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EMBEDDINGS AND RELATED TOPICS IN GRAND VARIABLE

EXPONENT HAJŁASZ–MORREY–SOBOLEV SPACES

DAVID E. EDMUNDS, DALI MAKHARADZE ∗ AND ALEXANDER MESKHI

(Communicated by J. Pečarić)

Abstract. Embeddings in the framework of grand variable exponent function spaces are stud-
ied. In particular, embeddings from grand variable exponent Hajłasz-Sobolev-Morrey spaces to
variable exponent Hölder spaces are established. The regularity of a fractional integral operator
defined with respect to a non-doubling measure is also investigated. In particular, mapping prop-
erties of this operator from a grand variable exponent Morrey space to a grand variable parameter
Hölder space are studied. The results are proved under the log-Hölder continuity condition on
the exponents. The spaces are defined, generally speaking, on quasi-metric measure spaces,
however, the results are new even for Euclidean spaces.

1. Introduction

Our aim is to study problems related to embeddings from grand variable exponent

Hajłasz-Morrey-Sobolev spaces (GVEHMSS briefly) (HM)p(·)
q(·),ϕ(·)(X) to variable pa-

rameter Hölder spaces Hλ (·)(X) (VPHS briefly) under the log-Hölder continuity con-
dition on exponents and parameters. We treat also the regularity of a fractional integral
operator in appropriate spaces. In particular, mapping properties of fractional-type in-
tegral operators defined on an open set Ω in R

n with Ahlfors upper N -regular Borel
measure μ on Ω , from grand variable exponent Morrey spaces (GVEMS briefly) to
VPHS are also studied.

The study of Hajłasz-Sobolev embeddings in the variable exponent setting was
initiated in [1]. Later, a similar problem from the grand variable exponent viewpoint
was investigated in [7], where the authors also studied Sobolev–type embeddings in the
framework of these spaces defined on open sets in Rn .

In the last two decades it was realized that classical function spaces are no longer
adequate for solving a number of contemporary problems arising naturally in various
mathematical models of applied sciences. It thus became necessary to introduce and
study the new nonstandard function spaces (NSFS ) from various viewpoints. We em-
phasize that in recent years the following function spaces were studied: variable ex-
ponent Lebesgue and Sobolev spaces, “grand” function spaces, Morrey-type spaces,
etc.
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NSFSs are extensively investigated by many authors nowadays. We emphasize
some recent books and surveys published in this area, and recall, for example, the
monographs [3], [5], [22], [23], the survey paper [17], etc.

Classical Morrey spaces were introduced by C. Morrey in 1938 and applied to
the regularity problems of solutions to partial differential equations. We mention, for
example, the recent two-volume monograph [27] for properties of Morrey-type spaces,
and related topics.

Classical grand Lebesgue spaces Lpc)(Ω) , where Ω is a bounded open set in Rn ,
naturally arise, for example, when studying integrability problems of the Jacobian under
minimal hypotheses (see [18]), while Lpc),θ (Ω) , θ > 0, is related to the investigation
of the nonhomogeneous n -harmonic equation div A(x,∇u) = μ (see [14]). It is known
(see, e.g., [12]) that the space Lpc),θ (Ω) is non-reflexive and non-separable.

Grand Morrey spaces were introduced in [25], where the boundedness of integral
operators in these spaces was also established. Later, H. Rafeiro [26] considered the
space, where the author “grandified” the parameter of the space as well.

Grand variable exponent Lebesgue spaces were introduced in [19] (see also [6]
for more precise spaces). These spaces unify two non-standard spaces: variable and
grand Lebesgue spaces. In the present paper we are interested in Hajłasz-Sobolev space
based on GVEMS defined over quasi-metric measure spaces. The latter spaces were
introduced in [21].

Sobolev embeddings in variable exponent Lebesgue spaces were studied in the
papers [4], [9], [10] (see also the monograph [5] and references cited therein).

Finally we mention that the results of this paper were announced in [8].

2. Preliminaries

In this section we recall the definition and some properties of a quasi-metric mea-
sure space.

Let X be a topological space endowed with a locally finite complete measure μ
and quasi-metric d : X ×X �→ R+ satisfying the following conditions:

(i) d(x,y) = 0 if and only if x = y ;
(ii) d(x,y) = d(y,x) for all x,y ∈ X ;
(iii) there exists a constant κ � 1 such that for all x,y,z ∈ X ,

d(x,y) � κ [d(x,z)+d(z,y)];

(iv) for every neighborhood V of a point x ∈ X there exists r > 0 such that the
ball B(x,r) = {y ∈ X : d(x,y) < r} with center x and radius r is contained in V .

It is also assumed that all balls B(x,r) := {y∈X : d(x,y) < r} in X are measurable
with finite measure, μ{x} =0 for all x ∈ X , and that the class of continuous functions
with compact supports is dense in the space of integrable functions on X .

In this case we say that (X ,d,μ) is a quasi-metric measure space. Further, we
say that the measure μ of the quasi-metric measure space (X ,d,μ) is Ahlfors upper
α -regular (or satisfies the growth condition) if there is a positive constant C such that
for all x ∈ X and R > 0,

μ
(
B(x,R)

)
� CRα . (1)
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A quasi-metric measure space with this growth condition is also called a space of
non-homogeneous type.

The measure μ on X is said to satisfy a doubling condition (μ ∈ DC(X)) if there
is a constant Dμ > 0 such that

μB(x,2r) � Dμ ·μB(x,r) (2)

for every x ∈ X and r > 0. The best possible constant in (2) is called the doubling
constant for μ and will be denoted again by Dμ .

Denote by dX the diameter of X . Throughout the paper we will assume that
dX < ∞ . In this case μ is a finite measure, i.e. μ(X) < ∞ .

Further, it can be checked (see also [16], Lemma 14.6) that there is a positive
constant C such that whenever 0 < r � ρ < dX , x ∈ X and y ∈ B(x,r) ,

μB(x,ρ)
μB(y,r)

� C
(ρ

r

)N
,

where
N = log2 Dμ (3)

and Dμ is the doubling constant. Consequently, since dX < ∞ , there is a positive
constant CN such that

μ(B(x,r)) � CNrN (4)

whenever x ∈ X and 0 < r < dX , where N is defined by (3).
A quasi-metric measure space (X ,d,μ) with doubling measure μ is called a space

of homogeneous type (SHT ).
Recall that for a quasi-metric measure space (X ,d,μ) with condition (1), the dou-

bling condition might be not satisfied.
Examples of SHT are: (a) domain Ω in Rd satisfying the condition: there is a

positive constant C > 0 such that |Ω∩B(x,r)| �Crd , where |E| is the Lebesgue mea-
sure induced on Ω ; here N = d ; (b) regular curves, i.e. rectifiable curves Γ satisfying
the condition: ν

(
Γ∩D(x,r)

)
� Cr , where D(x,r) is the disc with center x and ra-

dius r > 0 and ν is the arc-length measure on Γ (in this case N = 1); (c) nilpotent Lie
groups G with appropriate distance and Haar measure, where N = Q is a homogeneous
dimension of G . In particular, the Heisenberg group H n is a special case of such a
group with Q = 2n+2).

For basic properties and examples of an SHT we refer e.g., to [2].
To introduce grand variable exponent Hajłasz–Morrey spaces we need to recall

some auxiliary definitions.
We denote by P0(X) (resp. P(X)) the family of all real-valued μ -measurable

functions p(·) on X such that

0 < p− � p+ < ∞, (resp. 1 < p− � p+ < ∞,)

where
p− := p−(X) := inf

X
p(x), p+ := p+(X) := sup

X
p(x).
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It is clear that P0(X) ⊂ P(X) .
We say that a function p(·) ∈ P0(X) belongs to the class P log(X) (or p(·) satis-

fies the log-Hölder continuity condition) if there is a positive constant � such that for
all x,y ∈ X with 0 < d(x,y) � 1/2,

|p(x)− p(y)|� �

− ln(d(x,y))
. (5)

The best possible constant in (5) is called the log-Hölder continuity constant and
will be denoted again by � .

Let q(·) ∈ P(X) . The variable exponent Lebesgue space Lq(·)(X) (or Lq(x)(X))
(VELS briefly) is also called a Nakano space. It is a special case of more general spaces
called Musielak–Orlicz spaces. Lq(·)(X) is the class of all μ -measurable functions f
on X for which

Sq(·)( f ) :=
∫

X
| f (x)|q(x)dμ(x) < ∞.

Lq(·)(X) is a Banach function space when given the norm defined by

‖ f‖Lq(·)(X) = inf

{
λ > 0 : Sq(·)

(
f/λ

)
� 1

}
.

The class of exponents P log(X) plays an important role in the theory mapping
properties of integral operators in Lq(·) spaces. For example, maximal, fractional and
singular integral operators are bounded in Lq(·) under the condition q(·) ∈ P log(X)
(see, e.g., the monographs [3], [5], [22] and references cited therein).

The following relations hold for VELSs (see, e.g., [24] and p. 3 of [22]):

‖ f‖q+
Lq(·) � Sq(·)( f ) � ‖ f‖q−

Lq(·) , ‖ f‖Lq(·) � 1,

‖ f‖q−
Lq(·) � Sq(·)( f ) � ‖ f‖q+

Lq(·) , ‖ f‖Lq(·) � 1.

Recall that (see e.g., [24]) Hölder’s inequality in VELSs has the following form:

‖ f g‖L1 � Cq(·)‖ f‖Lq(·)‖g‖Lq′(·) , (6)

where

Cq(·) =
1
q−

+
1

(q′)−
, q′(·) =

q(·)
q(·)−1

.

Further, the following statement is valid (see, e.g., [22], p. 9):

LEMMA 1. Let s(·) and r(·) be variable exponents on X such that 1 < s− �
s(x) � r(x) � r+ < ∞ μ -a.e. We set

1
p(x)

=
1

s(x)
− 1

r(x)
.

If 1 ∈ Lp(·) , then
‖ f‖Ls(·) � 21/s−‖1‖Lp(·)‖ f‖Lr(·) .
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We say that ϕ(·) ∈ Aq(·) , where 1 < q− � q+ < ∞ , if ϕ(·) is defined and bounded
on (0,q−−1) , is non-decreasing on (0,δ ) for some small positive constant δ , and

lim
x→0+

ϕ(x) = 0.

Further, we write that the pair of variable exponents
(

p(·),q(·)
)
∈ P̃(X) if 1 <

q− � q(·) � p(·) � p+ < ∞ .

Let
(

p(·),q(·)
)
∈ P̃(X) and let ϕ(·) ∈ Aq(·) . We recall the definitions of the

spaces Lp(·)
q(·)(X) and Lp(·)

q(·),ϕ(·)(X) determined by the norms

‖ f‖
Lp(·)

q(·) (X)
= sup

x∈X
0<r<dX

(μB(x,r))
1

p(x)− 1
q(x) ‖ f‖Lq(·)(B(x,r))

and

‖ f‖
L

p(·)
q(·),ϕ(·)(X)

= sup
0<c<q−−1

ϕ(c)
1

q−−c ‖ f‖
L

p(·)
q(·)−c(X)

,

respectively, where ccccc is a constant.

The spaces Lp(·)
q(·) (X) and Lp(·)

q(·),ϕ(·)(X) are variable exponentMorrey spaces (VEMS
briefly) and GVEMS , respectively.

If p(·) = q(·) , then Lp(·)
q(·) (X) is the VELS Lq(·)(X) .

DEFINITION 1. Let
(

p(·),q(·)
)
∈ P̃(X) and let ϕ(·) ∈ Aq(·) . We say that a func-

tion f ∈ Lp(·)
q(·),ϕ(·)(X) belongs to the Hajłasz-Morrey space (HM)p(·)

q(·),ϕ(·)(X) if there is

a non-negative g ∈ Lp(·)
q(·),ϕ(·)(X) such that

| f (x)− f (y)| � d(x,y)[g(x)+g(y)], μ −a.e in X.

In this case g(·) is called a generalized gradient of f .

For p(·) ≡ q(·) this space was introduced and studied in [7].
If p(·)≡ q(·)≡ pc = const and formally θ = 0, then we have the space (HS)pc(X)

which was introduced by P. Hajłasz [15] as a generalization of the classical Sobolev
spaces W 1,pc to the general setting of quasi-metric measure spaces.

PROPOSITION 1. The space (HM)p(·)
q(·),ϕ(·)(X) is the Banach space with respect to

the norm:

‖ f‖
(HM)p(·)

q(·),ϕ(·)(X)
= ‖ f‖

Lp(·)
q(·),ϕ(·)(X)

+ inf‖g‖
Lp(·)

q(·),ϕ(·)(X),

where the infimum is taken over all generalized gradients g of f .
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Let p− > N . We say that a bounded function f belongs to the variable exponent
Hölder space (VEHS briefly) Hp(·)(X) , if there exists C > 0 such that

| f (x)− f (y)| � Cd(x,y)max{1−N/p(x),1−N/p(y)}

for every x,y ∈ X (see [1] for this definition).
Norms in these spaces are defined as follows:

‖ f‖Hp(·)(X) = ‖ f‖L∞(X) +
[
f
]
Hp(·)(X)

where [
f
]
Hp(·)(X) := sup

x,y∈X
0<d(x,y)�1

| f (x)− f (y)|
d(x,y)max{1−N/p(x),1−N/p(y)} .

3. Embeddings

Throughout this section it will be assumed that (X ,d,μ) is an SHT and that N is
defined by (3).

To prove the main result of this section we need some definitions and auxiliary
statements.

LEMMA 2. (see [7]) Let α(·) and β (·) be μ -measurable functions on X such
that 0 < α− � α+ < ∞ , 0 < β− � β+ < ∞ . Suppose that f is a locally integrable
function on X . Then for all x,y ∈ X ,

| f (x)− f (y)| � C
(
μ ,α(·),β (·))[

d(x,y)α(x)M#
α(·) f (x)+d(x,y)β (y)M#

α(·) f (y)
]
,

where C(μ ,α,β ) is the constant defined by

C
(
μ ,α(·),β (·)) := Dμ max

{
1

2α− −1
;2β+

(
1

2β− −1
+Dμ

)}

and

M#
α(·) f (x) = sup

x∈X ,r>0

r−α(x)

μB(x,r)

∫
B(x,r)

∣∣ f (y)− fB(x,r)
∣∣dμ(y).

Denote by Mλ (·) the fractional maximal operator given by the formula:

Mλ (·) f (x) = sup
x∈X
r>0

rλ (x)

μB(x,r)

∫
B(x,r)

| f (y)|dμ(y), 0 � λ (x) < λ+ < N.

LEMMA 3. Let 0 � λ− � λ+ < 1,
(

p(·),q(·)
)
∈ P̃(X),ϕ(·) ∈ Aq(·) . Suppose that

f ∈ (HM)p(·)
q(·),ϕ(·)(X) and that g is its gradient. Then

M#
1−λ (·) f (x) � 4κMλ (·)g(x),

where κ is the quasi-metric constant.
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Proof. Let g be the gradient of f . Then for B := B(x,r) ,

∫
B
| f (y)− fB|dμ(y)

� 1
μ(B)

∫
B

∫
B
| f (y)− f (z)|dμ(y)dμ(z)

� 1
μ(B)

∫
B

∫
B
d(y,z)[g(y)+g(z)]dμ(y)dμ(z)

� 2κr
μ(B)

∫
B

∫
B
[g(y)+g(z)]dμ(y)dμ(z)

� 4κr
μ(B)

∫
B

∫
B
g(y)dμ(y)dμ(z) = 4κr

∫
B
g(y)dμ(y).

Now the conclusion follows. �

Lemmas 2 and 3 imply the next statement.

LEMMA 4. Let α(·) and β (·) be μ -measurable functions on X such that 0 �
α− � α+ < 1 , 0 � β− � β+ < 1 . Suppose that

(
p(·),q(·)

)
∈ P̃(X),ϕ(·) ∈ Aq(·) .

Assume that f ∈ (HM)p(·)
q(·),ϕ(·)(X) and that g is its gradient. Then for all x,y ∈ X ,

| f (x)− f (y)| � C
(
μ ,α(·),β (·))[

d(x,y)1−α(x)Mα(·)g(x)+d(x,y)1−β (y)Mβ (·)g(y)
]
,

where

C
(
μ ,α(·),β (·)) := 8C

(
μ ,1−α(·),1−β (·))

and

C
(
μ ,1−α(·),1−β (·)) = Dμ max

{
1

21−α+ −1
;21−β−

(
1

21−β+ −1
+Dμ

)}
.

LEMMA 5. Let
(
r(·),s(·)

)
∈ P̃(X) and let, in addition, r(·) ∈ P log(X) . Then

for f ∈ Ls(·)
r(·)

MN/s(·) f (x) � Cs(·),r(·)‖ f‖
L

s(·)
r(·)

,

where Cs(·),r(·) is such that

sup
0<c<σ

Cs(·),r(·)−c < ∞ (7)

for some small positive constant σ .
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Proof. We have

R
N

s(x)

μB(x,R)

∫
B(x,R)

| f |dμ � 2R
N

s(x)

μB(x,R)
‖ f‖Lr(·)(B(x,R))‖ 1‖Lr′(·)(B(x,R))

�
Cr(·)R

N
s(x) R

N
r′(·)

RN ‖ f‖Lr(·)(B(x,R))

�
Cs(·),r(·)R

N
s(x) R

N
r′(x) R

N
r(x)− N

s(x)

RN ‖ f‖
Ls(·)

r(·)(X)

= Cs(·),r(·)‖ f‖
Ls(·)

r(·)(X).

It remains to observe that condition (7) holds for the constant Cs(·),r(·). �

LEMMA 6. Let p(·) and q(·) are the variable exponents such that p− > N and

q(·) ∈P log(X) . Suppose that f ∈ (HM)p(·)
q(·) (X) . Let g be a generalized gradient of f .

Then
| f (x)− f (y)| � C̃p(·),q(·)‖g‖L

p(·)
q(·)

d(x,y)1−N/max{p(x),p(y)},

where C̃p(·),q(·) is a constant satisfying the condition

sup
0<c<σ

C̃p(·),q(·)−c < ∞ (8)

for some small positive constant σ .

Proof. Applying Lemmas 4 and 5 we have

| f (x)− f (y)| � Cp(·),q(·)
[
d(x,y)1−N/p(x)MN/p(x)g(x)+d(x,y)1−N/p(y)MN/p(y)g(y)

]
� Cp(·),q(·)‖g‖L

p(·)
q(·) (X)

[
d(x,y)1−N/p(x) +d(x,y)1−N/p(y)

]
� C̃p(·),q(·)‖g‖Lp(·)

q(·) (X)
d(x,y)max{1−N/p(x);1−N/p(y)}.

Since condition (8) holds for the constant C̃p(·),q(·) , we are done. �
We will need some more auxiliary statements

LEMMA 7. ([23], p. 834) Let (X ,d,μ) be an SHT , r(·) ∈ P(X)∩P log(X) .
Then the followng estimate holds for all balls B, μ(B) � 1 :

μ(B)r−(B)−r+(B) � Cr(·),

where Cr(·) is a constant such that

sup
0<c<σ

Cr(·)−c < ∞

for some small positive constant σ .
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LEMMA 8. Let (X ,d,μ) be an SHT and let σ be a small positive constant. Sup-
pose that q(·) ∈ P(X)∩P log(X) and ϕ(·) ∈ Aq(·) . Then there is a positive constant
Cq(·),σ ,ϕ(·) such that

‖ f‖
L

p(·)
q(·),ϕ(·)(X)

� Cq(·),σ ,ϕ(·) sup
0<c�σ

ϕ1/(q−−c)‖ f‖
L

p(·)
q(·)−c(X)

.

Proof. Without loss of generality we can assume that μ(X) � 1. Let σ < c <
q−−1. Then by Lemmas 1, 7, and the fact that q(·) ∈ P log(X) we find that for a ball
B := B(x,r) ,

ϕ(c)
1

q−−c μ(B)
1

p(x)− 1
q(x)−c ‖ f‖Lq(·)−c(B) � 2ϕ(c)

1
q−−c μ(B)

1
p(x)− 1

q(x)−c ‖1‖Ll(·)(B)‖ f‖Lq(·)−σ (B)

� Cq(·),σ ,ϕ(·)ϕ(σ)
1

q−−σ μ(B)
1

p(x)− 1
q(x)−σ ‖ f‖Lq(·)−σ (B),

where l(·) = (q(·)−c)(q(·)−σ)
c−σ .

Since

‖ f‖
L

p(·)
q(·),ϕ(·)(X)

= max
{

sup
0<c�σ

ϕ(c)
1

q−−c ‖ f‖
L

p(·)
q(·)−c(X)

, sup
σ<c<q−−1

ϕ(c)
1

q−−c ‖ f‖
L

p(·)
q(·)−c(X)

}
,

we have the desired result. �
A similar relation for grand Lebesgue spaces with constant exponents was first

observed in [11].

THEOREM 1. Let (X ,d,μ) be an SHT with μ(X) < ∞ , and let N be determined

by (3). Let p(·) and q(·) be variable exponents such that p− > N and
(

p(·),q(·)
)
∈

P̃(X) . Let q(·) ∈ P log(X),ϕ(·) ∈ Aq(·) . Then

(HM)p(·)
q(·),ϕ(·)(X) ↪→ Hp(·)(X).

Proof. Taking Lemma 8 into account, we deal with small positive c . Let 0 < c <
σ < q−−1. Then applying Lemma 5, we have that for x ∈ X ,R0 > 0,∣∣ f (x)− fB(x,R0)

∣∣ � DμR1−N/p(x)
0 M#

1−N/p(·) f (x)

� CR1−N/p(x)
0 MN/p(·)g(x)

� CR1−N/p(x)
0 ‖g‖

L
p(·)
q(·)−c(X)

.

On the other hand,∣∣ fB(x,R0)
∣∣ � 2μ (B(x,R0))

−1 ‖ f‖Lq(·)−c(B(x,R0))
‖ 1‖L(q(·)−c)′ (B(x,R0))

� 2R−N/(q(x)−c)
0 ‖ f‖Lq(·)−c(X) � 2R−N/p(x)

0 ‖ f‖
L

p(·)
q(·)−c(X)

.
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Thus, taking R0 = min{1,μ(X)} , we find that

| f (x)| � C
[
R1−N/p(x)

0 +R−N/p(x)
0

]
‖ f‖

L
p(·)
q(·)−c(X)

� C‖ f‖
L

p(·)
q(·)−c(X)

.

Thus, f ∈ L∞(X) .
Further, observe that

| f (x)− f (y)| � C̃p(·),q(·)−c‖g‖Lp(·)
q(·)−c(X)

d(x,y)max{1−N/p(x);1−N/p(y)} (9)

where the constant C̃p(·),q(·)−c is such that

sup
0<c<σ

C̃p(·),q(·)−c < ∞.

Finally, multiplying both sides of inequality (9) by ϕ(c)
1

q−−c and taking the supre-
mum with respect to c,0 < c < σ (observe that the left-hand side of (9) does not depend
on c ) we have the desired result. �

4. Regularity of potentials

Let Ω be an open set in Rd and let μ be a Borel measure on Ω . In this section
we investigate the regularity of fractional integrals

Jγ
Ω f (x) =

∫
Ω

f (y)
|x− y|n−γ dμ(y), 0 < γ < n, x ∈ Ω

for f ∈ Lp(·)
q(·),ϕ(·)(Ω) , where the measure μ on Ω satisfies the condition: there are

positive constants c0 and n such that for all x ∈ Ω and R > 0,

μ
(
D(x,R)

)
� c0R

n, D(x,R) := B(x,R)∩Ω. (10)

In this section we will need the following class of exponents on Ω .

DEFINITION 2. We say that p(·) ∈ P(X) if there is a positive constant �1 such
that

μ(B(x,R))p−
(
D(x,R)

)
−p+

(
D(x,R)

)
� �1

for all x ∈ X and small positive R .

It is known that (see, e.g., [23], p. 834) that if (X ,d,μ) is an SHT , then P log(Ω)⊂
P(Ω) .
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DEFINITION 3. Let γ be a constant such that 0 < γ < n and let ε be a constant
such that 0 < ε � 1. A function kγ : Ω×Ω → C is said to be a fractional kernel of
order γ if there exists a positive constant Ck such that

(a)
∣∣kγ (x,y)

∣∣ �
Ckγ

|x− y|n−γ , x �= y; (11)

(b)
∣∣kγ(x,y)− kγ

(
x′,y

)∣∣ �
Ckγ |x− x′|ε
|x− y|n−γ+ε , |x− y|� 2

∣∣x′ − x
∣∣ . (12)

For kγ , let

Kγ f (x) =
∫

Ω
kγ (x,y) f (y)dμ(y), x ∈ Ω.

LEMMA 9. [13], [28]. Let (X ,d,μ) be a metric measure space and let x,y,z ∈ X
be such that 2d(x,y) � d(x,z) . Then the following estimate holds:

| d(x,z)γ−n −d(y,z)γ−n |� C
d(x,y)

d(x,z)n−γ+1

for 0 < γ < n, where the positive constant C depends only on n and γ . Consequently
conditions (a) and (b) are satisfied for kγ(x,y) = |x−y|γ−n and ε = 1 with the constant
Ckγ .

Let λ : Ω → (0,1] be a measurable function satisfying the condition 0 < λ− �
λ+ � 1. We say that a function f on Ω is in the space Hλ (·)(Ω) if

[ f ]λ (·) = sup
x,x+h∈Ω
0<|h|�1

| f (x+h)− f (x)|
|h|λ (x)

is finite. In particular, we denote

[ f ]γ−η/p(·) := [ f ]
H̃ p(·)

γ,η (Ω)
.

LEMMA 10. Let p(·) be an exponent on Ω such that p(·) ∈ P log(Ω) . Then
there is a positive constant C depending on the log-Hölder continuity constant � for
p(·) such that

1
C
|h|p(x+h) � |h|p(x) � C|h|p(x+h), |h| � 1; x,x+h ∈ Ω.

Proof. Since p(·)∈P log(Ω) we have that for all x and h such that if x,x+h∈Ω ,
|h| � 1,

|p(x+h)− p(x)|� �

− ln |h|
holds. Hence,

|h||p(x+h)−p(x)| � e−�

from which the desired relation follows. �
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LEMMA 11. Let q(·) be an exponent such that q(·) ∈ P(Ω) with appropriate

constant �1 . Then 1
q′(·) ∈ P(Ω) with constant (max{1, �1})

1
(q−−1)2 .

Proof. It is enough to observe that for a set D := B∩Ω , μ(D) � 1, where B is a
ball with center in Ω , we have

μ(D)
(

1
q′

)
−(D)−

(
1
q′

)
+

(D)
=

(
μ(D)q−(D)−q+(D)

) 1
(q−−1)2 � �

1
(q−−1)2

1 . �

Lemma 11 implies the next statement:

LEMMA 12. Let q(·) be an exponent such that q(·) ∈ P(Ω) . Then there is a
positive constant Cq(·) such that for all x ∈ Ω and r > 0 ,

∥∥χD(x,r)
∥∥

L q′(·) � Cq(·)μ(D(x,r))
1

q′(x) .

Moreover, the constant Cq(·) is such that

sup
0<ε<η

Cq(·)−ε < ∞

for some small positive constant η .

The following statement is a quantitative version of Theorem 4.6 in [20].

PROPOSITION 2. Let μ(Ω) < ∞ and let μ satisfy (10). Let kγ satisfy (a) and
(b) of Definition 3. Let γ and ε be constants such that 0 < ε � γ < n. Assume that(

p(·),q(·)
)
∈ P̃(Ω) , n

γ < p− � p+ < n
γ−ε . If q(·) ∈ P(Ω) and p(·) ∈ P log(Ω) then

there exists a constant C = Ckγ ,n,q(·),p(·),ε such that

[Kγ f ]
H̃ p(·)

γ,η (Ω)
� C‖ f‖

Lp(·)
q(·) (Ω)

,

where C satisfies the condition

sup
0<λ<η

Ckγ ,n,q(·)−λ ,p(·),ε < ∞

with a small positive constant η .
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Proof. By conditions (a) and (b) of Definition 3 we find that

|Kγ f (x+h)−Kγ f (x)| �
∫

Ω

∣∣kγ(x+h,y)− kγ(x,y)
∣∣ | f (y)|dμ(y)

�
∫

D(x,2|h|)

∣∣kγ(x+h,y)
∣∣ | f (y)|dμ(y)

+
∫

D(x,2|h|)

∣∣kγ(x,y)
∣∣ | f (y)|dμ(y)

+
∫

Ω\D(x,2|h|)

∣∣kγ(x+h,y)− kγ(x,y)
∣∣ | f (y)|dμ(y)

� Ckγ

∫
D(x,2|h|)

| f (y)|
|x+h− y|n−γ dμ(y)

+Ckγ

∫
D(x,2|h|)

| f (y)|
|x− y|n−γ dμ(y)

+Ckγ |h|ε
∫

Ω\D(x,2|h|)
| f (y)|

|x+h− y|n−γ+ε dμ(y)

=: I1 + I2 + I3,

where |h| is small and x+h ∈ Ω .

Further, by using the representation |x+h− y|γ−n = n−γ
1−2γ−n

2|x+h−y|∫
|x+h−y|

tγ−n−1dt , and

Fubini’s theorem, we see that

I1 � Ckγ ,n

∫ 6|h|

0
ft (x+h)tγ−1dt,

where ft(x) := 1
tn

∫
D(x,t) | f (y)|dμ(y) and the positive constant Ckγ ,n depends only kγ ,n .

Applying now the Hölder inequality in the space Lq(·)(Ω) , the growth condition
for μ , the assumptions 1/q′(·) ∈ P(Ω) , p(·) ∈ P log(Ω) , and observing that

1
c
|h|γ−n/p(x+h) � |h|γ−n/p(x) � c|h|γ−n/p(x+h)

for some constant c > 1, we find that

ft (x+h) � Cq(·)t−n
∥∥χD(x+h,t) f

∥∥
Lq(·)(Ω)

∥∥χD(x+h,t)
∥∥

Lq′(·)(Ω)

� Cq(·)Cq(·)t−nμ(D(x+h,t))1/q′(x+h) ∥∥χD(x+h,t) f
∥∥

Lq(·)(Ω)

� Cq(·)Cq(·)C0t
−n/q(x+h) ∥∥χD(x+h,t) f

∥∥
Lq(·)(Ω)

= Cq(·)Cq(·)C0t
−n/p(x+h)tn/p(x+h)−n/q(x+h)∥∥χD(x+h,t) f

∥∥
Lq(·)(Ω)

� Cq(·)Cq(·)C2
0t

−n/p(x+h)μ(D(x+h,t))1/p(x+h)−1/q(x+h)∥∥χD(x+h,t) f
∥∥

Lq(·)(Ω)

� D‖ f‖
L

p(·)
q(·) (Ω)

t−n/p(x+h),



214 D. E. EDMUNDS, D. MAKHARADZE AND A. MESKHI

where
D = C2

0 Cq(·)Cq(·). (13)

Consequently, since 1/p(·) ∈ P log(Ω) and γ > n
p− , we have

I1 � Ckγ D
6n

γ − n
p−

‖ f‖
L

p(·)
q(·) (Ω)

|h|γ−n/p(x+h)

� C‖ f‖
Lp(·)

q(·) (Ω)
|h|γ−n/p(x),

where

C = c Ckγ D
6n

γ − n
p−

(14)

Further, similar arguments yield

I2 � C‖ f‖
Lp(·)

q(·) (Ω)
|h|γ−n/p(x).

To estimate I3 we observe that if |x− y| � 2|h| , then |x− y+h| � |x− y|− |h| �
|h| . Therefore

I3 � Ckγ |h|ε
∫

Ω\D(x,2|h|)
| f (y)|

|x− y+h|n−γ+ε dμ(y)

� Ckγ |h|ε
∫

Ω\D(x,2|h|)
| f (y)|

(∫ 2|x−y+h|

|x−y+h|
tγ−n−ε−1dt

)
dμ(y)

� Ckγ |h|ε
∫ ∞

|h|
tγ−n−ε−1

(∫
D(x+h,t)

| f (y)|dμ(y)
)

dt

= Ckγ |h|ε
∫ ∞

|h|
tγ−ε−1 ft(x+h)dt.

Repeating the arguments used to estimate I1 we see that

ft(x+h) � Dt−n/p(x+h)‖ f‖
L

p(·)
q(·) (Ω)

.

Since we assumed that γ < ε +n/p+and 1/p(·) ∈ P log(Ω) , we obtain

I3 � C‖ f‖
Lp(·)

q(·) (Ω)
|h|ε

∫ ∞

|h|
tγ−n/p(x+h)−ε−1dt

� C‖ f‖
L

p(·)
q(·) (Ω)

|h|γ−n/p(x),

where C ≡Ckγ ,n,q(·),p(·),ε is a positive constant.
Combining the estimates for I1, I2 and I3 we finally obtain that

‖Kγ f‖
H

γ− n
p(·) (Ω)

� Ckγ ,n,q(·),p(·),ε‖ f‖
L

p(·)
q(·) (Ω)

,
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where the constant Ckγ ,n,q(·),p(·),ε satisfies

sup
0<c<σ

Ckγ ,n,q(·)−c,p(·),ε < ∞

for some small positive constant σ . �

Finally, taking into account Proposition 2 and Lemma 9 we have

THEOREM 2. Let Ω be an open set in R
d and let μ be a Borel measure on

Ω satisfying condition (10). Suppose that μ(Ω) < ∞. Further, let p(·) and q(·) be

variable exponents on Ω such that
(

p(·),q(·)
)
∈ P̃(Ω) . Assume that ϕ(·) ∈ Aq(·) .

Suppose that γ and ε are positive constants such that n
γ < p− � p+ < n

γ−ε . Let q(·) ∈
P(Ω) and let p(·) ∈ P log(Ω) . Then the operator Jγ

Ω is bounded from Lp(·)
q(·),ϕ(·)(Ω) to

H̃ p(·)
γ,n (Ω) , i.e. there is a positive constant c0 such that for all f ∈ Lp(·)

q(·),ϕ(·)(Ω) ,

[Jγ
Ω f ]

H̃ p(·)
γ,n (Ω)

� c0‖ f‖
L

p(·)
q(·),ϕ(·)(Ω).

(15)

DEFINITION 4. Let Ω ⊂ Rd be an open set and let n be a positive constant. We
say that a Borel measure μ defined on Ω satisfies condition A(n,Ω) (or μ ∈ A(n,Ω))
if there is a positive constant c0 such that for all x ∈ Ω and R ∈ (0,diamΩ) ,

1
c0

Rn � μ
(
D(x,R)

)
� c0R

n. (16)

For example, the induced Lebesgue measure | · |d on Ω ⊂Rd satisfying the condi-
tion |D(x,R)|d �C0Rd belongs to the class A(d,Ω) ; arc-length measure ν on a regular
curve Γ belongs to A(1,Γ) ; the Haar measure on a nilpotent Lie groups G belongs to
A(Q,G) , where Q is the homogeneous dimension of G .

It is easy to see that any measure μ satisfying condition (16) is doubling.

COROLLARY 1. Let μ be a finite measure on a bounded open set Ω ⊂ R
d sat-

isfying the condition A(n,Ω) . Suppose that p(·) and q(·) are variable exponents on

Ω such that
(

p(·),q(·)
)
∈ P̃(Ω) . Assume that ϕ(·) ∈ Aq(·) . Let γ and ε be pos-

itive constants such that n
γ < p− � p+ < n

γ−ε . Then the operator Jγ
Ω is bounded

from Lp(·)
q(·),ϕ(·)(Ω) to H̃ p(·)

γ,n (Ω) , i.e. there is a positive constant c0 such that for all

f ∈ Lp(·)
q(·),ϕ(·)(Ω) , (15) holds.
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