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COUNTER-EXAMPLES CONCERNING BRECKNER-CONVEXITY

ATTILA HAZY AND JUDIT MAKO

(Communicated by K. Nikodem)

Abstract. In this paper, we examine convexity type inequalities. Let D be a nonempty convex
subset of a linear space, ¢ >0 and ¢ : D—D — R be a given even function. The inequality

wg)@f(xncf(y)w(x—y) (xyeD)

is the focus of our examinations. We will construct an example to show that for ¢ = 1, this
Jensen type inequality does not imply the convexity of the function. Then, we compare this
inequality with Hermite—Hadamard type inequalities.

1. Introduction

Denote by R, N and R the sets of real numbers, positive integers, and nonneg-
ative real numbers, respectively. Let D be a nonempty convex subset of a linear space
X and denote by D* the set {x—y:x,y € D}. Let o : D* — R be a nonnegative even
error function.

The convexity has many applications and many generalization. In the first step,
we consider the following. We say that a function f: D — R is o-Jensen convex, if

forall x,y € D,
f<x;y) < f(X)erf(y)

Many authors examined this inequality from many context. For example, Hizy and
Pales ([8, 10, 11]), Maké and Pales ([15, 17, 18]), Tabor and Tabor ([24, 25]), Tabor,
Tabor and Zoldak ([27]). If o is constant zero, we have the notion of classical Jensen-
convexity.

In this paper, we will examine the following Jensen type inequality, which is a kind
of generalization of the previous notion. Let ¢ > 0. We say that a function f: D — R
is (c, o) -Jensen convex if for all x,y € D,

+o(x—y). ey

X+
£(57) <erer) + ata). @
When ¢ # % this inequality was examined by Breckner ([2, 3]), Breckner and Orban
([41), Hazy [9], Burai and Hazy [5], Burai, Hizy and Juhdsz [6].

The following theorem is the famous Bernstein-Doetsch theorem ([1]).
m subject classification (2020): 39B22, 39B12.
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THEOREM A. Let I be a nonvoid interval, f:1 — R be locally bounded from
above on I and assume that f is Jensen-convex, then f is convex.

In Section 2, we will prove that if ¢ > 1, this connection is not valid between
(¢, o) -Jensen convexity and convexity type inequality.

Now let us recall the theorem of Nikodem, Riedel, and Sahoo from [22]. They
proved that from an approximate convexity on an interval I, that is

flx+ (=) <tf@)+(1-0)fy)+e  (vyel),

we can get Hermite—Hadamard type inequalities, namely,

f(”y) /ftx+(1—t))dt+8 (r,y € 1),

and .
x) +
0
But the converse implications are not true. In fact they constructed some counter-
example. In Section 3, we would like to comprise the new generalized Jensen-convexity
type inequality ((c, o) -Jensen convexity) and Hermite—-Hadamard type inequalities and
we will also construct some counter-examples.

+e (x,y€l).

2. Counter-examples concerning Bernstein—-Doetsh theorem

For the sake of simplicity, assume that X =R and D =1 is a real interval of R
and oo = 0. Then (2) reduces to,

f(55E) <er@+ere)  yen. G)

In the following, we will call this inequality c-Jensen inequality. With the substitution
X=y,we have that 0 < (2c — 1)f(x). This means that if ¢ > 1 then f(x) > 0(x € 1)
and if ¢ < § then f(x) < 0(x € I). We will consider the first case. We are looking for
functions (p [0,1][— R such that, forall 7 € [0, 1] and x,y € I, f satisfies the following
convexity type inequality:

flx+(1=1)y) <o) f(x) +o(1=1)f(y) )

In the sequel, we will construct an example, which shows, there are no such functions
in the case ¢ > 1

PROPOSITION 1. Assume that a function f:1 — R is nonnegative and monotone
increasing, then it is also 1-Jensen convex.

Proof. Let x <y be elements of I, then x < ’% < y. Since f is nondecreasing
and nonnegative, we have that,

£(552) <10 <+ 10,
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which means that f is 1-Jensen convex. [J
The following easy-to-prove propositions will be useful in the sequel.

PROPOSITION 2. Assume that f:1 — R is 1-Jensen convex, then, for all d > 0,
f+d is also 1-Jensen convex.

PROPOSITION 3. Let % <c<d. Assume that f: 1 — R is c-Jensen convex, then,
it is also d -Jensen convex.
Let’s consider our first example, namely, for n € N and x € [0,1] let,
fu@) = (2 —2[2%)),  0<x<L (5)
k=0

REMARK. It is easy to see that the function f,(x) is the number of 1’s of the
binary form of [2"*1x].
The following picture will show the graph of f,,, when n=35.

6 o
] o o o o— o—
4 — — o= o0— o— o— o— — 60— o— o

3 o o= o0— o= 0— o— o0— o= 00— o0— o~ o— o— o

2 — — ¢ o — — — O G —

1| o— o= o o o

0

THEOREM 4. The function f, : [0,1]— R defined by (5) is 1-Jensen convex, but
not convex in the sense of (4), i.e., for all n € N, there exist A, € R, with lim,, ... A, =
oo, 1, €]0,1[ and xn,yn € [0,1], such that

Su(tnXn + (L= 12)yn) > Anfu(Xn) + Anfrr(Vn).- (6)

Proof. By the definition, it can be seen that

fnﬂ(x):{ Jn(2%) *o0sxs

1
2 7
fH2x—1)+1 if 1<x<l @

It is also easy to see that, f,(x+3) = fu(x)+ 1, if 0 <x < 1. We will prove the 1-
Jensen convexity of f, by induction. If n = 1, the function f| is monotone increasing,
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thus it is 1-convex. Now suppose that the statement is true for n € N and consider the
casen+ 1. IfO0<x<y< %, we can get 1-Jensen convexity of f,1| by the induction
assumption. If % <x<y<1,wecan get 1-Jensen convexity of f,; by the induction
assumption and proposition 2. Now assume that 0 < x < % and % <y < 1. Then there
are two cases: % < ’% < % or % < ’% < %. Consider the case % < ’% < % (the proof
of the other case is very similar). Then, using (7)

Joe1 () + fur1 (0) = fu(20) + fu(2y = 1) + 1

2x+2y—1
2fn<%)+l

=fu (x—!—y—%)—kl:fn(x—ky)—l—i-l

= fulx+y)

= fa+1 (%) .

This means the 1-Jensen convexity of f,.
Let’s see the proof of the nonconvexity of f,. We prove the inequality (6). Let
n >3 be an integer and let A, = 2,,%1, X, =0 and y, = % Then, using f,(0) =0,

fa(3)=1and fy(x) >0 (x€[0,1]), we get

PX
f"(2n£1'0+(1_2n%1)'%):f"< on )

_f<1+2+22+---+2"—2>

2}’1
=141+1+4--F1=(n-2)
(n—2) (n—2)
-0
- 2 + 2 7

which proves (6) holds. [

3. Hermite-Hadamard type inequalities and (c, &¢)-Jensen convexity

In the sequel, we will use the following notion. We say that a function f: D — R
has got a radially property, if for all x,y € D, the function g, : [0,1] — R defined by

gry(t) = flex+(1—1)y)  1€[0,1] (8)

has got the property. For example, f is radially bounded, if for x,y € D, the function
gxy is bounded. Theorem 5 and theorem 6 show that (c, ¢r)-Jensen convexity implies
Hermite—Hadamard type inequalities.

THEOREM 5. Let ¢ > 0 and o : D* — R be nonnegative even error function,
with for all u € D*, the map s — o/(su) is Lebesgue integrable on [—%, %} If f:D—
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R is radially Lebesgue integrable and (c,o.)-Jensen convex, then it also satisfies the
following lower Hermite—Hadamard type inequality:

f<x+y) ZC/ftx—I— (1—1)y dt+/ (1—20)(x—y))dt  (ryeD). 9

Proof. Assume that f is (c,o)-Jensen convex. Substituting x by 7x+ (1 —1¢)y
and y by (1 —17)x+ty, we have that

f(x;y) < ef (et (1—1)y) +ef(1—0)x+ay) +a((1-20)(x—y)).

Then, integrating with respect to ¢ on [0,1], we can get the lower Hermite-Hadamard
type inequality (9) holds. [

THEOREM 6. Let 0 < ¢ <1 and o : D* — R is an error function, with for all
u € D*, the map s — o(su) is Lebesgue integrable on [0,1]. If f: D — R is radially
Lebesgue integrable and (c, o) -Jensen convex, then it also satisfies the following upper
Hermite—Hadamard type inequality:

f)+

1
y)+/0 altx—y)dt  (xyeD).
(10)

1
| s+ =omar< £

Proof. Let 0 <1 < 2 , then substituting x by 2¢x+ (1 — 2¢)y in the (¢, o) -Jensen
convex inequality, we have that,

f((th+(1 —21)y)

22D <o (1= 20) + )+ o)

Integrating the above inequality with respect to ¢ on the interval [0, } we have that

/7f(tx+(1 )i < c/if(th—i-(l —zz)y))dz+cf(y)+/7 (26 (x— y))dt.
0 0 0

Making some natural integral substitution, we have that,

/.fm+-1—t / fm+-1—0)MrHj += / —y))dt.

(1)
Let <t <1, then substituting y by (27 — 1)x+ (2—2¢)y in the (c, ct)-Jensen convex
inequality, we have that,

; <x+((2t—1)x+(2—2t)y))

3 ) < cf () +ef (2t =1)x+(2-21)y))+a((2-21) (x—y))
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Integrating the above inequality with respect to ¢ on the interval [% 1], we have that

/ flex+(1—=1)y)dt < +c/ F((2t—1)x+(2—2¢t)y dt—|—/ ((2—2¢)(x—y))dt.
Making some natural integral substitution and using the symmetry of o, we have that,
/ftx+1—t)) x)+ = /ftx+l—t Ydr+ = / dt.

(12)

Adding the inequality (11) and (12), and rearranging the inequality, we got, we have
the upper Hermite—Hadamard type inequality (10). [J

In the following theorem, we construct a function, which satisfies a lower Hermite—
Hadamard type inequality, but, for all n € N, it is not n-Jensen convex.

THEOREM 7. Let ¢ > % The following function

f) =x(1=x),  (x€[0,1])

satisfies the lower Hermite—Hadamard type inequality

() <5 (vy € [0.1)), (13

but it is not n-Jensen convex, that is there exists x,y € [0, 1] such that

£(552) > nr-+ns0).

Proof. Computing the right hand side of (13), we have that

y 2 377 2 2
c /t(l—t)dt: c |t . X+y X 4xy+y .
y—xJx y—x[2 3], 2 3

Computing the left hand side of (13), we have that

¥ x+y\ x+y 1_x—|—y _x+y_x2+2xy—|-y2
2 ) 2 2 ) 2 4 '

Combining the two side, we have to prove that,

x+y_x2+2xy+y2 <ec x+y_x2+xy+y2
2 4 h 2 3 ’

that is 3
0<3(c—1D(x+y)+B—2c)xy+ (E —Zc) (x2 +y2).
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Using the classical identity beetween the arithemitc and geometric means, and the
fact 3—2¢ < 0, then x,y € [0,1], we have that

3(c—1)(x+y)+(3—2c)xy+ (% —2c> (x* +y%)

242
> 3(c—1Dx+y)+(3—2¢)- —;y —|—<%—2c) (P +y%)

= 3(c—1)(x+y) =3(c—D)(2+)?)
= =3(c—1)(x(1—x)+y(1—y)) >0,

which proves that (13) holds. On the other hand, for all n € N, the function f is not
n-Jensen convex, since

0=nf(1)+nf(0) <f<’%) :f<%) 1

In the following theorem, for all n € N, we construct a function, which satisfies
an upper Hermite-Hadamard type inequality, but, for all it is not n-Jensen convex.
Similarly, than in [22], but it is also useable in our case.

THEOREM 8. For n € N, let
fu(x) == —In(|x| +e2") +1, if | <l—e
Then, for n € N, f, is a continuous function which satisfies the following upper Her-
mite—Hadamard type inequality,
1 y
— | fOdr<fx)+fly)  x<y (14)
y—XJx
but it is not n-Jensen convex, i.e. there exists x,y such that
x+y
7(552) > nr0 s
Proof. Substituting f,, in (13), we have that forall —(1 —e™) <x<y<l—e™"
1 Y —2n —2n —2n
o (=In(|t]+e ")+ 1)dt < —In(|x] +¢ ")+ 1 —In(|y| + ¢ ") + 1
- X

This inequality is equivalent to
L Y _ —2n _ —2n\ _ —2n
o (=In(|t| +e™") dr < —In(|x| +e~*") = In([y| + e ") + 1, (15)

which is not else than the inequality, which was proved by Nikodem, Riedel and Sahoo
in [22]. Since the function x — —In(|x| +e~2") is nonnegative on [—(1 —e~2"),1 —
e~2", (15) implies (14). On the other hand,

_(1 _e—2n)_|_ 1 _e—2n>

nf<—<1—e—2">>+nf<1—e—2">=2n<f( )

= f(0)=2n+1,

which shows that our counter-example is correct. []
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OPEN PROBLEM. [nvestigating the Hermite—Hadamard type inequalities,

(57) <52 [rar <nxyen

1

— [J0ai< e ery)  <yayen

The case 1 < c; < % and % < cp < 1 are open problems. We suspect that, counter-
examples can be constructed in also these cases.
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