0. One can represent the function fo(t) in the form

fo(t) = −
∫ π

t
f ′e(s)ds = (t−π)

∫ 1

0
f ′e(π +(t−π)u)du,

Then (
tan

t
2

)
fo(t) = b+(t)

∫ 1

0
f ′e(π +(t−π)u)du, (26)

where

b+(t) :=

⎧⎨⎩ (t−π) tan
t
2

for t ∈ [0,π),

−2 for t = π .

Clearly, b+(t) ∈ C ∞([0,π ]) .
Using (26) and arguing as in the proof of (24), we get

sup
t∈[0,π ]

∣∣∣∂ k
t

((
tan

t
2

)
fo(t)

)∣∣∣� c3Nk+1( f ), (27)

where c3 = c3(k) is a constant.
On the other side, since fo(−π) = 0, then we can represent the function fo(t) in

the form

fo(t) =
∫ t

−π
f ′e(s)ds = (t + π)

∫ 1

0
f ′e (−π +(t + π)u)du.

Then (
tan

t
2

)
fo(t) = b−(t)

∫ 1

0
f ′e(−π +(t + π)u)du, (28)

where

b−(t) :=

⎧⎨⎩ (t + π) tan
t
2

for t ∈ (−π ,0],

−2 for t = −π .

Clearly, b−(t) ∈ C ∞([−π ,0]) .
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Using (28) and arguing as in the proof of (24), we get

sup
t∈[−π ,0]

∣∣∣∂ k
t

((
tan

t
2

)
fo(t)

)∣∣∣� c4Nk+1( f ), (29)

where c4 = c4(k) is a constant.
Finally, inequality (21) follows from (24), (25), (27) and (29). �

Lemma 3 and the definition of the seminorms Nk yield the following corollary.

COROLLARY 1. For all k ∈ N and f ∈ E , we have

Nk(Λ f ) � c5Nk+1( f ), (30)

where c5 = c5(k) is a constant.

LEMMA 4. For every k ∈ N , there is a number c6 = c6(k) > 0 such that for all
f ∈ E , we have

sup
t∈I

|Λk f (t)| � c6Nk( f ). (31)

Proof. It follows from Corollary 1 that

sup
t∈I

|Λk f (t)| = N0(Λk f ) � c5(0)N1(Λk−1 f ) � · · ·� c5(0)c5(1) · · · c5(k−1)Nk( f ).

This proves (31) with c6 = ∏k−1
j=0 c5( j) . �

LEMMA 5. For every k ∈ N , there is a number c7 = c7(k) > 0 such that we have

sup
t∈I

|∂ k
t f (t)| � c7Nk−1(Λ f ), (32)

for all f ∈ E .

Proof. Let f = fe + fo ∈ E . We note first that

sup
t∈I

|∂ k
t f (t)| � sup

t∈[−π ,−π/2]
|∂ k

t f (t)|+ sup
t∈[−π/2,π/2]

|∂ k
t f (t)|+ sup

t∈[π/2,π ]
|∂ k

t f (t)|. (33)

We estimate each term on the right-hand side of (33) separately.
If f is even, then Λ fe = f ′e and we have

sup
t∈[−π ,−π/2]

|∂ k
t fe(t)| = sup

t∈[−π ,−π/2]
|∂ k−1

t ( f ′e(t))| = sup
t∈[−π ,−π/2]

|∂ k−1
t (Λ fe)(t)|. (34)
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Since Λ fe = 1/2(Λ f +Λ f̃ ) and Λ f̃ = −Λ f where f̃ (t) = f (−t) , then it follows from
(34) that

sup
t∈[−π ,−π/2]

|∂ k
t fe(t)| � 1

2

(
sup
t∈I

|∂ k−1
t (Λ f )(t)|+ sup

t∈I
|∂ k−1

t (Λ f̃ )(t)|
)

� sup
t∈I

|∂ k−1
t (Λ f )(t)| �

k−1

∑
j=0

sup
t∈I

|∂ j
t (Λ f )(t)|

= Nk−1(Λ f ). (35)

Similarly, we show that

sup
t∈[−π/2,π/2]

|∂ k
t fe(t)| � Nk−1(Λ f ) and sup

t∈[π/2,π ]
|∂ k

t fe(t)| � Nk−1(Λ f ). (36)

The other side, if f is odd, then

Λ fo = f ′o +
A′

A
fo =

(A fo)′

A
. (37)

From (37), we can represent fo(t) as

fo(t) = − 1
A(t)

∫ π

t
Λ fo(s)A(s)ds, (38)

by virtue of fo(π) = 0. So,

f ′o(t) =
∫ π

t

A′(t)A(s)
A2(t)

Λ fo(s)ds+ Λ fo(t)

= (π − t)
∫ 1

0

A′(t)
A2(t)

A(π +(t−π)u)Λ fo(π +(t−π)u)du+ Λ fo(t). (39)

We put for a moment

a(t,u) :=

⎧⎨⎩
A′(t)
A2(t)

(π − t)A(π +(t−π)u) for t ∈ [π/2,π),

−(2β +1)u2β+1 for t = π .

We also put

σ(x) :=

⎧⎨⎩
sinx
x

for x �= 0,

1 for x = 0,

rα ,β (t,u) :=
(

σ(tu/2)
σ(t/2)

)2α+1(cos(tu/2)
cos(t/2)

)2β+1

. (40)

Since σ(x) ∈ C ∞(R) , we see that rα ,β (t,u) ∈ C ∞ ((−π ,π)× [0,1]).



ON THE JACOBI-DUNKL COEFFICIENTS OF LIPSCHITZ... 31

One can represent the function a(t,u) in the form

a(t,u) =
[(

α +
1
2

)
(π − t)cot

t
2
−
(

β +
1
2

)
(π − t) tan

t
2

]
u2β+1rβ ,α(π − t,u).

It follows that a(t,u) is defined on the rectangle [π/2,π ]× [0,1] and is infinitely dif-
ferentiable with respect to t . For every k ∈ N , the function ∂ k

t a(t,u) is continuous on
the rectangle [π/2,π ]× [0,1] .

For every j ∈ N , we put

Aj = max
{
|∂ j

t a(t,u)| : (t,u) ∈ [π/2,π ]× [0,1]
}

.

It follows from (39) that

f ′o(t) =
∫ 1

0
a(t,u)Λ fo(π +(t−π)u)du+ Λ fo(t). (41)

Then, we have

∂ k
t fo(t) = ∂ k−1

t ( f ′o(t))

=
∫ 1

0

(
k−1

∑
j=0

(
k−1

j

)
(∂ k−1− j

t a(t,u))(Λ fo)( j)(π +(t−π)u)u j

)
du

+∂ k−1
t (Λ fo)(t).

So,

sup
t∈[π/2,π ]

|∂ k
t fo(t)| �

k−1

∑
j=0

(
k−1

j

)
Ak−1− j sup

t∈I
|∂ j

t (Λ fo)(t)|+ sup
t∈I

|∂ k−1
t (Λ fo)(t)|.

Therefore,

sup
t∈[π/2,π ]

|∂ k
t fo(t)| �

(
k−1

∑
j=0

(
k−1

j

)
Ak−1− j

)
Nk−1(Λ fo)+Nk−1(Λ fo).

Using the same technique as in (35), we get

sup
t∈[π/2,π ]

|∂ k
t fo(t)| � c8Nk−1(Λ f ), (42)

with c8 = c8(k) = (1+ ∑k−1
j=0

(k−1
j

)
Ak−1− j) .

To estimate the first term on the right-hand side of (33), we deduce from the equal-
ity fo(−π) = 0 that

fo(t) =
1

A(t)

∫ t

−π
Λ fo(s)A(s)ds.
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Thus,

f ′o(t) = −
∫ t

−π

A′(t)A(s)
A2(t)

Λ fo(s)ds+ Λ fo(t) (43)

= −(π + t)
∫ 1

0

A′(t)
A2(t)

A(−π +(t + π)u)Λ fo(−π +(t + π)u)du+ Λ fo(t).

We put for a moment

b(t,u) :=

⎧⎨⎩− A′(t)
A2(t)

(π + t)A(−π +(t + π)u) for t ∈ (−π ,−π/2],

−(2β +1)u2β+1 for t = −π .

One can represent the function b(t,u) in the form

b(t,u) =
[
−
(

α +
1
2

)
(π + t)cot

t
2

+
(

β +
1
2

)
(π + t) tan

t
2

]
u2β+1rβ ,α(π + t,u).

(44)
where rβ ,α(t,u) is the function (40) with and interchanged. We easily see from (44)
that the function b(t,u) is defined on the rectangle [−π ,−π/2]× [0,1] and is infinitely
differentiable with respect to t . For every k ∈ N , the function ∂ k

t b(t,u) is continuous
on the rectangle [−π ,−π/2]× [0,1] .

It follows from (43) that

f ′o(t) =
∫ 1

0
b(t,u)Λ fo(−π +(t + π)u)du+ Λ fo(t). (45)

Using (45) and arguing as in the proof of (41), we get

sup
t∈[−π ,−π/2]

|∂ k
t fo(t)| � c9Nk−1(Λ f ). (46)

To estimate the second term on the right-hand side of (33), we deduce from the
equality fo(0) = 0 that

fo(t) =
1

A(t)

∫ t

0
Λ fo(s)A(s)ds.

Thus,

f ′o(t) = −
∫ t

0

A′(t)A(s)
A2(t)

Λ fo(s)ds+ Λ fo(t)

= −
∫ 1

0

tA′(t)
A2(t)

A(tu)Λ fo(tu)du+ Λ fo(t). (47)

We put for a moment

c(t,u) :=

⎧⎨⎩− tA′(t)
A2(t)

A(tu) for t ∈ [−π/2,π/2]\ {0},
−(2α +1)u2α+1 for t = 0.
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One can represent the function c(t,u) in the form

c(t,u) =
[
−
(

α +
1
2

)
t cot

t
2

+
(

β +
1
2

)
t tan

t
2

]
u2α+1rα ,β (t,u). (48)

We easily see from (48) that the function c(t,u) is defined on the rectangle [−π/2,π/2]
× [0,1] and is infinitely differentiable with respect to t . For every k ∈ N , the function
∂ k
t c(t,u) is continuous on the rectangle [−π/2,π/2]× [0,1] .

It follows from (47) that

f ′o(t) =
∫ 1

0
c(t,u)Λ fo(tu)du+ Λ fo(t). (49)

Using (49) and arguing as in the proof of (41) and (45), we get

sup
t∈[−π/2,π/2]

|∂ k
t fo(t)| � c10Nk−1(Λ f ). (50)

Then, by combining relations (34), (35) (36), (42), (46) and (50), we have

sup
t∈I

|∂ k
t f (t)| � sup

t∈I
|∂ k

t fe(t)|+ sup
t∈I

|∂ k
t fo(t)| � c11Nk−1(Λ f ), (51)

where c11 = c11(k) is a constant. �
Lemma 5 and the definition of the seminorm Nk yield the following corollary.

COROLLARY 2. For all k ∈ N and f ∈ E , we have

Nk( f ) � c12(Nk−1(Λ f )+Nk−1( f )), (52)

where c12 = c12(k) is a constant.

THEOREM 3. For every k ∈ N , there are positive numbers C1 = C1(k) and C2 =
C2(k) such that for all functions f ∈ E , we have

Ñk( f ) � C1Nk( f ), (53)

Nk( f ) � C2Ñk+1( f ). (54)

Proof. Using Lemma 4, we get

Ñk( f ) =
k

∑
j=0

sup
t∈I

|Λ j
t f (t)| �

k

∑
j=0

c6( j)Nj( f ) �
(

k

∑
j=0

c6( j)

)
Nk( f ). (55)

This proves inequality (53) with C1 = ∑k
j=0 c6( j).

The proof of inequality (54) is by induction on k . For k = 0 this inequality holds
with C2(0) = 1. If it holds for k−1, then we use (52) to obtain that

Nk( f ) � c12(k)(Nk−1(Λ f )+Nk−1( f ))
� c12(k)C2(k−1)(Ñk(Λ f )+ Ñk( f ))
� 2c12(k)C2(k−1)Ñk+1( f ).

This proves (54) with C2(k) = 2c12(k)C2(k−1) . �
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COROLLARY 3. The systems of seminorms {Nk( f ),k ∈ N} and {Ñk( f ),k ∈ N}
determine the same topology on the vector space E .

COROLLARY 4. The Jacobi-Dunkl differential operator Λ is a continuous linear
operator on the space E .

We extend the action of Λ to distributions in E ′ by the formula

〈Λ f ,ϕ〉2 := 〈 f ,Λϕ〉2, f ∈ E ′, ϕ ∈ E . (56)

In particular, the action of Λ is defined on every function f ∈ L
(α ,β )
2 , but Λ is a distri-

bution in general.
Let Wk

2 be the Sobolev space of order k ∈ N constructed from the Jacobi-Dunkl
operator Λ , that is,

Wk
2 := { f ∈ L

(α ,β )
2 : Λr f ∈ L

(α ,β )
2 , r = 1,2, . . . ,k},

where

Λ0 f = f , Λr f = Λ(Λr−1 f ) , r = 1,2, . . . ,k .

Here the inclusion Λr f ∈ L
(α ,β )
2 means that the distribution Λr f is regular and

corresponds to an ordinary function of class L
(α ,β )
2 .

LEMMA 6. If f ∈ L
(α ,β )
2 , then

cn(Λ f ) = −iλncn( f ), (57)

for all n ∈ Z .

Proof. For every distribution f ∈ E ′ , we put cn( f ) := 〈 f ,ψ(α ,β )
n 〉2,n ∈ Z . It fol-

lows from (11) and (56) that

cn(Λ f ) = 〈Λ f ,ψ(α ,β )
n 〉2

= 〈 f ,Λψ(α ,β )
n 〉2

= 〈 f , iλnψ(α ,β )
n 〉2

= −iλn〈 f ,ψ(α ,β )
n 〉2

= −iλncn( f ).

Then the equality (57) is valid in E ′ , so it is also valid in L
(α ,β )
2 (the spaces L

(α ,β )
2 are

embedded in E ′ ). �

COROLLARY 5. If f ∈Wk
2 , then

cn(Λr f ) = (−i)rλ r
ncn( f ), (58)

for all r = 1,2, . . . ,k.
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4. Generalization of Titchmarsh theorem for discrete
Jacobi-Dunkl of Lipschitz class

In order to give a generalized version of Titchmarsh theorem for the discrete

Jacobi-Dunkl transform in L
(α ,β )
2 . We begin with auxiliary results interesting in them-

selves.
We emphasize that in this paper, the symbol ’O ’ always refers to a global estimate

valid over T .

LEMMA 7. Let 0 < h < π . If f ∈Wk
2 , then for all n ∈ Z , we have

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n = A‖Δk

h(Λ
r f )‖2

2, (59)

where A is a positive constant and r = 0,1,2, . . . ,k.

Proof. According to the relations (14) and (18), we get

cn(Δh f ) = cn(T h f )+ cn(T −h f )−2cn( f )

= (ψ(α ,β )
n (h)+ ψ(α ,β )

n (−h)−2)cn( f )

= 2(ϕ(α ,β )
|n| (h)−1)cn( f ).

Using the proof of recurrence for k , we have

cn(Δk
h f ) = 2k(ϕ(α ,β )

|n| (h)−1)kcn( f ).

In view of formula (58), we get

F (Δk
h(Λ

r f ))(n) = (−i)r2kλ r
n(ϕ

(α ,β )
|n| (h)−1)kcn( f ).

Now, by appealing the Parseval formula (17), we have the desired result. �
Now, we define the discrete Jacobi-Dunkl Lipschitz class:

DEFINITION 1. Let 0 < δ < k . A function f ∈Wk
2 is said to be in the discrete

Jacobi-Dunkl Lipschitz class, denoted by L ipk(δ ;2,α,β ) , if

‖Δk
h(Λ

r f )‖2 = O(hδ ) as h → 0,

where r = 0,1,2, . . . ,k .

Observe that if 0 < δ < σ < 1, then

L ipk(σ ;2,α,β ) ⊂ L ipk(δ ;2,α,β ) .

Indeed, for 0 < h � 1 and δ < σ , we get hσ < hδ , whence the remark follows.
The proof of theorem 4 necessitates the following lemma:
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LEMMA 8. Suppose bn � 0 and 0 < c < d . Then

N

∑
n=1

ndbn = O(Nc),

is equivalent to
+∞

∑
n=N

bn = O(Nc−d).

Proof. See [13, page 101]. �

THEOREM 4. Let 0 < δ < k and f ∈Wk
2 . The following two conditions are equiv-

alent:

(a) f ∈ L ipk(δ ;2,α,β ) ,

(b) ∑
|n|�N

λ 2r
n |cn( f )|2w(α ,β )

n = O(N−2δ ) as N → +∞.

Proof. (a) ⇒ (b) Let f ∈ L ipk(δ ;2,α,β ) . Then we have

‖Δk
h(Λ

r f )‖2 = O(hδ ) as h → 0.

It follows from Lemma 7 that

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n = A‖Δk

h(Λ
r f )‖2

2

� Ch2δ ,

as h → 0, where C is a positive constant.
If 0 � |n| � 1/h , hence |n|h � 1 and from formula (7), we have

λ 4k
n h4k � 1

k2k
2

|1−ϕ(α ,β )
|n| (h)|2k.

From this, we get

∑
1�|n|�[ 1

h ]
λ 4k

n λ 2r
n h4k|cn( f )|2w(α ,β )

n

� 1

k2k
2

∑
1�|n|�[ 1

h ]
λ 2r

n |1−ϕ(α ,β )
|n| (h)|2k|cn( f )|2w(α ,β )

n

� 1

k2k
2

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n

= O(h2δ ).
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Here
[

1
h

]
is the integer part of 1

h . Furthermore, by using the fact that λ 2
n is greater than

or equal to n2 for all n ∈ Z , we get

∑
1�|n|�[ 1

h ]
n4kλ 2r

n h4k|cn( f )|2w(α ,β )
n = O(h2δ ).

Consequently,

∑
1�|n|�[ 1

h ]
n4kλ 2r

n |cn( f )|2w(α ,β )
n = O(h2δ−4k) as h → 0. (60)

Thus

∑
1�|n|�N

n4kλ 2r
n |cn( f )|2w(α ,β )

n = O(N4k−2δ ) as N → +∞,

which is equivalent to

N

∑
n=1

n4kλ 2r
n (|cn( f )|2 + |c−n( f )|2)w(α ,β )

n = O(N4k−2δ ) as N → +∞,

by virtue of

(−n)4kλ 2r
−nw

(α ,β )
−n = n4kλ 2r

n w(α ,β )
n , ∀n ∈ Z.

From Lemma 8, we have

+∞

∑
n=N

λ 2r
n (|cn( f )|2 + |c−n( f )|2)w(α ,β )

n = O(N4k−2δ−4k) as N → +∞.

Therefore

∑
|n|�N

λ 2r
n |cn( f )|2w(α ,β )

n = O(N−2δ ),

as N → +∞ , witch complete the proof of the first implication.
(b) ⇒ (a) Suppose now that

∑
|n|�N

λ 2r
n |cn( f )|2w(α ,β )

n = O(N−2δ ) as N → +∞,

we have to show that

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n = O(h2δ ) as h → 0.

We write
+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n � J1 +J2,

where
J1 = ∑

1�|n|�[ 1
h ]

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n
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and
J2 = ∑

|n|�[ 1
h ]

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n .

We estimate them separately. Let us now estimate J1 . First, note that

λ 2
n = 4n2

(
1+

ρ
|n|
)

� 4n2(1+ ρ) for |n| � 1, n ∈ Z. (61)

It follows from this, the inequality (6) in Lemma 1 and formula (60) that

J1 = ∑
1�|n|�[ 1

h ]
λ 2r

n |1−ϕ(α ,β )
|n| (h)|2k|cn( f )|2w(α ,β )

n

� c2k
1 h4k ∑

1�|n|�[ 1
h ]

λ 4k
n λ 2r

n |cn( f )|2w(α ,β )
n

� c2k
1 h4k42k(1+ ρ)2k ∑

1�|n|�[ 1
h ]

n4kλ 2r
n |cn( f )|2w(α ,β )

n

= O(h4k+2δ−4k)

= O(h2δ ).

On the other hand, it follows from (4) that

J2 = ∑
|n|�[ 1

h ]
λ 2r

n |1−ϕ(α ,β )
|n| (h)|2k|cn( f )|2w(α ,β )

n .

� 22k ∑
|n|�[ 1

h ]
λ 2r

n |cn( f )|2w(α ,β )
n .

= O(h2δ ),

and this ends the proof of this theorem. �
We conclude this Section by the following immediate consequence.

COROLLARY 6. Let 0 < δ < k and f ∈Wk
2 . If

f ∈ L ipk(δ ;2,α,β ),

then

∑
|n|�N

|cn( f )|2w(α ,β )
n = O(N−2δ−2r) as N → +∞.

5. Generalization of Titchmarsh theorem for the discrete
Jacobi-Dunkl of Dini-Lipschitz class

In this Section, we will consider a different condition, the so-called Dini-Lipschitz
condition on Wk

2 and we will generalise the corresponding Titchmarsh theorems (cf.
[26, Theorem 85]).
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DEFINITION 2. Let γ ∈ R and 0 < δ < k . A function f ∈Wk
2 is said to be in the

discrete Jacobi-Dunkl Dini-Lipschitz class, denoted by L ipk(δ ,γ;2,α,β ) , if

‖Δk
h(Λ

r f )‖2 = O

(
hδ
(

log
1
h

)γ)
as h → 0,

where r = 0,1,2, . . . ,k .

LEMMA 9. For all n ∈ Z , we have

1−ϕ(α ,β )
|n| (t)

λ 2
n t2

→ 1
4(α +1)

as t → 0.

Proof. It follows from relation (2) and (3) that

1−ϕ(α ,β )
|n| (t)

λ 2
n t2

=
1

4(α +1)

(
sin t/2
t/2

)2

+o

((
sin t/2
t/2

)4
)

.

We immediately get the desired result when t tends to 0. �

THEOREM 5. Let δ > 2k and γ � 0 . If a function f belongs to L ipk(δ ,γ;2,α,β ) ,
then f is null almost everywhere on I .

Proof. Assume that f ∈ L ipk(δ ,γ;2,α,β ) , and fix r = 0,1, . . . ,k . Then

‖Δk
h(Λ

r f )‖2 � K
hδ

(log 1
h)−γ

where K is a positive constant, being the last inequality valid for sufficiently small
values of h .

It follows from Lemma (7) that

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n � K2 h2δ

(log 1
h)−2γ

.

Therefore,

1
h4k

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n � K2 h2(δ−2k)

(log 1
h )−2γ .

Since δ > 2k and −2γ � 0, we have

lim
h→0

h2(δ−2k)

(log 1
h)−2γ

= 0.
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Thus

lim
h→0

+∞

∑
n=−∞

λ 2(r+2k)
n

⎛⎝ |1−ϕ(α ,β )
|n| (h)|

h2λ 2
n

⎞⎠2k

|cn( f )|2w(α ,β )
n = 0.

Now, taking into consideration Lemma 9 and thanks to Fatou theorem, we have

+∞

∑
n=−∞

|λ (r+2k)
n cn( f )|2w(α ,β )

n = 0.

Hence cn( f ) = 0 for all n ∈ Z . the result follows from the injectivity of cn . �

For the proof of the second Titchmarsh theorem we will be using an extension of
Duren’s lemma (cf. [29, p. 101]), Lemma 8 in this paper, adapted to the Dini-Lipschitz
condition.

LEMMA 10. Suppose a ∈ R , bn � 0 and 0 < c < d . Then

N

∑
n=1

ndbn = O(Nc(logN)a) as N → +∞,

if and only if
+∞

∑
n=N

bn = O(Nc−d(logN)a) as N → +∞.

Proof. See [8, Lemma 4.1]. �

THEOREM 6. Let γ ∈ R , 0 < δ < k and f ∈Wk
2 . The following two conditions

are equivalent:

(A) f ∈ L ipk(δ ,γ;2,α,β ) ,

(B) ∑
|n|�N

λ 2r
n |cn( f )|2w(α ,β )

n = O
(
N−2δ (logN)2γ

)
as N → +∞.

Proof. We first note that the theorem is proved in the case where γ = 0, by virtue
of Theorem 4 and the fact that

L ipk(δ ,0;2,α,β ) = L ipk(δ ;2,α,β ) .

Let us now show the first implication (A) ⇒ (B) : Let f ∈ L ipk(δ ,γ;2,α,β ) , with
γ �= 0. Then we have

‖Δk
h(Λ

r f )‖2 = O

(
hδ
(

log
1
h

)γ)
as h → 0.
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It follows from Lemma 7 that

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n = O

(
h2δ
(

log
1
h

)2γ
)

as h → 0.

If 0 � |n| � 1
h , hence |n|h � 1, and the second assertion of Lemma 1, we obtain

λ 4k
n h4k � 1

k2k
2

|1−ϕ(α ,β )
|n| (h)|2k.

Therefore,

∑
1�|n|�[ 1

h ]
n4kλ 2r

n |cn( f )|2w(α ,β )
n = O

(
h2δ−4k

(
log

1
h

)2γ
)

,

by virtue of λ 2
n � n2 . Putting N = 1/h , we may write this inequality in the following

form:

∑
1�|n|�N

n4kλ 2r
n |cn( f )|2w(α ,β )

n = O
(
N4k−2δ (logN)2γ

)
.

Equivalent to

N

∑
n=1

n4kλ 2r
n (|cn( f )|2 + |c−n( f )|2)w(α ,β )

n = O
(
N4k−2δ (logN)2γ

)
.

From Lemma 10, we have

N

∑
n=1

λ 2r
n (|cn( f )|2 + |c−n( f )|2)w(α ,β )

n = O
(
N−2δ (logN)2γ

)
.

Consequently

∑
|n|�N

λ 2r
n |cn( f )|2w(α ,β )

n = O
(
N−2δ (logN)2γ

)
, (62)

Thus, the first implication is proved.
Let’s show the reverse implication (B) ⇒ (A) : Suppose now that

∑
|n|�N

λ 2r
n |cn( f )|2w(α ,β )

n = O
(
N−2δ (logN)2γ

)
as N → +∞,

i.e.,
+∞

∑
n=N

λ 2r
n (|cn( f )|2 + |c−n( f )|2)w(α ,β )

n = O
(
N−2δ (logN)2γ

)
,

as N → +∞ . It follows from Lemma 10 that

N

∑
n=1

n4kλ 2r
n (|cn( f )|2 + |c−n( f )|2)w(α ,β )

n = O
(
N4k−2δ (logN)2γ

)
. (63)
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According (59), we write

‖Δk
h(Λ

r f )‖2
2 = A−1

+∞

∑
n=−∞

λ 2r
n |1−ϕ(α ,β )

|n| (h)|2k|cn( f )|2w(α ,β )
n

� A−1(I1 +I2) = A−1

(
∑

0�|n|�N

+ ∑
|n|�N

)
.

It follows from (6), (61) and (63) that

I1 � c2k
1 h4k ∑

0�|n|�N

λ 4k
n λ 2r

n |cn( f )|2w(α ,β )
n

� (4c1(ρ +1))2kh4k ∑
1�|n|�N

n4kλ 2r
n |cn( f )|2w(α ,β )

n

= (4c1(ρ +1))2kh4k
N

∑
n=1

n4kλ 2r
n (|cn( f )2 + |c−n( f )|2)w(α ,β )

n

= O
(
N4k−2δ−4k(logN)2γ

)
= O

(
N−2δ (logN)2γ

)
.

On the other hand, it follows from (4) and (62) that

I2 � 22k ∑
|n|�N

λ 2r
n |cn( f )|2w(α ,β )

n = O
(
N−2δ (logN)2γ

)
.

Consequently,

‖Δk
h(Λ

r f )‖2 = O

(
hδ
(

log
1
h

)γ)
as h → 0,

and this ends the proof of this theorem. �

COROLLARY 7. Let 0 < δ < k and f ∈Wk
2 . If

f ∈ L ipk(δ ,γ;2,α,β ),

then

∑
|n|�N

|cn( f )|2w(α ,β )
n = O(N−2δ−2r(logN)2γ) as N → +∞.
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