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LIOUVILLE TYPE THEOREMS FOR FRACTIONAL
ELLIPTIC SYSTEMS WITH COUPLED TERMS

ANH TUAN DUONG

(Communicated by J. Pecari¢)

Abstract. In this paper, we study the fractional elliptic system with coupled terms

(=A)*u=(qg+ DudvP*L in RV
(=A)* v = (p+ 1)yPud™ in RN,

where 0 <s < 1 and N > 2s. We first prove thatif p > —1, ¢ > —1 and p+g+1< %,
then the system has no positive supersolution. In the case p,q > 0 we establish the nonexistence
result of stable positive solutions. Our results generalize some results in [Li, Yayun; Lei, Yutian;
Commun. Pure Appl. Anal. 17 (2018), no. 5, 1749—1764.] to the system involving the fractional
Laplacian.

1. Introduction

In the last decades, the fractional Laplacian has been widely used to model var-
ious physical phenomena, such as the turbulence, water waves, anomalous diffusion,
phase transitions, flame propagation and quasi-geostrophic flows, see [3, 5, 6,26] and
references given there. Further applications of the fractional Laplacian in probability,
optimization and finance can be found in [1,22]. In particular, the fractional Laplacian
can be seen as the infinitesimal generator of a stable Lévy process [22].

The fractional Laplacian (—A)*, 0 < s < 1, is defined on the space of rapidly
decreasing functions as a nonlocal pseudo-differential operator

(—A)’u(x) = cyslim /RN\B(xg Mdg’

" elo ) = gNFas
where ¢y ¢ is the normalization constant and
N
B(x,e) ={E eR";|E —x| <€}
Equivalently, the fractional Laplacian is also defined by the Fourier transform
F((=8)u) (&) = 1§ F (u)(£),
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where .Z (u) is the Fourier transform of u. In the distribution sense, the fractional
Laplacian can be defined on the space

Zy(RY) = {u € L (RM); /RN %aﬁc < 00}
by
(=A)u, @) = (u,(=A)° ).

In this paper, we are concerned with the fractional elliptic system with coupled
terms
{(—A)‘“u: (g+ DudvPtlin RN W

(=AYv=(p+ 1)y ud™lin RV,

where 0 <s<1,p>—1and g > —1.
The systems of type (1) appear as limit problems in many phenomena, such as
Bose-Einstein condensates, chemical reaction, population evolution. Some of these sys-
tems are known as the fractional Gross-Pitaevskii system, the fractional Lotka-Volterra
system or the fractional Schrodinger system [27-30,32]. When p,q > —1, under some
simple scaling argument u; = cju,v; = cpv, the system (1) is equivalent to
(=A)u; = P in RN 2

(=AY v =VPud ™ in RY.

In [30], by developing the technique in [24], the authors studied the symmetry of com-
ponents of the system containing (2) as a special case. In particular, it was shown
that the components uy,v; satisfy u; < vy or vi <u; with p,g > 1. In addition, if
1 <g< % or 1 <p< ]%, then the result in [30] implies the nonexistence of
positive solutions of the system (2).

In [32], the symmetry and nonexistence result of positive solutions to the fractional
Schrodinger system

3)

(—A)Su; = ulﬁlvf' in RV
(—=A)'v —vﬁzu in RV.

with 0 < s, < 1 and 7;, B; > 0 was investigated. By using the method of moving planes,
the authors proved the nonexistence of positive solutions to the system in the subcritical
case and established the symmetry of solutions in the critical case. On the other hand, in
[2], the author established some Liouville type theorems for supersolutions in exterior
domains of the system (3) by using a probability approach.
In the recent paper [23], the author classified positive solutions to the system with
coupled terms
—Au = (g+ 1)uyP*! @
—Av = (p+ 1)yPudt!

where p,q > 0 and max(p,q) > 1. It was shown in [23] that the system (4) has no

positive solution when 1 < p+4+qg+1< % This type of result for the system (1)
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was also proved in [2] when p,q > 0. However, the case p < 0 or ¢ < 0 has not
been treated in these papers. Therefore, our first purpose in this paper is to prove a
complement result on the nonexistence of positive supersolutions (u,v) of the system
(D), i.e.

(=A)Yu > (g+ DudvP in RY

(=A)v = (p+ 1)vPudtt in RV,

in the case p,g > —1 and p+g+1< 3= 2 . Here and in what follows, u# and v are
considered in C2°(RY) N Z(RY) with ¢ > s. More precisely, we prove the following
theorem.

THEOREM 1. Let p > —1 and q > —1. The system (1) has no positive superso-
lution when p+q+1< %

To prove Theorem | we first use the equivalent between (1) and (2) and then shall
exploit a type of reduction introduced in [24], see also [11,30]. This type of reduction
allows one to reduce the system to an inequality.

We now consider the case p,q > 0. We shall study the nonexistence of positive
stable solutions to the system (1). Note that the energy functional of the system (1) is
given by

CN.s u(x) —u(y))?
E(u,v) = i/RN/RN () = uly))” iinS-yz)S) dxdy

d d q+1 p+1d
2 /RN/RN |x y|N+25 Y= /u % X.

In this paper, we follow the definition of stability in [23].

DEFINITION 1. A positive solution (u,v) of (1) is called u-stable (resp. v-stable)
if for all ¢ € C}(RV),

_ CN.s X)—9()
q(q+1)/RNuq Lptlp2ge < 22 N, /RN/RN dedy )

_ CN,s
(resp. p(p—f—l)/RN wit P le2dx < /]RN /RN T yN+2X) dxdy )

As mentioned in [23], this definition is a little “partial”’. Stability often comes from
the fact that the second variation of energy functional is nonnegative. In fact, the energy
functional is a two-variables function and then the nonnegative definite property of the
hessian matrix is too strong to calculate easily “total” derivatives. The condition (5) is
just like to calculate the “partial” derivative of E(u,v).

In recent years, the existence and nonexistence of stable solutions to elliptic equa-
tions or systems has been attracted much attention of researchers. We next review some
related results on this topic in literature. The stable solutions in the whole space RV to
the equation

—Au= f(u) in RN
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was classified in [9, 14—-16]. The critical exponents in some concrete cases of nonlin-
earity were explicitly computed and the sharpness was also proved.
Concerning the Lane-Emden system with or without weights

—Au = wi(x)v” in RV
—Av =wy(x)ud in RV,

the nonexistence of stable solutions was studied in [7,20,21]. However, the sharpness
of the nonexistence results for the system is left open.

Very recently, the classification of stable solutions to elliptic problems involving
the fractional Laplacian has been much studied. In [8], the authors classified sta-
ble solutions to the fractional Lane-Emden equation by using a combination of the
monotonicity formula and some nonlinear integral estimates. This idea was then used
in [17-19,25,31] to deal with higher order fractional elliptic equations with weights.
Concerning the fractional Lane-Emden system, the authors in [12] have given a suf-
ficient condition for the nonexistence of stable solutions by exploiting the technique
in [13].

The second purpose of this paper is to generalize a nonexistence result of stable
solutions in [23] to the fractional setting. Before presenting our second result, let us
recall an extension result due to Caffarelli and Silvestre [4].

THEOREM A. Let 0<s< o <1 and u € C>°(RN)N.Z,(RV). For (x,t) e R},

we define
U(x,1) / Py(x u(z)dz,

where Py(x,t) is the Poisson kernel

t2s

Py(x,t) = p(N, S)W

and p(N,s) is the normalization constant. Then U € C2(RYTHNCRY ™), 11=29,U €
C(RY™) and

—div(s'=VU) =0 in RYH!
U=u on BRJXH . (6)
—1lims'"=20,U = k,(—=A)*u  on GRJJVFH

t—0

(1

Here Ky = W

and T is the usual Gamma function.

Given W € C(RY™), define

W 1 1-2s
W(r)= N /B*B*t w,

where 7B, = dB,N{t >0} and B, is the ball in RV*! centered at (0,0) with radius
r. Let (u,v) be a positive solution of (1) and denote by U (resp. V) the extension
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of u (resp. v) in the sense of Theorem A. According to [30], U(r) and V(r) are
non-increasing and there holds
a:=1limU(r)=0
F—o0

or
b:=1limV(r)=0.

r—oo

This assertion is true because if lim, . U(r) > 0 and lim, .. V(r) > 0, then there is
€ > 0 such that u(x) > € and v(x) > € which implies (—A)*u > C > 0. This is a
contradiction since (—A)*u > C > 0 has no positive solution [11].

The second result in this paper reads as follows.

THEOREM 2. Assume that p,q >0, 0 <s <1 and N > 2s.

1. If a=0 and q > 1 then (1) has no u-stable solution provided that
4s
N<2s+—— <q+ \/qz—q> .
rt+q
2. If b=0 and p > 1 then (1) has no v-stable solution provided that
4s
N<2s+—— <p+\/p2—p>.
pP+q

Remark that Theorem 2 with s = 1 was established in [23] by using the technique
developed by Farina [15]. Nevertheless, in the nonlocal situation 0 < s < 1, it requires
another approach to deal with the problem since (—A)*¢ has no compact support in
general for ¢ € C(R"). In this paper, we exploit the technique developed by the first
author and V. H. Nguyen in [13] which consists of three main steps:

e Prove an integrability of the right hand side of the system.

e Establish uniform upper bound of some nonlinear integrals.

e Use a scaling argument to arrive at the nonexistence result.

The rest of this paper is devoted to the proof of our main results.

2. Proof of Theorems 1 and 2

In which follows, we denote by C a positive constant which may change from line
to line and independent of solutions of (1).

2.1. Proof of Theorem 1

The proof is based on the reductions used in [11,24,30]. Since (1) and (2) are
equivalent, it is enough to prove that the system (2) has no positive supersolution. Sup-
pose on the contrary that the system (2) has a positive supersolution (u1,vy).
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Set w=u¢ v1 where a,b >0 and a+ b = 1. Using [30, Lemma 2.4], we have

au” 1v}l’( —A)* u1—|—bvh ! uf(—=A)*v;

—1_btp+1
azfl”rq Vi ot +bv,

=uph <au1 ! pH—I—b p-1 qH). (7

bip—1 atqtl
uy

Next, for any m > 1 , the Young inequality implies

-1 _p+1 1 g+1 1. p+1 1 g+1 '71
a4 ol > (uf 11’) (s tug™) )

Then, it results from (7) and (8) that

ard- 1+(q+1)(m D pyptlt(p=1)(m=1) u+q+1,; h+p 142

(=A)'w Cu1 vy m =Cu "V, )
‘We now choose
2
- gb—pa+1

which verifies
2 2
g+1—==a(p+q) and p—1+—=>b(p+q).
m m

It is necessary to show that for any p,q > —1, one can choose a,b >0, a+b =1 such
that m > 1. Indeed,

1. If p,q are two positive number (or two negative numbers), then we can choose
a,b such that § = %. Hence, m=2.

2. If —1<g<0<p (resp. —1 < p<0<q),wechoose a sufficiently small (resp.
b sufficiently small), then we also have m > 1.

Therefore, (9) becomes
(=A)*w > Cw!PTa, (10)

According to [11, Corollary 1.2], this inequality has no positive solution. This is a
contradiction. The proof is complete. [J

2.2. Proof of Theorem 2

In this subsection, we prove the first assertion in Theorem 2 since the second one
is proved by the same argument.

Suppose that (u,v), u> 0,v> 0, is a u-stable solution of (1). Assume that g > 1
and
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This implies from [30, Lemma 3.1] that
1\ 12
u< (%) v, (11)

In what follows, we use the function

__ N+2s

pr2s(x) = (L+[x) 7727

In the first step, we shall prove some integrability without the stability condition.

Step 1. Let (u,v) be a positive solution of (1). Then we have
/ L (1) (x)dx < € / L u(x)py s (X)dx < oo (12)
R R

Proof. Let ¢ € C°(R) be a test function, 0 < ¢ < 1 and

1 iffe] <1
1) = .
o0) {O if [r] > 2

Multiplying (1) by py2s0r € C°(RY) and using an integration by parts, we have
g+ 1) [ )" 0pwsas(e(0dx = [ ulx)(=8) (owadr) (), (13)
here ¢g(x) = ¢ <%> . Notice that, by [13, Lemma 2.2],
(=A) (on+259r) (x) — (—A)* (Pn12s)(x) a8 R — oo
From this and the monotone convergence theorem, we obtain from (13) that
(1) [ w0 Wiz (dx = [ u()(-A) prsas(aid.
Combining this and the fact that, see [13, Lemma 2.1],

[(=A) w25 (x)] < Cponyas(x),
we deduce (12). [

We next prove some nonlinear integral estimates.

Step 2. For 1 < o0 < g+ +/q? — q, it holds

/]R LT py o gRdx < C /R L, UV (E@R) Pr' > dxdt, (14)
+

Dp(x,t) = ¢ (@)

where
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and
L(x,t) = (1+ x> +72)~ "5 forx e RN and r > 0.

Proof. Recall that U is the extension of u in the sense of Theorem A. It follows
from (6) with test function U?*~!{2®2 that

Kilg+1) / 2 oy b oRde = | VU V(U P R) M dxdr

N+1
RN RY+

— 20— 1) / L VUPU 2 P 2 dds
R+

42 / VU - V(COR) U LOpe' P dxdi
R/X+l

20— 1

/ o VU P (D) s
R+

2
+= V(U%)-V(LDg)EDRU % Hdxdr.
o R/X+l

15)

The first integral in the right hand side of (15) is computed as
/ V(U P(EDR) 2 dndr — / V(U D)2 P dxdi
RN+1 RIJ\r“rl

-2 V(U*)-V(LDg)EDRU %~ dxdt

Rﬁ+l
—/ U¥V(EDg) >t > dxdr. (16)
RN+1
Y
Plugging (16) into (15), we obtain
K(g+1) [ wPetatyptl Opdx = 201 |V(U*EDg) >t~ Fdxdr
s\q - PN+25PR o2 R+ R

200—2
-
200—1
-
_ 201 o 2,1-2s
_ T/MH V(U D)2 > dxdi
200—2
——

/R L UYL D) e P .
¥

/ L V(U%) -V () SORU T dxdi
R+

/R L UL D) i s
¥

/ V(U GR) - V(L DR)UST > dxdi
R+

1
o2
(17)
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The Young inequality implies for € > 0 that
/ V(U EDR) - V(LR U P dxdr
RﬁJrl

<e / V(U CDg) ' 2 dxdi
RN+1

+

1 2a 2,1-2s
+4_£ /M“U [V(EDg)| '~ dxdt.
As a consequence of (18) and (17), it holds

g+ 1) [ py R

]RN
200—1 200—2
> o? — ¢ o2

L« ! 20 2,1-2s
- (M—F@) /R’X“U IV(EDg)[r " dxdr.

) / o V(U ) P dxar
R+

269

(18)

19)

1
Next, it results from the stability inequality (5) with a test function u%py_ , ¢r that

1
Keq(g+1) /]RN WP oy o ddx < Kl|u” g0 Okl s ) -
1
Thanks to the fact that U*{®g has trace u®py_ ,,¢r on HRT“I , it holds

1 )
005 ol < [, VW COR)PH > dxa,
+

We then deduce from (19) , (20) and (21) that

2a—1+€2cx—2 1
o2 o2 q

l—a 1 2 2,1-2s
< <_2a2€ +$> /MHU V(L) P\ ddr.

- —> /Rw V(U Cg) ' P dxdi
¥

(20)

21

Recall that 1 < @ < g++/¢*>—¢q , then 2‘;‘51 — é > 0. Therefore, there is € small

enough such that
200 -1 202 1
s—te——>———->0.
o o q

This follows that

/RN“ ‘V(UQCqJR)Ftl_zsdxdt < C/]RNH UMW(Cq)R)Ftl_Zdedt.
+ +

Combining (20), (21) and (22), we obtain (14). U

(22)
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Step 3. For 1 < o0 < g+ +/q? — q, it holds

/N uP%PFA(x) oy o (x)dx < C. (23)
R

Proof. By using the same argument as in [10, Formula (2.14)], we also obtain the

estimate
/ UV (Lp) P s < € / @)y (). 24)
R

N
R+

Combining (14) and (24) we get

20+qg—1, p+1 2 200
/R L TP oy asppdx < C /R LW PN 2sdx.

Letting R — 4o in this inequality, we arrive at

2 -1 1 2
/ Wty gy odx < C / u™®py 4 ogdx.
RN RN

This and the comparison between u and v (11) imply that

/ PP Py o dx < C / W2 Py s, (25)
RN RN

In particular, (12) implies that the right hand side of (25) is finite with o = %’Hl.

Then the left hand side of (25) is also finite. Repeating this argument and using the
Holder inequality, we obtain that the right hand side of (25) is finite for all 1 < a <

a+Va—q.
Applying the Holder inequality to the right hand side of (25), one has

2a
2a+q+p
< oo,

2 2
/ Wt Ppy odx < C ( / u TP py o sdx
RN RN

A simplification of this estimate follows (23). [

End of Proof of Theorem 2. For R > 0 sufficiently large, put
ug(x) = R%M(Rx) > 0and vg(x) = RI’Zquv(Rx) >0.

By some straightforward computation, (ug,vg) is also u-stable solution of the system
(1). From (23), it holds

/RN U P (x) pv a5 (X)dx < €

or equivalently

25(2a+p+q)

R / WP (RY) oy (x)dlx < C.
R
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Using a change of variable, we arrive at

s(2a+-p+q)

R—N+72 L 20+q+p Rldx < C
[ 2 5o, /Ry <

or equivalently

N— 25(2a+p+q)

/ PP (), (x/R)dx < CRY T 26)
R

By the assumption
4s
N<2s+—— <q+ \/qz—q> ;
rt+q

we can choose o close to g+ /g% — g such that the exponent in the right hand side
of (26) is negative. By taking R — +-oo we obtain u = 0 which implies a contradiction
since u > 0. The proofis finished. [
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