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COUNTER–EXAMPLES CONCERNING BRECKNER–CONVEXITY
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Abstract. In this paper, we examine convexity type inequalities. Let D be a nonempty convex
subset of a linear space, c > 0 and α : D−D → R be a given even function. The inequality

f

(
x+ y

2

)
� c f (x)+ c f (y)+α(x− y) (x,y ∈ D)

is the focus of our examinations. We will construct an example to show that for c = 1 , this
Jensen type inequality does not imply the convexity of the function. Then, we compare this
inequality with Hermite–Hadamard type inequalities.

1. Introduction

Denote by R, N and R+ the sets of real numbers, positive integers, and nonneg-
ative real numbers, respectively. Let D be a nonempty convex subset of a linear space
X and denote by D∗ the set {x− y : x,y ∈ D} . Let α : D∗ → R be a nonnegative even
error function.

The convexity has many applications and many generalization. In the first step,
we consider the following. We say that a function f : D → R is α -Jensen convex, if
for all x,y ∈ D ,

f

(
x+ y

2

)
� f (x)+ f (y)

2
+ α(x− y). (1)

Many authors examined this inequality from many context. For example, Házy and
Páles ([8, 10, 11]), Makó and Páles ([15, 17, 18]), Tabor and Tabor ([24, 25]), Tabor,
Tabor and Zoldak ([27]). If α is constant zero, we have the notion of classical Jensen-
convexity.

In this paper, we will examine the following Jensen type inequality, which is a kind
of generalization of the previous notion. Let c > 0. We say that a function f : D → R

is (c,α)-Jensen convex if for all x,y ∈ D ,

f

(
x+ y

2

)
� c f (x)+ c f (y)+ α(x− y). (2)

When c �= 1
2 this inequality was examined by Breckner ([2, 3]), Breckner and Orbán

([4]), Házy [9], Burai and Házy [5], Burai, Házy and Juhász [6].
The following theorem is the famous Bernstein-Doetsch theorem ([1]).
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THEOREM A. Let I be a nonvoid interval, f : I → R be locally bounded from
above on I and assume that f is Jensen-convex, then f is convex.

In Section 2, we will prove that if c � 1, this connection is not valid between
(c,α)-Jensen convexity and convexity type inequality.

Now let us recall the theorem of Nikodem, Riedel, and Sahoo from [22]. They
proved that from an approximate convexity on an interval I , that is

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+ ε (x,y ∈ I),

we can get Hermite–Hadamard type inequalities, namely,

f

(
x+ y

2

)
�

∫ 1

0
f (tx+(1− t)y)dt + ε (x,y ∈ I),

and ∫ 1

0
f (tx+(1− t)y)dt � f (x)+ f (y)

2
+ ε (x,y ∈ I).

But the converse implications are not true. In fact they constructed some counter-
example. In Section 3, we would like to comprise the new generalized Jensen-convexity
type inequality ((c,α)-Jensen convexity) and Hermite–Hadamard type inequalities and
we will also construct some counter-examples.

2. Counter-examples concerning Bernstein–Doetsh theorem

For the sake of simplicity, assume that X = R and D = I is a real interval of R

and α = 0. Then (2) reduces to,

f
(x+ y

2

)
� c f (x)+ c f (y) (x,y ∈ I). (3)

In the following, we will call this inequality c-Jensen inequality. With the substitution
x = y , we have that 0 � (2c−1) f (x) . This means that if c > 1

2 then f (x) � 0(x ∈ I)
and if c < 1

2 then f (x) � 0(x ∈ I) . We will consider the first case. We are looking for
functions ϕ : [0,1[→R such that, for all t ∈ [0,1[ and x,y∈ I , f satisfies the following
convexity type inequality:

f (tx+(1− t)y) � ϕ(t) f (x)+ ϕ(1− t) f (y) (4)

In the sequel, we will construct an example, which shows, there are no such functions
in the case c � 1

PROPOSITION 1. Assume that a function f : I → R is nonnegative and monotone
increasing, then it is also 1 -Jensen convex.

Proof. Let x � y be elements of I , then x � x+y
2 � y . Since f is nondecreasing

and nonnegative, we have that,

f

(
x+ y

2

)
� f (y) � f (x)+ f (y),
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which means that f is 1-Jensen convex. �
The following easy-to-prove propositions will be useful in the sequel.

PROPOSITION 2. Assume that f : I → R is 1 -Jensen convex, then, for all d > 0 ,
f +d is also 1 -Jensen convex.

PROPOSITION 3. Let 1
2 � c � d . Assume that f : I →R is c-Jensen convex, then,

it is also d -Jensen convex.

Let’s consider our first example, namely, for n ∈ N and x ∈ [0,1[ let,

fn(x) :=
n

∑
k=0

([2k+1x]−2[2kx]), 0 � x < 1. (5)

REMARK. It is easy to see that the function fn(x) is the number of 1’s of the
binary form of [2n+1x] .

The following picture will show the graph of fn , when n = 5.

THEOREM 4. The function fn : [0,1[→ R defined by (5) is 1 -Jensen convex, but
not convex in the sense of (4), i.e., for all n ∈ N , there exist λn ∈ R , with limn→∞ λn =
∞ , tn ∈]0,1[ and xn,yn ∈ [0,1[ , such that

fn(tnxn +(1− tn)yn) > λn fn(xn)+ λn fn(yn). (6)

Proof. By the definition, it can be seen that

fn+1(x) =

{
fn(2x) if 0 � x < 1

2

fn(2x−1)+1 if 1
2 � x < 1.

(7)

It is also easy to see that, fn(x+ 1
2 ) = fn(x)+ 1, if 0 � x < 1

2 . We will prove the 1-
Jensen convexity of fn by induction. If n = 1, the function f1 is monotone increasing,
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thus it is 1-convex. Now suppose that the statement is true for n ∈ N and consider the
case n+1. If 0 � x � y < 1

2 , we can get 1-Jensen convexity of fn+1 by the induction
assumption. If 1

2 � x � y < 1, we can get 1-Jensen convexity of fn+1 by the induction
assumption and proposition 2. Now assume that 0 � x < 1

2 and 1
2 � y < 1. Then there

are two cases: 1
4 � x+y

2 < 1
2 or 1

2 � x+y
2 < 3

4 . Consider the case 1
4 � x+y

2 < 1
2 (the proof

of the other case is very similar). Then, using (7)

fn+1(x)+ fn+1(y) = fn(2x)+ fn(2y−1)+1

� fn

(
2x+2y−1

2

)
+1

= fn

(
x+ y− 1

2

)
+1 = fn(x+ y)−1+1

= fn(x+ y)

= fn+1

(
x+ y

2

)
.

This means the 1-Jensen convexity of fn .
Let’s see the proof of the nonconvexity of fn . We prove the inequality (6). Let

n � 3 be an integer and let λn = 1
2n−1 , xn = 0 and yn = 1

2 . Then, using fn(0) = 0,

fn( 1
2 ) = 1 and fn(x) � 0 (x ∈ [0,1[) , we get

fn
( 1

2n−1 ·0+(1− 1
2n−1 ) · 1

2

)
= fn

(2n−1−1
2n

)
= fn

(1+2+22+ · · ·+2n−2

2n

)
= 1+1+1+ · · ·+1 = (n−2)

>
(n−2)

2
·0+

(n−2)
2

,

which proves (6) holds. �

3. Hermite–Hadamard type inequalities and (c,α)-Jensen convexity

In the sequel, we will use the following notion. We say that a function f : D → R

has got a radially property, if for all x,y ∈ D , the function gx,y : [0,1] → R defined by

gx,y(t) = f (tx+(1− t)y) t ∈ [0,1] (8)

has got the property. For example, f is radially bounded, if for x,y ∈ D , the function
gx,y is bounded. Theorem 5 and theorem 6 show that (c,α)-Jensen convexity implies
Hermite–Hadamard type inequalities.

THEOREM 5. Let c > 0 and α : D∗ → R be nonnegative even error function,
with for all u ∈ D∗ , the map s �→ α(su) is Lebesgue integrable on [− 1

2 , 1
2 ] . If f : D →
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R is radially Lebesgue integrable and (c,α)-Jensen convex, then it also satisfies the
following lower Hermite–Hadamard type inequality:

f

(
x+ y

2

)
� 2c

∫ 1

0
f (tx+(1− t)y)dt +

∫ 1

0
α((1−2t)(x− y))dt (x,y ∈ D). (9)

Proof. Assume that f is (c,α)-Jensen convex. Substituting x by tx +(1− t)y
and y by (1− t)x+ ty , we have that

f

(
x+ y

2

)
� c f (tx+(1− t)y)+ c f ((1− t)x+ ty)+α((1−2t)(x− y)).

Then, integrating with respect to t on [0,1] , we can get the lower Hermite–Hadamard
type inequality (9) holds. �

THEOREM 6. Let 0 < c < 1 and α : D∗ → R is an error function, with for all
u ∈ D∗ , the map s �→ α(su) is Lebesgue integrable on [0,1] . If f : D → R is radially
Lebesgue integrable and (c,α)-Jensen convex, then it also satisfies the following upper
Hermite–Hadamard type inequality:

∫ 1

0
f (tx+(1− t)y)dt � c

1− c
f (x)+

c
1− c

f (y)+
∫ 1

0
α(t(x− y))dt (x,y ∈ D).

(10)

Proof. Let 0 � t � 1
2 , then substituting x by 2tx+(1−2t)y in the (c,α)-Jensen

convex inequality, we have that,

f

(
(2tx+(1−2t)y)

2

)
� c f (2tx+(1−2t)y))+ c f (y)+ α(2t(x− y))

Integrating the above inequality with respect to t on the interval [0, 1
2 ] , we have that

∫ 1
2

0
f (tx+(1− t)y)dt � c

∫ 1
2

0
f (2tx+(1−2t)y))dt + c f (y)+

∫ 1
2

0
α(2t(x− y))dt.

Making some natural integral substitution, we have that,

∫ 1
2

0
f (tx+(1− t)y)dt � c

2

∫ 1

0
f (tx+(1− t)y))dt + c f (y)+

1
2

∫ 1

0
α(t(x− y))dt.

(11)
Let 1

2 � t � 1, then substituting y by (2t−1)x+(2−2t)y in the (c,α)-Jensen convex
inequality, we have that,

f

(
x+((2t−1)x+(2−2t)y))

2

)
� c f (x)+c f ((2t−1)x+(2−2t)y))+α((2−2t)(x−y))
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Integrating the above inequality with respect to t on the interval [ 1
2 ,1] , we have that

∫ 1

1
2

f (tx+(1−t)y)dt � c f (x)+c
∫ 1

1
2

f ((2t−1)x+(2−2t)y)dt+
∫ 1

1
2

α((2−2t)(x−y))dt.

Making some natural integral substitution and using the symmetry of α , we have that,

∫ 1

1
2

f (tx+(1− t)y)dt � c f (x)+
c
2

∫ 1

0
f (tx+(1− t)y)dt +

1
2

∫ 1

0
α((t(x− y))dt.

(12)
Adding the inequality (11) and (12), and rearranging the inequality, we got, we have
the upper Hermite–Hadamard type inequality (10). �

In the following theorem, we construct a function, which satisfies a lower Hermite–
Hadamard type inequality, but, for all n ∈ N , it is not n -Jensen convex.

THEOREM 7. Let c � 3
2 . The following function

f (x) = x(1− x), (x ∈ [0,1])

satisfies the lower Hermite–Hadamard type inequality

f

(
x+ y

2

)
� c

y− x

∫ y

x
f (t)dt (x,y ∈ [0,1]), (13)

but it is not n-Jensen convex, that is there exists x,y ∈ [0,1] such that

f

(
x+ y

2

)
> n f (x)+n f (y).

Proof. Computing the right hand side of (13), we have that

c
y− x

∫ y

x
t(1− t)dt =

c
y− x

[
t2

2
− t3

3

]y

x
= c

(
x+ y

2
− x2 + xy+ y2

3

)
.

Computing the left hand side of (13), we have that

f

(
x+ y

2

)
=

x+ y
2

(
1− x+ y

2

)
=

x+ y
2

− x2 +2xy+ y2

4
.

Combining the two side, we have to prove that,

x+ y
2

− x2 +2xy+ y2

4
� c

(
x+ y

2
− x2 + xy+ y2

3

)
,

that is

0 � 3(c−1)(x+ y)+ (3−2c)xy+
(

3
2
−2c

)
(x2 + y2).



COUNTER-EXAMPLES CONCERNING BRECKNER-CONVEXITY 133

Using the classical identity beetween the arithemitc and geometric means, and the
fact 3−2c � 0, then x,y ∈ [0,1] , we have that

3(c−1)(x+ y)+ (3−2c)xy+
(

3
2
−2c

)
(x2 + y2)

� 3(c−1)(x+ y)+ (3−2c) · x
2 + y2

2
+

(
3
2
−2c

)
(x2 + y2)

= 3(c−1)(x+ y)−3(c−1)(x2+ y2)
= = 3(c−1)(x(1− x)+ y(1− y))� 0,

which proves that (13) holds. On the other hand, for all n ∈ N , the function f is not
n -Jensen convex, since

0 = n f (1)+n f (0) < f

(
x+ y

2

)
= f

(
1
2

)
=

1
4
. �

In the following theorem, for all n ∈ N , we construct a function, which satisfies
an upper Hermite–Hadamard type inequality, but, for all it is not n -Jensen convex.
Similarly, than in [22], but it is also useable in our case.

THEOREM 8. For n ∈ N , let

fn(x) := − ln(|x|+ e−2n)+1, if |x| � 1− e−2n.

Then, for n ∈ N , fn is a continuous function which satisfies the following upper Her-
mite–Hadamard type inequality,

1
y− x

∫ y

x
f (t)dt � f (x)+ f (y) x < y (14)

but it is not n-Jensen convex, i.e. there exists x,y such that

f

(
x+ y

2

)
> n f (x)+n f (y)

Proof. Substituting fn in (13), we have that for all −(1− e−n) < x < y < 1− e−n

1
y− x

∫ y

x

(− ln(|t|+ e−2n)+1
)
dt � − ln(|x|+ e−2n)+1− ln(|y|+ e−2n)+1

This inequality is equivalent to

1
y− x

∫ y

x

(− ln(|t|+ e−2n)dt � − ln(|x|+ e−2n)− ln(|y|+ e−2n)+1, (15)

which is not else than the inequality, which was proved by Nikodem, Riedel and Sahoo
in [22]. Since the function x �→ − ln(|x|+ e−2n) is nonnegative on [−(1− e−2n),1−
e−2n] , (15) implies (14). On the other hand,

n f (−(1−e−2n))+n f (1−e−2n) = 2n < f

(−(1− e−2n)+1− e−2n

2

)
= f (0) = 2n+1,

which shows that our counter-example is correct. �
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OPEN PROBLEM. Investigating the Hermite–Hadamard type inequalities,

f

(
x+ y

2

)
� c1

y− x

∫ y

x
f (t)dt (x < y, x,y ∈ I)

and
1

y− x

∫ y

x
f (t)dt � c2 f (x)+ c2 f (y) (x < y, x,y ∈ I)

The case 1 < c1 < 3
2 and 1

2 < c2 < 1 are open problems. We suspect that, counter-
examples can be constructed in also these cases.
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[7] A. HÁZY, On approximate t -convexity, Math. Inequal. Appl., 8 (3): 389–402, 2005.
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