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SOME EXTENSIONS OF CLASSES INVOLVING PAIR

OF WEIGHTS RELATED TO THE BOUNDEDNESS OF

MULTILINEAR COMMUTATORS ASSOCIATED TO

GENERALIZED FRACTIONAL INTEGRAL OPERATORS

FABIO BERRA, GLADIS PRADOLINI AND JORGELINA RECCHI ∗

(Communicated by I. Perić)

Abstract. We deal with the boundedness properties of higher order commutators related to some
generalizations of the multilinear fractional integral operator of order m , Im , from a product of
weighted Lebesgue spaces into adequate weighted Lipschitz spaces, extending some previous
estimates for the linear case. Our study includes two different types of commutators and suffi-
cient conditions on the weights in order to guarantee the continuity properties described above.
We also exhibit the optimal range of the parameters involved. The optimality is understood in
the sense that the parameters defining the corresponding spaces belong to a certain region, being
the weights trivial outside of it. We further show examples of weights for the class which cover
the mentioned area.

1. Introduction

Many classical operators in Harmonic Analysis whose continuity properties were
extensively studied, have shown to behave in a suitable way when their multilinear
versions act in the corresponding multilinear spaces. For example, in [6] the authors
proved that both, the multilinear Calderón-Zygmund operators and their commutators
with BMO symbols, are bounded from a product of weighted Lebesgue spaces to an as-
sociated weighted Lebesgue space, with weights belonging to the A�p multilinear class.
This article established the starting point of the weighted theory in this general context.
Motivated by the result in [6], similar estimates for multilinear fractional integral oper-
ators were obtained in [7], and in [4] for their commutators with BMO symbols. The
weights involved in both articles belong to a class that generalizes those given in [6]
and in [8] for the linear case.

Regarding the two-weighted theory, in [7] K. Moen gave a complete discussion
showing sufficient bump conditions in order to guarantee the continuity properties of
the multilinear fractional integral operator acting between a wider class of Lebesgue
spaces than those obtained in the one-weight theory. The obtained results generalize
the linear version given, for example, in [17] and [10].
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In [2] the authors studied the two-weighted boundedness properties of the multi-
linear fractional integral operator between a product of weighted Lebesgue spaces into
appropiate weighted Lipschitz spaces associated to a parameter  . They character-
ized the classes of weights related to this problem, showing also the optimal range of
the parameters involved. The optimality is understood in the sense that the parameters
defining the corresponding spaces belong to a certain region, being the weights trivial
outside of it. These results extend the corresponding proved in [14] for the linear case.

Our main interest in this article is the study of the boundedness properties for
higher order commutators related to some generalizations of the multilinear fractional
integral operator of order m , Im

 , defined by

Im
 �f (x) =

∫
(Rn)m

m
i=1 fi(yi)

(m
i=1 |x− yi|)mn− d�y,

where 0 <  < mn , �f = ( f1, f2, . . . , fm) and �y = (y1,y2, . . . ,ym) . These operators are
given by

Tm
 �f (x) =

∫
(Rn)m

K (x,�y)
m


i=1

fi(yi)d�y,

where K satisfies certain size and regularity conditions (see Section 2). Particularly,
the size condition allows us to conclude that |Tm

 �f |�CIm
�g , where �g = (| f1|, . . . , | fm|) .

This estimation guarantees the boundedness of Tm
 with different weights, between a

product of Lebesgue spaces into a related Lebesgue space when the class of multilinear
weights involved is an extension of that given in [7] for the continuity properties of
Im
 . Nevertheless, this argument cannot be applied for other spaces such that BMO,
Lipschitz or Morrey because of the fact that they have not a growth property such as
Lebesgue spaces. So, we shall focus our attention in studying the boundedness proper-
ties of the commutators of Tm

 acting between a product of weighted Lebesgue spaces
into certain weighted versions of the aforementioned spaces. In the linear case this
problem was studied in [15] for higher order commutators including the case of the op-
erator I , which had been previously given in [14] for the two-weighted setting in the
linear context. For similar problems involving other weighted type of Lipschitz spaces
see [5], [13] and [16]. On the other hand, in the multilinear case and for Tm

 = Im
 (that

is K(x,�y) = (m
i=1 |x− yi|)−mn ), generalizations of two-weighted problems can be

found in [2] and [3] (see also [1] for the unweighted problem).
In this paper we study the boundedness of commutators of fractional operators,

including Im
 , between a product of weighted Lebesgue spaces and weighted general-

izations of those introduced in [9]. For a weight w , the latter are denoted by Lw( )
and defined as the collection of locally integrable functions f for which the inequality

‖wXB‖
|B|1+/n

∫
B
| f (x)− fB|dx � C

holds for every ball B ⊂ R
n , where fB = |B|−1 ∫

B f .
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We shall consider two different types of higher order commutators of Tm
 . Given

an m-tuple of functions b = (b1, . . . ,bm) , where each component belongs to L1
loc , the

first multilinear commutator we shall be dealing with, Tm
 ,b , is given by the expression

Tm
 ,b

�f (x) =
m


j=1

Tm
 ,b j

�f (x),

where Tm
 ,b j

is formally defined by

Tm
 ,b j

�f (x) =
∫

(Rn)m
(b j(x)−b j(y j))K(x,�y)

m


i=1

fi(yi)d�y.

On the other hand, the second type of commutator that we shall consider can be ex-
pressed as

T m
 ,b

�f (x) =
∫

(Rn)m
K(x,�y)

m


i=1

(bi(x)−bi(yi)) fi(yi)d�y.

The last two equalities above are a consequence of their definitions given in Section 2,
and both commutators were introduced in [12] and [11], respectively.

We shall also be dealing with multilinear symbols with components belonging to
the classical Lipschitz spaces ( ) (for more information see Section 2).

Let �p = (p1, p2, . . . , pm) be a vector of exponents such that 1 � pi �  for every
i . Let  ,  and ̃ be real constants. Given w , �v = (v1,v2, . . . ,vm) and �p , we say that
(w,�v) ∈ Hm(�p, , ̃ ) if there exists a positive constant C such that the inequality

‖wXB‖
|B|(̃− )/n

m


i=1

(∫
Rn

v
−p′i
i

(|B|1/n + |xB− y|)(n−i+/m)p′i
dy

)1/p′i

� C

holds for every ball B = B(xB,R) , with the obvious changes when pi = 1. The numbers
i satisfy m

i=1i =  and also 0 < i < n , for every i (see Section 2 for further details
related to these classes of weights).

We shall now state our main results. From now on, 1/p=m
i=1 1/pi . See Section 2

for details.

THEOREM 1.1. Let 0 <  < mn and Tm
 be a multilinear fractional operator

with kernel K satisfying (2.2) and (2.3). Let 0 <  < min{,mn−} , ̃ =  + 
and �p a vector of exponents that satisfies p > n/̃ . Let b = (b1, . . . ,bm) be a vector
of symbols such that bi ∈ ( ) , for 1 � i � m. Let ̃ �  and (w,�v) be a pair of

weights belonging to the class Hm(�p, ̃ , ̃ ) such that v
−p′i
i ∈ RHm , for every i such

that 1 < pi � . Then the multilinear commutator Tm
 ,b is bounded from m

i=1 Lpi(vpi
i )

to Lw(̃ ) , that is, there exists a positive constant C such that the inequality

‖wXB‖
|B|1+̃/n

∫
B
|Tm
 ,b

�f (x)− (Tm
 ,b

�f )B|dx � C
m


i=1

‖ fivi‖pi

holds for every ball B and every �f such that fivi ∈ Lpi , for 1 � i � m.
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Concerning the commutator T m
 ,b we have the following result.

THEOREM 1.2. Let 0< < mn and Tm
 be a multilinear fractional operator with

kernel K satisfying (2.2) and (2.3). Let 0 <  < min{,(mn−)/m} , ̃ =  +m
and �p a vector of exponents that satisfies p > n/̃ . Let b = (b1, . . . ,bm) be a vector of
symbols such that bi ∈( ) , for 1 � i � m. Let ̃ �  and (w,�v) be a pair of weights

belonging to the class Hm(�p, ̃, ̃ ) such that v
−p′i
i ∈ RHm , for every 1 < pi �  . Then

the multilinear commutator T m
 ,b is bounded from m

i=1 Lpi(vpi
i ) to Lw(̃ ) , that is,

there exists a positive constant C such that the inequality

‖wXB‖
|B|1+̃/n

∫
B
|T m

 ,b
�f (x)− (T m

 ,b
�f )B|dx � C

m


i=1

‖ fivi‖pi

holds for every ball B and every �f such that fivi ∈ Lpi , for 1 � i � m.

Note that the restriction on the parameter  implicated is different in each theorem
due to the nature of the considered commutators.

When we deal with w = m
i=1 vi , which is the natural substitute of the one weight

theory in the linear case, we shall say that �v∈Hm(�p, , ̃ ) . Then we have the following
lemma.

LEMMA 1.3. Let 0 <  < mn, ̃ ∈ R , and �p a vector of exponents.
If �v ∈ Hm(�p, , ̃ ) , then ̃ =  −n/p.

The proof of this result follows similar arguments as those of Theorem 1.3
in [2] and we shall omit it. As a consequence of this lemma we can prove that if
̃ <  = ( −mn)(1− 1/m)+ /m , then condition (2.5) can be reduced to the class
A�p, , defined as the collection of multilinear weights �v = (v1, . . . ,vm) for which the
inequality

[�v]A�p, = sup
B⊂Rn

∥∥∥∥∥XB

m


i=1

vi

∥∥∥∥∥


m


i=1

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
<  (1.1)

holds (see Corollary 6.4).
The paper is organized as follows. In Section 2 we give the main definitions re-

quired in the sequel. In Section 3 we state and prove some auxiliary results that will
be useful for the proof of the main theorems, which are contained in Section 4 and 5.
Finally in Section 6 we prove some properties of the class Hm(�p, , ̃ ) and show the
optimality of the associated parameters.

2. Preliminaries and definitions

Throughout the paper C will denote an absolute constant that may change in every
occurrence. By A � B we mean that there exists a positive constant c such that A � cB .
We say that A ≈ B when A � B and B � A .
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By m ∈ N we denote the multilinear parameter involved in our estimates. Given
a set E , with Em we shall denote the cartesian product of E m times. We shall be
dealing with operators given by the expression

Tm
 �f (x) =

∫
(Rn)m

K (x,�y)
m


i=1

fi(yi)d�y, (2.1)

for 0 <  < mn , where �f = ( f1, . . . , fm) , �y = (y1, . . . ,ym) and K is a kernel satisfying
the size condition

|K(x,�y)| � 1
(m

i=1 |x− yi|)mn− (2.2)

and an additional smoothness condition given by

|K (x,�y)−K(x′,�y)| � |x− x′|
(m

i=1 |x− yi|)mn−+ , (2.3)

for some 0 <  � 1, whenever m
i=1 |x−yi|> 2|x−x′| . It is easy to check that Tm

 = Im


defined above, when we consider K(x,�y) = (m
i=1 |x− yi|)−mn .

We shall introduce two versions of commutators of the operators above. For a
specified linear operator T and a function b ∈ L1

loc we recall that the classical commu-
tator Tb or [b,T ] is given by the expression

[b,T ] f = bT f −T(b f ).

When we deal with multilinear functions and symbols, it will be necessary to
emphasize how we proceed to perform the commutation. If b∈ L1

loc , T is a multilinear
operator and �f = ( f1, f2 . . . , fm) we write

[b,T ] j(�f ) = bT (�f )−T(( f1, . . . ,b f j, . . . , fm)),

that is, [b,T ] j is obtained by commuting b with the j -th entry of �f .
The first version of the commutator is defined as follows. Given an m-tuple

b = (b1, . . . ,bm) , with bi ∈ L1
loc for every i , we define the multilinear commutator

of Tm
 by the expression

Tm
 ,b

�f (x) =
m


j=1

Tm
 ,b j

�f (x),

where
Tm
 ,b j

�f (x) = [b j,T
m
 ] j�f (x).

As a consequence of (2.1) it is not difficult to see that

Tm
 ,b j

�f (x) =
∫

(Rn)m
(b j(x)−b j(y j))K(x,�y)

m


i=1

fi(yi)d�y.

We now introduce the second type of commutator of Tm
 . The multilinear product

commutator T m
 ,b is defined iteratively as follows

T m
 ,b

�f = [bm, . . . [b2, [b1,T
m
 ]1]2 . . .]m�f .
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The expression above does not involve a simple notation, so we shall provide an alter-
native way to denote this commutator (see Section 3).

By means of (2.1) we can also obtain an integral representation for this operator
(see Proposition 3.1 below), namely

T m
 ,b

�f (x) =
∫

(Rn)m
K(x,�y)

m


i=1

(bi(x)−bi(yi)) fi(yi)d�y.

By a weight we understand any positive and locally integrable function.
Given  ∈ R and a weight w we say that a locally integrable function f ∈ Lw( )

if there exists a positive constant C such that the inequality

‖wXB‖
|B|1+/n

∫
B
| f (x)− fB|dx � C (2.4)

holds for every ball B , where fB = |B|−1 ∫
B f . The smallest constant C in (2.4) will

be denoted by ‖ f‖Lw( ) . If  = 0 the space Lw( ) coincides with a weighted version
of the BMO spaces introduced in [8], the classical Lipschitz functions when 0 <  < 1
and the Morrey spaces when −n <  < 0. These classes of functions were also studied
in [14].

Regarding the symbols, we shall be dealing with the ( ) Lipschitz spaces given,
for 0 <  < 1, by the collection of functions b verifying

|b(x)−b(y)|� C|x− y| .

The smallest constant for this inequality to hold will be denoted by ‖b‖( ) . For a
given b = (b1, . . . ,bm) , with bi ∈ ( ) for every 1 � i � m , we define

‖b‖(( ))m = max
1�i�m

‖bi‖( ).

Let Sm = {0,1}m . Given a set B and  = (1,2, . . . ,m) ∈ Sm , we define

Bi =
{

B, if i = 1
R

n\B, if i = 0.

With the notation B we will understand the cartesian product B1 ×B2 × . . .×Bm .
For  = (1,2, . . . ,m) we also define

 i =
{

1 if i = 0;
0 if i = 1,

for every 1 � i � m and | | = m
i=1i .

We now describe the classes of weights involved in our estimates. Let  be a
fixed real constant. If 1 � pi � for every i , the m-tuple �p = (p1, p2, . . . , pm) will be
called a vector of exponents. We shall also denote 1/p = m

i=1 1/pi . Let  and ̃ be
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real constants. Given w , �v = (v1,v2, . . . ,vm) and a vector of exponents �p , we say that
(w,�v) ∈ Hm(�p, , ̃ ) if there exists a positive constant C such that the inequality

‖wXB‖
|B|(̃− )/n

m


i=1

(∫
Rn

v
−p′i
i

(|B|1/n + |xB− y|)(n−i+/m)p′i
dy

)1/p′i

� C (2.5)

holds for every ball B = B(xB,R) . The numbers i satisfy m
i=1i =  and also

0 < i < n , for every i , which leads to 0 <  < mn . We shall also see that the pa-
rameters ̃ and  are related to  . When pi = 1 for some i the integral above is
understood as ∥∥∥∥∥ v−1

i

(|B|1/n + |xB−·|)n−i+/m

∥∥∥∥∥


.

Let

I1 = {1 � i � m : pi = 1} (2.6)

and
I2 = {1 � i � m : 1 < pi � }. (2.7)

Condition (2.5) implies that

‖wXB‖
|B|̃/n+1/p−/n 

i∈I1

‖v−1
i XB‖ 

i∈I2

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
� C (2.8)

and

‖wXB‖
|B|(̃− )/n 

i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB −·|n−i+ 
m

∥∥∥∥∥


i∈I2

(∫
Rn\B

v
−p′i
i

|xB −·|(n−i+ 
m )p′i

)1/p′i

� C. (2.9)

We shall refer to the inequalities above as the local and global conditions, respectively.
Furthermore, given  ∈ Sm we can estimate the i-th factor in (2.5) depending

whether i = 0 or i = 1. Thus we have that condition (2.5) implies

‖wXB‖
|B|(̃− )/n+() 

i:i=1
‖v−1

i XB‖p′i 
i:i=0

∥∥∥∥∥∥
v
−p′i
i XRn\B

|xB −·|n−i+/m

∥∥∥∥∥∥
p′i

� C, (2.10)

where  () = i:i=1 1−i/n+ /(mn) .
We recall that a weight w belongs to the reverse Hölder class RHs , 1 < s <  , if

there exists a positive constant C such that the inequality

(
1
|B|
∫

B
ws
)1/s

� C
|B|
∫

B
w
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holds for every ball B in R
n . The smallest constant for which the inequality above holds

is denoted by [w]RHs . It is not difficult to see that RHt ⊂ RHs whenever 1 < s < t . We
say that w ∈ RH if

sup
B

w � C
|B|
∫

B
w,

for some positive constant C .

3. Auxiliary results

We devote this section to state and prove some facts that will be useful in our
estimates.

The following proposition establishes an alternative way to denote the product
commutator T m

 ,b .

PROPOSITION 3.1. Let Tm
 be a multilinear operator as in (2.1) and b = (b1, . . . ,bm)

where bi ∈ L1
loc for 1 � i � m. Then we have that

T m
 ,b

�f (x) = 
∈Sm

(−1)m−| |
(

m


i=1

bi
i (x)

)
Tm
 ( f1b

1
1 , . . . , fmbm

m )(x).

Furthermore, we have the integral representation

T m
 ,b

�f (x) =
∫

(Rn)m
K(x,�y)

m


i=1

(bi(x)−bi(yi)) fi(yi)d�y.

Proof. Let us introduce some notation in order to make our calculations simpler.
Fix a symbol b = (b1, . . . ,bm) and let Fk be the operator resulting after perform k
iterative commutings, 1 � k � m , that is

Fk�f = [bk, . . . [b2, [b1,T
m
 ]1]2 . . .]k�f .

Given  ∈ Sm , let us also denote with

�gk
b, = (g1,g2, . . . ,gm)

where

gi =
{

fib
 i
i if 1 � i � k,

fi if k < i � m.

We shall proceed by induction in order to show that

Fk�f = 
∈Sk

(−1)k−| |
(

k


i=1

bi
i

)
Tm


(
�gk

b,

)
. (3.1)
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Notice that the case k = 1 is immediate after performing one commutation only.
Let us assume that the expression above holds for k and we shall prove it for k+1. By
the definition and the inductive hypothesis we have

Fk+1�f = [bk+1,Fk]k+1�f

= bk+1 
∈Sk

(−1)k−| |
(

k


i=1

bi
i

)
Tm


(
�gk

b,

)

− 
∈Sk

(−1)k−| |
(

k


i=1

bi
i

)
Tm
 ( f1b

1
1 , . . . , fkb

k
k , fk+1bk+1, fk+2, . . . , fm).

Observe that { ∈ Sk+1}= { ∈ Sk+1 : k+1 = 1}∪{ ∈ Sk+1 : k+1 = 0} . By rewriting
the sums above we get

Fk+1�f = 
∈Sk+1,k+1=1

(−1)k−(| |−1)

(
k+1


i=1

bi
i

)
Tm


(
�gk+1

b,

)

+ 
∈Sk+1,k+1=0

(−1)k+1−| |
(

k+1


i=1

bi
i

)
Tm


(
�gk+1

b,

)

= 
∈Sk+1

(−1)k+1−| |
(

k+1


i=1

bi
i

)
Tm


(
�gk+1

b,

)
.

Therefore (3.1) holds for every 1 � k � m , and the case k = m allows us to conclude
the desired estimate.

In order to show the integral representation, we shall prove that

Fk�f =
∫

(Rn)m
K(x,�y)

k


i=1

(bi(x)−bi(yi))
m


i=1

fi(yi)d�y. (3.2)

We proceed again by induction on k . If k = 1 we have that

F1�f (x) = b1(x)T m
 �f (x)−Tm

 ((b1 f1, f2, . . . , fm))(x)

=
∫

(Rn)m
K(x,�y)(b1(x)−b1(y1))

m


i=1

fi(yi)d�y.

Now assume the representation holds for k and let us prove it for k+1. Indeed, using
the definition of Fk and the inductive hypothesis we get

Fk+1�f (x) = [bk+1,Fk]k+1�f (x)

= bk+1(x)Fk
�f (x)−Fk( f1, . . . , fk, fk+1bk+1, fk+2, . . . , fm)(x)
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= bk+1(x)
∫

(Rn)m
K(x,�y)

k


i=1

(bi(x)−bi(yi))
m


i=1

fi(yi)d�y

−
∫
(Rn)m

K(x,�y)bk+1(yk+1)
k


i=1

(bi(x)−bi(yi))
m


i=1

fi(yi)d�y

=
∫

(Rn)m
K(x,�y)

k+1


i=1

(bi(x)−bi(yi))
m


i=1

fi(yi)d�y.

This shows that the representation for k + 1 also holds. Putting k = m we get the
integral representation for T m

 ,b . �

LEMMA 3.2. Let m ∈ N and ai,bi and ci be real numbers for 1 � i � m. Then

m


i=1

(ai−bi)−
m


i=1

(ci −bi) =
m


j=1

(a j − c j)
i< j

(ai−bi)
i> j

(ci−bi).

Proof. We proceed by induction on m . If m = 1 it is immediate, both sides are
equal to a1− c1 since the products on the right-hand side are equal to 1.

Assume that the equality holds for m = k . Let us prove it for m = k+1. We have
that

k+1


i=1

(ai −bi)−
k+1


i=1

(ci −bi) = (ak+1 −bk+1)
k


i=1

(ai−bi)−
k+1


i=1

(ci −bi)

= (ak+1 − ck+1)
k


i=1

(ai −bi)

+ (ck+1−bk+1)

(
k


i=1

(ai −bi)−
k


i=1

(ci−bi)

)
.

Using the inductive hypothesis we arrive to

k+1


i=1

(ai −bi)−
k+1


i=1

(ci −bi) = (ak+1 − ck+1)
k


i=1

(ai −bi)

+ (ck+1−bk+1)
k


j=1

(a j − c j)
i< j

(ai −bi)
i> j

(ci −bi)

=
k+1


j=1

(a j − c j)
i< j

(ai −bi)
i> j

(ci −bi),

so the result also holds for m = k+1. This completes the proof. �

The next lemma establishes a useful relation between A�p and A�p,q classes that we
shall need in the sequel. Given �p = (p1, . . . , pm) with 1/p =m

i=1 1/pi and 1 � pi �
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for every i , we say that �w = (w1, . . . ,wm) ∈ A�p if

sup
B

(
1
|B|
∫

B

m


i=1

wp/pi
i

)1/p


i∈I1

∥∥w−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
w

1−p′i
i

)1/p′i
< ,

and this supremum is denoted by [�w]A�p . Since pi � 1 for every i , we get that p � 1/m .
On the other hand, given 0<q< and �p as above, we say that �w=(w1, . . .,wm)∈A�p,q

if

sup
B

(
1
|B|
∫

B

m


i=1

wq
i

)1/q


i∈I1

∥∥w−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
w
−p′i
i

)1/p′i
< ,

and this supremum is denoted by [�w]A�p,q . When q =  this class corresponds to A�p,
given in (1.1).

LEMMA 3.3. Let �p = (p1, . . . , pm) be a vector of exponents, 0 < q <  and
�w = (w1, . . . ,wm) . Assume that

1
pi

+
1

mq
− 1

mp
> 0 (3.3)

for every 1 � i � m. We define m = 1/(mp)′ +1/(mq) ,

�i =
{

1 if i ∈ I1

(mp′i)′ if i ∈ I2,

� such that 1/� = m
i=1 1/�i and �z = (z1, . . . ,zm) where zi = wq�i/�

i , for each i . Then
�w ∈ A�p,q if and only if �z ∈ A��

.

Proof. We first notice that condition (3.3) guarantees that �i > 1 for i ∈ I2 . It is
immediate from the definition that

m


i=1

z�/�i
i =

m


i=1

wq
i .

Observe that

1
�

=
m


i=1

1
�i

= 
i∈I1

1+ 
i∈I2

1
(mp′i)′

= m− 1
m

(
m− 1

p

)
=

1
qm

.

Also notice that for i ∈ I2

z
1−�′i
i = w

q�i(1−�′i)/�
i = w

−�′i/m
i = w

−p′i
i

and
1
�′i

=
1

mp′i
=

q
�p′i

.
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These identities imply that(
1
|B|
∫

B

m


i=1

z�/�i
i

)1/�


i∈I1

∥∥z−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
z
1−�′i
i

)1/�′i

can be rewritten as⎡
⎣( 1

|B|
∫

B

m


i=1

wq
i

)1/q


i∈I1

∥∥w−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
w
−p′i
i

)1/p′i
⎤
⎦

q/�

,

from where the equivalence follows. �

REMARK 1. When m = 1 condition (3.3) trivially holds, and we get that w∈ Ap,q

if and only if wq ∈ A1+q/p′ , a well-known relation between Ap and Ap,q classes.

4. Proof of Theorem 1.1

We devote this section to prove Theorem 1.1. We shall begin with an auxiliary
lemma that will be useful for this purpose.

LEMMA 4.1. Let 0 <  < mn, 0 <  < mn− , ̃ =  +  and �p a vector of
exponents that satisfies p > n/̃ . Let ̃ �  and (w,�v) be a pair of weights belonging

to the class Hm(�p, ̃ , ̃ ) such that v
−p′i
i ∈ RHm for every i ∈ I2 . Then there exists

a positive constant C such that for every ball B and every �f such that fivi ∈ Lpi ,
1 � i � m, we have that

∫
B
|Ĩ,m�g(x)|dx � C

|B|1+̃/n

‖wXB‖
m


i=1

‖ fivi‖pi ,

where �g = ( f1X2B, f2X2B, . . . , fmX2B) .

Proof. We shall follow similar lines as in the proof of Lemma 3.1 in [2]. We
include a sketch for the sake of completeness.

Using (2.6) and (2.7), we shall split the set I2 into I 1
2 and I 2

2 where

I 1
2 = {i ∈ I2 : 1 < pi < } and I 2

2 = {i ∈ I2 : pi = }.
Let mi = #Ii , for i = 1,2 and mj

2 = #I j
2 , also for j = 1,2. Then m = m1 + m2 =

m1 +m1
2 +m2

2 . Then, by denoting B̃ = 2B , for x ∈ B we have that

|Ĩ ,m�g(x)| �
∫

B̃m

m
i=1 | fi(yi)|

(m
i=1 |x− yi|)mn−̃ d�y

�

⎛
⎝

i∈I 2
2

‖ fivi‖
⎞
⎠∫

B̃m

i∈I1∪I 1
2
| fi(yi)|i∈I 2

2
v−1
i (yi)

(m
i=1 |x− yi|)mn−̃ d�y
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�

⎛
⎝

i∈I 2
2

‖ fivi‖
⎞
⎠
(

i∈I1

‖ fiXB̃‖1

)∫
B̃m2

i∈I 1
2
| fi(yi)|i∈I 2

2
v−1
i (yi)

(i∈I2
|x− yi|)mn−̃ d�y

=

⎛
⎝

i∈I 2
2

‖ fivi‖
⎞
⎠(

i∈I1

‖ fiXB̃‖1

)
I(x,B).

Since p > n/̃ we have that

̃ > n/p = n
m


i=1

1
pi

= m1n+
n
p∗

,

where 1/p∗ = i∈I2
1/pi . Then we can split ̃ = ̃1 + ̃2 , where ̃1 > m1n and

̃2 > n/p∗ . Therefore

mn− ̃ = m2n− ̃2 +m1n− ̃1.

Let us sort the sets I 1
2 and I 2

2 increasingly, so

I 1
2 =

{
i1, i2, . . . , im1

2

}
and I 2

2 =
{

im1
2+1, im1

2+2, . . . , im2

}
.

We now define �g = (g1, . . . ,gm2) , where

g j =

{
| fi j | if 1 � j � m1

2;
v−1
i j

if m1
2 +1 � j � m2.

Then we can proceed in the following way

I(x,B) �
∫

B̃m2

i∈I 1
2
| fi(yi)|i∈I 2

2
v−1
i (yi)(i∈I2

|x− yi|)̃1−nm1

(i∈I2
|x− yi|)m2n−̃2 d�y

� |B̃|̃1/n−m1

∫
B̃m2

i∈I 1
2
| fi(yi)|i∈I 2

2
v−1
i (yi)

(i∈I2
|x− yi|)m2n−̃2 d�y

= |B̃|̃1/n−m1

∫
B̃m2

m2
j=1 g j(yi j )

(m2
j=1 |x− yi j |)m2n−̃2 d�y

� |B̃|̃1/n−m1Ĩ2,m2
(�gXB̃m2 )(x).

Next we define the vector of exponents �r = (r1, . . . ,rm2) in the following way

r j =
{

m2pi j/(m2 −1+ pi j) if 1 � j � m1
2;

m2 if m1
2 +1 � j � m2.

This definition yields

1
r

=
m2


j=1

1
r j

=
m1

2


j=1

(
1
m2

+
m2−1
m2pi j

)
+

m2


j=m1

2+1

1
m2

=
m1

2

m2
+

m2−1
m2p∗

+
m2

2

m2
= 1+

m2−1
m2p∗

.
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Notice that 1/r > 1/p∗ and also n/p∗ < ̃2 by construction. Then there exists an
auxiliary number ̃0 such that n/p∗ < ̃0 < n/r . Indeed, if ̃2 < n/r we can directly
pick ̃0 = ̃2 . Otherwise ̃0 < ̃2 . We shall first assume that m2 � 2. We set

1
q

=
1
r
− ̃0

n
.

Observe that 0 < 1/q < 1 since

1
r
−1 =

(
1− 1

m2

)
1
p∗

<
1
p∗

<
̃0

n
.

Using the well-known continuity property Ĩ0,m2 : m2
j=1 Lrj → Lq with respect to the

Lebesgue measure (see, for example, [7]) we obtain

∫
B
I(x,B)dx � |B̃|̃1/n−m1+(̃2−̃0)/n

(∫
B
|Ĩ0,m2(�gXB̃m2 )(x)|q dx

)1/q

|B|1/q′

� |B̃|(̃−̃0)/n−m1+1/q′
(∫

Rn
|Ĩ0,m2(�gXB̃m2 )(x)|q dx

)1/q

� |B̃|(̃−̃0)/n−m1+1/q′
m2


j=1

‖g jXB̃‖r j .

Observe that r j < pi j for every 1 � j � m1
2 . Since v

−p′i
i ∈ RHm ⊆ RHm2 for every

i ∈ I2 , applying Hölder’s inequality and then the reverse Hölder condition on these
weights we get

m2


j=1

‖g jXB̃‖r j = 
i∈I 1

2

(∫
B̃
| fi|rivri

i v−ri
i

)1/ri


i∈I 2

2

(∫
B̃
v−m2
i

)1/m2

� 
i∈I 1

2

‖ fivi‖pi

(∫
B̃
v
−m2 p′i
i

)1/(m2p′i)


i∈I 2

2

(∫
B̃
v−m2
i

)1/m2

� |B̃|m1
2/m2−1/(m2 p∗)+m2

2/m2 
i∈I 1

2

[
v
−p′i
i

]
RHm2

‖ fivi‖pi

(
1

|B̃|
∫

B̃
v
−p′i
i

)1/p′i

× 
i∈I 2

2

[
v−1
i

]
RHm2

(
1

|B̃|
∫

B̃
v−1
i

)

� |B̃|1−1/(m2p∗) 
i∈I 1

2

‖ fivi‖pi

(
1

|B̃|
∫

B̃
v
−p′i
i

)1/p′i


i∈I 2
2

(
1

|B̃|
∫

B̃
v−1
i

)
.
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Combining the estimates above with condition (2.8), we finally arrive to

∫
B
|Ĩ,m�g(x)|dx �

⎛
⎝

i∈I 2
2

‖ fivi‖
⎞
⎠
(

i∈I1

‖ fiXB̃‖1

)∫
B
I(x,B)dx

�

⎛
⎝

i∈I 2
2

‖ fivi‖
⎞
⎠
(

i∈I1

‖ fiXB̃‖1

)
|B̃|(̃−̃0)/n−m1+1/q′+1−1/(m2p∗)

× 
i∈I 1

2

‖ fivi‖pi

(
1

|B̃|
∫

B̃
v
−p′i
i

)1/p′i


i∈I 2
2

(
1

|B̃|
∫

B̃
v−1
i

)

�
(

m


i=1

‖ fivi‖pi

)

i∈I2

(
1

|B̃|
∫

B̃
v
−p′i
i

)1/p′i

i∈I1

∥∥v−1
i XB̃

∥∥


×|B̃|(̃−̃0)/n−m1+1/q′+1−1/(m2p∗)

� ‖wXB̃‖−1
 |B̃|̃/n−̃/n+1/p+(̃−̃0)/n−m1+1/q′+1−1/(m2p∗)

×
(

m


i=1

‖ fivi‖pi

)

� ‖wXB‖−1
 |B|1+̃/n

(
m


i=1

‖ fivi‖pi

)
.

Thus we can achieve the desired estimate provided m2 � 2. We shall now consider
0 � m2 < 2. There are only three possible cases:

1. m2 = 0. In this case we have m1
2 = m2

2 = 0 and this implies �p = (1,1, . . . ,1) .
This situation is not possible, because p > n/̃ .

2. m1
2 = 0 and m2

2 = 1. In this case 1/p = m− 1. Condition p > n/̃ implies
̃ > (m− 1)n . Let i0 be the index such that pi0 =  . Using Fubini’s theorem,
we can proceed in the following way

∫
B

∫
B̃m

m
i=1 | fi(yi)|

(m
i=1 |x− yi|)mn−̃ d�ydx =

∫
B̃m

m


i=1

| fi(yi)|
⎛
⎝∫

B

(
m


i=1

|x− yi|
)̃−mn

dx

⎞
⎠ d�y.

Since

∫
B

(
m


i=1

|x− yi|
)̃−mn

dx �
∫ 4R

0
̃−mnn−1 d

� |B|̃/n−m+1,
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by (2.8), we get

∫
B
|Ĩ ,m�g(x)|dx � |B|̃/n−m+2

(
m


i=1

‖ fivi‖pi

)(

i∈I1

∥∥v−1
i XB̃

∥∥


)(
1

|B̃|
∫

B̃
v−1
i0

)

�
(

m


i=1

‖ fivi‖pi

)
|B̃|̃/n−m+2+̃/n−̃/n+1/p

‖wXB̃‖

�
(

m


i=1

‖ fivi‖pi

)
|B|1+̃/n

‖wXB‖ .

3. m1
2 = 1 and m2

2 = 0. If i0 denotes the index for which 1 < pi0 < , the condition
p > n/̃ implies that

̃
n

>
1
p

= m−1+
1
pi0

,

and thus ̃ > (m−1)n . We repeat the estimate given in the previous case. This
yields to

∫
B
|Ĩ,m�g(x)|dx � |B|̃/n−m+1+1/p′i0

(
m


i=1

‖ fivi‖pi

)(

i∈I1

∥∥v−1
i XB̃

∥∥


)

×
(

1
|B̃|
∫

B̃
v
−p′i0
i0

)1/p′i0

�
(

m


i=1

‖ fivi‖pi

)
|B̃|̃/n−m+1+1/p′i0+̃/n−̃/n+1/p

‖wXB̃‖

�
(

m


i=1

‖ fivi‖pi

)
|B|1+̃/n

‖wXB‖ .

We covered all the possible cases for m2 and the proof is complete. �

Proof of Theorem 1.1. It will be enough to prove that

‖wXB‖
|B|1+̃/n

∫
B
|Tm
 ,b j

�f (x)− c j|dx � C
m


i=1

‖ fivi‖pi , (4.1)

for some positive constant c j and every ball B , for each j and with C independent of
B and j . Indeed, if (4.1) holds we take c = m

j=1 c j and therefore

‖wXB‖
|B|1+̃/n

∫
B
|Tm
 ,b

�f (x)− c|dx �
m


j=1

‖wXB‖
|B|1+̃/n

∫
B
|Tm
 ,b j

�f (x)− c j|dx

� Cm
m


i=1

‖ fivi‖pi
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and the proof would be complete. Then we shall proceed to prove (4.1).
Fix 1 � j � m and a ball B = B(xB,R) . We decompose �f = ( f1, f2, . . . , fm) as

�f = �f1 +�f2 , where �f1 = ( f1X2B, f2X2B, . . . , fmX2B) . We take

c j =
(
Tm
 ,b j

�f2
)

B
=

1
|B|
∫

B
Tm
 ,b j

�f2(z)dz.

We also notice that

1
|B|
∫

B
Tm
 ,b j

�f2(x)dx = 
∈Sm, �=1

1
|B|
∫

B

∫
(2B)

(b j(x)−b j(y j))K (x,�y)
m


i=1

fi(yi)d�ydx.

(4.2)
In order to prove (4.1) we write

‖wXB‖
|B|1+̃/n

∫
B
|Tm
 ,b j

�f (x)− c j|dx

� ‖wXB‖
|B|1+̃/n

(∫
B
|Tm
 ,b j

�f1(x)|dx+
1
|B|
∫

B
|Tm
 ,b j

�f2(x)− c j|dx

)

=
‖wXB‖
|B|1+̃/n

(
I +

1
|B| II

)
.

Let us first estimate I . Applying Lemma 4.1 we get

I =
∫

B
|Tm
 ,b j

�f1(x)dx| �
∫

B

∫
(2B)m

|b j(x)−b j(y j)| |K (x,�y)|
m


i=1

| fi(yi)|d�ydx

� ‖b j‖( )

∫
B

∫
(2B)m

m
i=1 | fi(yi)|

(m
i=1 |x− yi|)mn−̃ d�ydx

� ‖b‖(( ))m

∫
B
|Ĩ ,m�f1(x)|dx

= ‖b‖(( ))m
|B|1+̃/n

‖wXB‖
m


i=1

‖ fivi‖pi .

Consequently,

‖wXB‖
|B|1+̃/n

I � ‖b‖(( ))m
m


i=1

‖ fivi‖pi .

We now turn our attention to II . By (4.2) we can write

II � 
∈Sm, �=1

∫
B

∫
B

∫
(2B)

∣∣(b j(x)−b j(y j))K(x,�y)− (b j(z)−b j(y j))K (z,�y)
∣∣

×
m


i=1

| fi(yi)|d�ydxdz
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� 
∈Sm, �=1

∫
B

∫
B

∫
(2B)

∣∣(b j(x)−b j(y j))(K(x,�y)−K(z,�y))
∣∣ m


i=1

| fi(yi)|d�ydxdz

+ 
∈Sm, �=1

∫
B

∫
B

∫
(2B)

∣∣(b j(x)−b j(z))K (z,�y)
∣∣ m


i=1

| fi(yi)|d�ydxdz

= 
∈Sm, �=1

(I1 + I2 ).

We shall estimate each sum separately. Fix  ∈ Sm, �= 1 . We start with I1 . Since we
are assuming  �= 1 , condition (2.3) implies that

|K (x,�y)−K(z,�y)| � |x− z|
(m

i=1 |x− yi|)mn−+

� |B|/n

(m
i=1 |x− yi|)mn−+ .

Therefore we have that

I1 � ‖b j‖( )|B|/n
∫

B

∫
B

∫
(2B)

|x− y j| m
i=1 | fi(yi)|

(m
i=1 |x− yi|)mn−+ d�ydxdz

� ‖b j‖( )|B|1+/n
∫

B

∫
(2B)

m
i=1 | fi(yi)|

(m
i=1 |x− yi|)mn−̃++− d�ydx

� ‖b‖(( ))m |B|1+/n
∫

B

∫
(2B)

m
i=1 | fi(yi)|

(m
i=1 |x− yi|)mn−̃+ d�ydx

= ‖b‖(( ))m |B|1+/n
∫

B
J1(x,)dx.

By separating the factors in J1 and applying Hölder’s inequality we arrive to

J1(x,) �
(


i:i=1

∫
2B

| fi(yi)|
|2B|1−̃i/n+/(mn) dyi

)(


i:i=0

∫
Rn\2B

| fi(yi)|
|x− yi|n−̃i+/m

dyi

)

�
m


i=1

‖ fivi‖pi

⎛
⎝ 

i:i=1

∥∥∥∥∥ v−1
i X2B

|2B|1−̃i/n+/(mn)

∥∥∥∥∥
p′i

⎞
⎠
⎛
⎝ 

i:i=0

∥∥∥∥∥ v−1
i XRn\2B

|x−·|n−̃i+/m

∥∥∥∥∥
p′i

⎞
⎠

=

(
m


i=1

‖ fivi‖pi

)
|2B|−i:i=1(1−̃i/n+/(mn)) 

i:i=1
‖v−1

i X2B‖p′i

× 
i:i=0

∥∥∥∥∥ v−1
i XRn\2B

|x−·|n−̃i+/m

∥∥∥∥∥
p′i

�
(

m


i=1

‖ fivi‖pi

)
|2B|(̃− )/n

‖wX2B‖ ,
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by virtue of condition (2.10). Thus the estimate

J1(x,) �
(

m


i=1

‖ fivi‖pi

)
|2B|(̃− )/n

‖wX2B‖ (4.3)

yields to

I1 � ‖b‖(( ))m

(
m


i=1

‖ fivi‖pi

)
|B|2+̃/n

‖wXB‖ . (4.4)

We now proceed to estimate I2 . We have that

I2 � ‖b j‖( )|B|/n
∫

B

∫
B

∫
(2B)

m
i=1 | fi(yi)|

(m
i=1 |z− yi|)mn− d�ydxdz

� ‖b‖(( ))m |B|2+/n

(


i:i=1

∫
2B

| fi(yi)|
|2B|1−i/n

dyi

)(


i:i=0

∫
Rn\2B

| fi(yi)|
|xB − yi|n−i

dyi

)
.

Since ̃i = i + i/m for each i , applying Hölder’s inequality we can write


i:i=1

∫
2B

| fi(yi)|
|2B|1−i/n

dyi � 
i:i=1

‖ fivi‖pi

|2B|i:i=1(1/pi−i/n)

∥∥v−1
i X2B

∥∥
p′i

= 
i:i=1

‖ fivi‖pi

|2B|i:i=1(1/pi−̃i/n+/(mn))

∥∥v−1
i X2B

∥∥
p′i

and


i:i=0

∫
Rn\2B

| fi(yi)|
|xB − yi|n−i

dyi � ‖ fivi‖pi

∥∥∥∥∥ v−1
i XRn\2B

(|B|1/n + |xB−·|)n−̃i+/m

∥∥∥∥∥
p′i

.

Combining these estimates and using condition (2.10) we arrive to

I2 � ‖b‖(( ))m|B|2+/n
m


i=1

‖ fivi‖pi

|2B|(̃− )/n

‖wXB‖

= ‖b‖(( ))m
|B|2+̃/n

‖wXB‖
m


i=1

‖ fivi‖pi . (4.5)

Therefore, applying the estimates obtained in (4.4) and (4.5) we conclude that

1
|B| II � ‖b‖(( ))m

|B|1+̃/n

‖wXB‖
m


i=1

‖ fivi‖pi .

This completes the proof of (4.1) and we are done. �



294 F. BERRA, G. PRADOLINI AND J. RECCHI

5. Proof of Theorem 1.2

We devote this section to prove Theorem 1.2. We shall first establish an auxil-
iary lemma, which is essentially the boundedness given in Lemma 4.1 with different
parameters. The proof can be achieved by following the same steps and we shall omit
it.

LEMMA 5.1. Let 0 <  < mn, 0 <  < (n−)/m, ̃ = +m and �p a vector
of exponents that satisfies p > n/̃ . Let ̃ �  and (w,�v) be a pair of weights be-

longing to the class Hm(�p, ̃, ̃ ) such that v
−p′i
i ∈ RHm for every i ∈ I2 . Then there

exists a positive constant C such that for every ball B and every �f such that fivi ∈ Lpi ,
1 � i � m, we have that

∫
B
|Ĩ,m�g(x)|dx � C

|B|1+̃/n

‖wXB‖
m


i=1

‖ fivi‖pi ,

where �g = ( f1X2B, f2X2B, . . . , fmX2B) .

Proof of Theorem 1.2. It will be enough to prove that

‖wXB‖
|B|1+̃/n

∫
B
|T m

 ,b
�f (x)− c|dx � C

m


i=1

‖ fivi‖pi , (5.1)

for some constant c and every ball B , with C independent of B and �f .
Fix a ball B = B(xB,R) . By proceeding as in the proof of Theorem 1.1, we split

�f = �f1 +�f2 , where �f1 = ( f1X2B, f2X2B, . . . , fmX2B) . We take

c =
(
T m
 ,b

�f2
)

B
=

1
|B|
∫

B
T m
 ,b

�f2(z)dz.

By Proposition 3.1, for z ∈ B we have that

T m
 ,b

�f2(z) = 
∈Sm, �=1

∫
(2B)

K(z,�y)
m


i=1

(bi(z)−bi(yi)) fi(yi)d�y. (5.2)

Thus

‖wXB‖
|B|1+̃/n

∫
B
|T m

 ,b
�f (x)− c|dx � ‖wXB‖

|B|1+̃/n

∫
B
|T m

 ,b
�f1(x)|dx

+
‖wXB‖
|B|2+̃/n

∫
B

∫
B
|T m

 ,b
�f2(x)−T m

 ,b
�f2(z)|dzdx

=
‖wXB‖
|B|1+̃/n

(I + II) .
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Let us first estimate I . Applying Proposition 3.1, (2.2) and Lemma 5.1 we get

I =
∫

B
|T m

 ,b
�f1(x)|dx �

∫
B

∫
(2B)m

|K(x,�y)|
m


i=1

|bi(x)−bi(yi)| | fi(yi)|d�ydx

� C
m


i=1

‖bi‖( )

∫
B

∫
(2B)m

|K̃(x,�y)|
m


i=1

| fi(yi)|d�ydx

� C‖b‖m
(( ))m

∫
B
|Ĩ ,m�f1(x)|dx

� C‖b‖m
(( ))m

|B|1+̃/n

‖wXB‖
m


i=1

‖ fivi‖pi .

Consequently,
‖wXB‖
|B|1+̃/n

I � C‖b‖m
(( ))m

m


i=1

‖ fivi‖pi .

We continue with the estimate of II . We shall see that

|T m
 ,b

�f2(x)−T m
 ,b

�f2(z)| � C‖b‖m
(( ))m

|B|̃/n

‖wXB‖
m


i=1

‖ fivi‖pi , (5.3)

for every x,z ∈ B . This would imply that II � Cm
i=1‖ fivi‖pi .

For x ∈ B , using (5.2), we can write

|T m
 ,b

�f2(x)−T m
 ,b

�f2(z)|

� 
∈Sm, �=1

∫
(2B)

∣∣∣∣∣K (x,�y)
m


i=1

(bi(x)−bi(yi))−K(z,�y)
m


i=1

(bi(z)−bi(yi))

∣∣∣∣∣
×

m


i=1

| fi(yi)|d�y

� 
∈Sm, �=1

∫
(2B)

|K(x,�y)−K(z,�y)|
m


i=1

|bi(x)−bi(yi)| | fi(yi)|d�y

+ 
∈Sm, �=1

∫
(2B)

|K(z,�y)|
∣∣∣∣∣

m


i=1

(bi(x)−bi(yi))−
m


i=1

(bi(z)−bi(yi))

∣∣∣∣∣
×

m


i=1

| fi(yi)|d�y

= 
∈Sm, �=1

(I1 + I2 ).

Fix  ∈ Sm, �= 1 . Let us first estimate I1 . Applying condition (2.3) we have that

|K(x,�y)−K(z,�y)| � |x− z|
(m

i=1 |x− yi|)mn−+

� |B|/n

(m
i=1 |xB − yi|)mn−+ .
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Therefore we have that

I1 � |B|/n
m


i=1

‖bi‖( )

∫
(2B)

(m
i=1 |xB − yi|)m m

i=1 | fi(yi)|
(m

i=1 |xB − yi|)mn−+ d�y

� ‖b‖m
(( ))m |B|/n

∫
(2B)

m
i=1 | fi(yi)|

(m
i=1 |xB − yi|)mn−̃++− d�y

� ‖b‖m
(( ))m |B|/n

∫
(2B)

m
i=1 | fi(yi)|

(m
i=1 |xB − yi|)mn−̃+ d�y,

since  >  and �y ∈ (2B) implies that |xB − y j| � C|B|1/n for at least one index
1 � j � m . From this expression we can use the estimate (4.3) performed in page 292
in order to obtain

I1 � ‖b‖m
(( ))m

|B|̃/n

‖wXB‖
m


i=1

‖ fivi‖pi .

Next we proceed to estimate I2 . Fix  ∈ Sm, �= 1 . Applying Lemma 3.2 we have
that

∣∣∣∣∣
m


i=1

(bi(x)−bi(yi))−
m


i=1

(bi(z)−bi(yi))

∣∣∣∣∣
�

m


j=1

|b j(x)−b j(z)|
i> j

|bi(z)−bi(yi)|
i< j

|bi(x)−bi(yi)|

�
(

m


i=1

‖bi‖( )

)
|B|/n

m


j=1

i> j

|z− yi| 
i< j

|x− yi| .

Since x and z belong to B and �y ∈ (2B) , we have that

|x− yi| �
m


j=1

|xB − y j|

and also

|z− yi| �
m


j=1

|xB − y j|,

for each i , regardless yi belongs to 2B or R
n\2B . Therefore we arrive to

∣∣∣∣∣
m


i=1

(bi(x)−bi(yi))−
m


i=1

(bi(z)−bi(yi))

∣∣∣∣∣� ‖b‖m
(( ))m |B|/n

(
m


j=1

|xB − y j|
)(m−1)

.
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Using this estimate we can proceed with I2 as follows

I2 � ‖b‖m
(( ))m |B|/n

∫
(2B)

m
i=1 | fi(yi)|

(m
i=1 |xB − yi|)mn−+(1−m) d�y

� ‖b‖m
(( ))m |B|/n

∫
(2B)

m
i=1 | fi(yi)|

(m
i=1 |xB − yi|)mn−̃+ d�y

� ‖b‖m
(( ))m |B|/n 

i:i=1

∫
2B

| fi(yi)|
|2B|1−̃i/n+/(mn) dyi 

i:i=0

∫
Rn\2B

| fi(yi)|
|xB − yi|n−̃i+/m

dyi.

Applying Hölder’s inequality and condition (2.10) we get

I2 � ‖b‖m
(( ))m |B|/n−()

i=1
‖ fivi‖pi 

i:i=1
‖v−1

i X2B‖p′i 
i:i=0

∥∥∥∥∥ v−1
i XRn\2B

|xB −·|n−̃i+/m

∥∥∥∥∥
p′i

� ‖b‖m
(( ))m

|B|̃/n

‖wXB‖
m


i=1

‖ fivi‖pi ,

where  () = i:i=1 (1− ̃i/n+ /(mn)). So (5.3) holds and the proof is com-
plete. �

6. The class Hm(�p, , ̃ )

In this section we give a complete study of the class Hm(�p, , ̃ ) related with the
boundedness properties stated in our main results. Recall that (w,�v) belongs to the
class Hm(�p, , ̃ ) if there exists a positive constant C for which the inequality

‖wXB‖
|B|(̃− )/n

m


i=1

(∫
Rn

v
−p′i
i

(|B|1/n + |xB− y|)(n−i+/m)p′i
dy

)1/p′i

� C

holds for every ball B = B(xB,R) .
We begin with a characterizaction of this class of weights in terms of the global

condition (2.9). The proof follows similar lines as Lemma 2.1 in [2] and we shall omit
it. We recall the notation I1 = {i : pi = 1} and I2 = {i : 1 < pi � } .

LEMMA 6.1. Let 0 <  < mn, ̃ ∈ R , �p a vector of exponents and (w,�v) a pair

of weights such that v−1
i ∈ RH for i ∈ I1 and v

−p′i
i is doubling for i ∈ I2 . Then,

condition Hm(�p, , ̃ ) is equivalent to (2.9).

As an immediate consequence of this lemma we have the following.

COROLLARY 6.2. Under the hypotheses of Lemma 6.1 we have that conditions
(2.9) implies (2.8).
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The next lemma establishes a useful property in order to give examples of weights
in the considered class. We shall assume that i = /m for every i .

LEMMA 6.3. Let 0 <  < mn, ̃ <  = ( −mn)(1−1/m)+/m, �p a vector of
exponents and (w,�v) a pair of weights satisfying condition (2.8). Then (w,�v) satisfies
(2.9).

Proof. The proof follows similar lines as in Lemma 2.3 in [2]. We shall give a
scheme for the sake of completeness. Let  = n−/m+ /m . Let B be a ball and
Bk = 2kB , for k ∈ N . If i ∈ I1 we have that∥∥∥∥∥v−1

i XRn\B
|xB −·|

∥∥∥∥∥


�



k=1

∥∥∥∥∥v−1
i XBk+1\Bk

|xB −·|
∥∥∥∥∥


�



k=1

|Bk|−/n
∥∥v−1

i XBk+1

∥∥
 .

On the other hand, for i ∈ I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y| p′i
dy

)1/p′i

�
(




k=1

∫
Bk+1\Bk

v
−p′i
i (y)

|xB − y| p′i
dy

)1/p′i

�



k=1

|Bk|−/n
(∫

Bk+1

v
−p′i
i

)1/p′i
.

By taking �k = (k1,k2. . . . ,km) , the left-hand side of (2.9) can be bounded by a
multiple constant of


�k∈Nm


i∈I1

|Bki |−/n
∥∥∥v−1

i XBki+1

∥∥∥
 i∈I2

|Bki |−/n

(∫
Bki+1

v
−p′i
i

)1/p′i
= 

�k∈Nm

I
(
B,�k
)

.

Observe that N
m ⊂⋃m

i=1 Ki, where Ki = {�k = (k1,k2, . . . ,km) : ki � k j for every j} . Let
us estimate the sum over K1 , being similar for the other sets. Therefore


�k∈K1

I
(
B,�k
)

�



k1=1

|Bk1 |−

n 

i∈I1

∥∥∥v−1
i XBk1+1

∥∥∥
 i∈I2

(∫
Bk1+1

v
−p′i
i

)1/p′i


i�=1

k1


ki=1

|Bki |−

n .

Notice that

k1


ki=1

|Bki |−/n = |B|−/n
k1


ki=1

2−ki � |Bk1 |−/n
k1


ki=1

2(k1−ki) � |Bk1 |−/n2k1 .
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Thus, from the estimation above and (2.8) we obtain that

‖wXB‖
|B|(̃− )/n 

�k∈K1

I
(
B,�k
)

� |B|(−̃)/n



k1=1

2(m−1)k1 |Bk1 |−m/n ‖wXBk1+1‖

× 
i∈I1

∥∥∥v−1
i XBk1+1

∥∥∥
 i∈I2

(∫
Bk1+1

v
−p′i
i

)1/p′i

�



k1=1

2−k1(−mn−̃+ ),

being the last sum finite since ̃ <  . �
Recall that when we restrict the pair of weights (w,�v) to satisfy the relation

w = m
i=1 vi , condition Hm(�p, , ̃ ) is denoted by �v ∈ Hm(�p, , ̃ ) . The following

result establishes that, for a suitable range of the parameter ̃ , this class is equivalent
to A�p,.

COROLLARY 6.4. Let  ∈ R , 0 <  < mn, ̃ <  = ( −mn)(1−1/m)+/m.
Then �v ∈ Hm(�p, , ̃ ) if and only if �v ∈ A�p, .

Proof. Let �v ∈ Hm(�p, , ̃ ) . Then condition (2.8) holds. On the other hand, by
Lemma 1.3, we have that ̃ =  −n/p . This implies that �v ∈ A�p, .

Conversely, let �v ∈ A�p, . Since ̃ <  , by Lemma 6.3 we have that �v satisfies

(2.9). By Lemma 6.1 it will be enough to check that v−1
i ∈ RH for i ∈I1 and v

−p′i
i is

doubling for i∈I2 . Let us first check that v−1
i ∈RH for i∈I1 . Let r = p/(mp−1) ,

fix i0 ∈ I1 and observe that

1
|B|
∫

B
vr
i0 =

1
|B|
∫

B

m


i=1

vr
i 
i�=i0

v−r
i

�
∥∥∥∥∥XB

m


i=1

vi

∥∥∥∥∥
r




i∈I1,i�=i0

‖v−1
i XB‖r

 
i∈I2

(
1
|B|
∫

B
v
−p′i
i

)r/p′i

�
[�v]rA�p,

‖v−1
i0

XB‖r


= [�v]rA�p,
inf
B

vr
i0 .

Therefore, vr
i0

is an A1 weight. Then we can conclude v−1
i0

is an RH weight.
On the other hand, observe that A�p, ⊆ A�p,q for every q > 0. If we pick q = p

we can apply Lemma 3.3 to conclude that�z = (z1, . . . ,zm) belongs to A�� , where � = p ,

zi = v�i
i and �i = pi for every i . This implies (see, for example, Theorem 3.6 in [6])

that z
1−�′i
i ∈ Am�′i , that is, v

−p′i
i ∈ Amp′i ⊆ A , so it is a doubling weight for every i ∈I2 .

This completes the proof. �
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The following two theorems allows us to describe the region where we can find
nontrivial weights in Hm(�p, , ̃ ) in terms of the parameters p ,  and ̃ .

THEOREM 6.5. Let  ∈ R be fixed. Let 0 <  < mn, ̃ ∈ R and �p be a vector
of exponents. The following statements hold:

(a) If ̃ >  or ̃ >  − n/p then condition Hm(�p, , ̃ ) is satisfied if and only if
vi =  a.e. for some 1 � i � m.

(b) The same conclusion holds if ̃ =  −n/p =  .

(c) If ̃ <  −mn, then condition Hm(�p, , ̃ ) is satisfied if and only if vi = a.e. for
some 1 � i � m or w = 0 a.e.

Proof. Let (w,�v) ∈ Hm(�p, , ̃ ) . We start with the proof of item (a). We shall
first assume that ̃ >  . Picking a ball B = B(xB,R) such that xB is a Lebesgue point
of w−1 , from (2.5) we obtain


i∈I1

∥∥∥∥∥ v−1
i

(|B|1/n + |xB−·|)n−i+/m

∥∥∥∥∥


i∈I2

(∫
Rn

v
−p′i
i

(|B|1/n + |xB −·|)(n−i+/m)p′i

) 1
p′i

� |B|(̃− )/n

‖wXB‖ � w−1(B)

|B|R−̃ ,

for every R> 0. By letting R approach to zero we can deduce that there exists 1 � i �m
such that vi =  almost everywhere.

Let us now consider the case ̃ >  −n/p . Pick a ball B = B(xB,R) , being xB a
Lebesgue point of w−1 and of every v−1

i . Then condition (2.8) implies that

m


i=1

1
|B|
∫

B
v−1
i � 

i∈I1

∥∥v−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
v
−p′i
i

)1/p′i

� |B| ̃n − 
n + 1

p

||wXB|| � w−1(B)
|B| R̃−+n/p

for every R > 0. If we let again R approach to zero, we obtain

m


i=1

v−1
i (xB) = 0,

and then m
i=1 v−1

i is zero a.e. This allows us to conclude that the set
⋂m

i=1{v−1
i > 0}

has null measure. Since vi(y) > 0 for almost every y and every i , there exists j such
that v j =  a.e.

We now proceed with item (b). Suppose ̃ =  −n/p =  . We define

 =
m


i=1

1
p′i

= m− 1
p
.
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Applying Hölder’s inequality we obtain

⎛
⎝∫

Rn

(
i∈I2

v−1
i

)1/

(|B|1/n + |xB−·|)i∈I2
(n−i+/m)/

⎞
⎠



� 
i∈I2

(∫
Rn

v
−p′i
i

(|B|1/n + |xB −·|)(n−i+/m)p′i

) 1
p′i

and since (w,�v) ∈ Hm(�p, , ̃ ) ,


i∈I1

∥∥∥∥∥ v−1
i

(|B|1/n + |xB−·|)n−i+/m

∥∥∥∥∥


(∫
Rn

(i∈I2
v−1
i )1/

(|B|1/n + |xB−·|)i∈I2
(n−i+/m)/

)

� w−1(B)
|B| ,

and we can deduce that for every ball B

(∫
Rn

(m
i=1 v−1

i )1/

(|B|1/n + |xB− y|)(mn−+ )/ dy

)

� w−1(B)
|B| .

From this inequality, we can continue adapting an argument presented in [14], to
conclude that there exists i such that vi =  a.e.

We end with the proof of item (c). Let ̃ <  −mn . Given a ball B = B(xB,R)
and B0 ⊂ B , condition (2.8) implies that

‖wXB0‖
m


i=1

‖v−1
i XB0‖p′i � ‖wXB‖

m


i=1

‖v−1
i XB‖p′i � R̃−+mn.

The right-hand side of the inequality above tends to zero when R approaches to  ,
which implies that either ‖wXB0‖ = 0 or ‖v−1

i XB0‖p′i = 0, for some i . As B0 is
arbitrary we obtain either w = 0 or vi =  for some i , respectively. �

THEOREM 6.6. Let  ∈ R be fixed. Given 0 <  < mn, there exist pairs of
weights (w,�v) satisfying (2.5) for every �p and ̃ such that −mn�̃�min{ ,−n/p} ,
excluding the case ̃ =  when  −n/p =  .

The next figure depicts the area in which we can find nontrivial pair of weights
belonging to Hm(�p, , ̃ ) , for a fixed value  and depending on  .
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β > δ

δ̃

δ

1/pm

β −mn

τ
δ̃ = β −n/p

β = δ

δ̃

δ

1/pm

β −mn

τ
δ̃ = β −n/p

β < δ

δ̃

δ

1/pm

β −mn

τ
δ̃ = β −n/p

Since the classes Hm(�p, , ̃ ) have a similar structure as those defined in [2], the
proof of the theorem above will follow similar lines as that in Theorem 5.1 of [2], with
adequate changes. We include a sketch for the sake of completeness. We shall need the
following auxiliary lemma.

LEMMA 6.7. For a ball B = B(xB,R) in R
n and  > −n, we have that

∫
B
|x| dx ≈ Rn (max{R, |xB|}) .

Proof of Theorem 6.6. Recall that  = ( −mn)(1− 1/m)+ /m is the number
appearing in Lemma 6.3, we shall split the proof into the following cases:

(a)  −mn < ̃ <  �  −n/p ;

(b)  −mn < ̃ �  −n/p <  ;

(c)  −mn < ̃ =  <  <  −n/p ;

(d)  −mn < ̃ =  <  −n/p <  ;

(e)  < ̃ � min{ , −n/p} ;

(f) ̃ =  −mn .

Let us prove (a). Recall that I1 = {i : pi = 1} , I2 = {i : pi > 1} and let mj = #I j ,
for j = 1,2. Since m1 < m by the restrictions on the parameters, we can take

0 <  <
mn− + ̃

m−m1
.
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For 1 � i � m we define

i =

{
0 if i ∈ I1,

n
p′i
−  if i ∈ I2.

Let  = m
i=1 i + ̃ − +n/p > 0. Then we take

w(x) = |x| and vi(x) = |x|i .

By virtue of Lemma 6.3 it will be enough to show that (w,�v) verifies condition
(2.8). Let B = B(xB,R) and assume that |xB| � R . If i ∈ I2 , by Lemma 6.7 we get

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
=
(

1
|B|
∫

B
|x|−i p′i dx

)1/p′i
≈ R−i ,

and
∥∥v−1

i XB
∥∥
 = 1 for i ∈ I1 . On the other hand, ‖wXB‖ � R since  > 0.

Therefore,

‖wXB‖
|B|̃/n−/n+1/p 

i∈I1

∥∥v−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
� R−m

i=1 i−̃+−n/p � C.

We now consider the case |xB| > R . We have that

‖wXB‖ � |xB| ,

whilst for i ∈ I2 (
1
|B|
∫

B
|x|−i p′i dx

)1/p′i
≈ |xB|−i .

Consequently, since ̃ <  −n/p we get

‖wXB‖
|B|̃/n−/n+1/p 

i∈I1

∥∥v−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
� |xB|−m

i=1 i−̃+−n/p � C,

which completes the proof of (a).
We now prove (b). In this case we take w= 1 and vi = |x|i , i =(− ̃ )/m−n/pi

for every 1 � i � m . By Lemma 6.3 it will be enough to prove that (w,�v) satisfies
condition (2.8). Pick a ball B = B(xB,R) and assume that |xB| � R . If i ∈ I1 we get
i < 0, since we are assuming ̃ >  −mn . In this case we get∥∥v−1

i XB
∥∥
 ≈ R−i .

On the other hand, for i ∈ I2 we have i < n/p′i , so Lemma 6.7 yields

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
≈ R−i .
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These two estimates imply that

‖wXB‖
|B|̃/n−/n+1/p 

i∈I1

∥∥v−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
� R−m

i=1 i

R̃−+n/p
= 1.

If |xB| > R , we have that
∥∥v−1

i XB
∥∥
 � |xB|−i and also

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
≈ |xB|−i

by Lemma 6.7. Thus

‖wXB‖
|B|̃/n−/n+1/p 

i∈I1

∥∥v−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
� |xB|−m

i=1 i

R̃−+n/p
� 1,

since ̃ �  −n/p . This concludes the proof of item (b).
In order to prove (c) we pick ( −)/m−n/pi < i < n/p′i for i ∈ I2 and i = 0

for i ∈ I1 . We also take  = m
i=1 i +  − + n/p > 0 and define w(x) = |x| and

vi(x) = |x|i , for 1 � i � m . We first notice that


i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB −·|n−/m+/m

∥∥∥∥∥


� R−i∈I1
(n−/m+/m).

By virtue of Lemma 6.1 we have to prove that condition (2.9) holds. Using the
estimate above, it will be enough to show that

R−̃−i∈I1
(n−/m+/m)‖wXB‖ 

i∈I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−/m+/m)p′i
dy

)1/p′i

� C

(6.1)
for every ball B . We shall first assume that |xB| � R . Let Bk = B

(
xB,2kR

)
for k ∈ N0

and i ∈ I2 . By Lemma 6.7, we get

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−/m+/m)p′i
dy

)1/p′i

�



k=0

(2kR)−n+/m−/m
(∫

Bk+1\Bk

|y|−i p′i dy

)1/p′i

�



k=0

(2kR)−n+/m−/m−i+n/p′i

� R−n/pi+/m−/m−i ,

since −n/pi +/m− /m− i < 0 by the election of i . Since ̃ =  , the left-hand
side of (6.1) is bounded by a multiple constant of

R−̃−i∈I1
(n−/m+/m)+−i∈I2

(n/pi−/m+/m+i) = R−̃−n/p++−m
i=1 i = 1.
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We now assume |xB| > R . There exists a number N such that 2NR < |xB| �
2N+1R . If i ∈ I2 we have that(∫

Rn\B
v
−p′i
i (y)

|xB − y|(n−/m+/m)p′i
dy

)1/p′i

�



k=0

(2kR)−n+/m−/m
(∫

Bk

|y|−i p
′
i dy

)1/p′i

=
N


k=0

+



k=N+1

= Si
1 +Si

2.

Let i = n/pi +( − )/m , for 1 � i � m . We shall first prove that if i < 0, then

Si
j � |xB|−i−i , (6.2)

for j = 1,2. Indeed, by Lemma 6.7 we obtain

Si
1 �

N


k=0

(2kR)−n+/m−/m+n/p′i|xB|−i

� |xB|−iR−i
N


k=0

2−ki

� |xB|−i(2NR)−i

� |xB|−i−i .

For Si
2 we apply again Lemma 6.7 in order to get

Si
2 �




k=N+1

(
2kR
)−n+/m−/m+n/p′i−i

�



k=N+1

(
2kR
)−i−i

=
(
2N+1R

)−i−i



k=0

2−k(i+i) � |xB|−i−i ,

since i + i = n/pi +( − )/m+ i > 0.
We now assume that i = 0. Proceeding similarly as in the previous case, we have

Si
1 � |xB|−iN � |xB|−i log2

( |xB|
R

)
,

and
Si

2 � |xB|−i

since i > 0 when i = 0. Consequently,

Si
1 +Si

2 � |xB|−i

(
1+ log2

( |xB|
R

))
� |xB|−i log2

( |xB|
R

)
. (6.3)

We finally consider the case i > 0. For Si
2 we can proceed exactly as in the case

i < 0 and get the same bound. On the other hand, for Si
1 we have that

Si
1 �

N


k=0

(2kR)−n+/m−/m+n/p′i|xB|−i � |xB|−iR−i
N


k=0

2−ki � |xB|−i−i2Ni .
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Therefore, if i ∈ I2 and i > 0 we get

Si
1 +Si

2 � |xB|−i−i

(
1+2Ni

)
� 2Ni |xB|−i−i . (6.4)

Combining (6.2), (6.3) and (6.4) we obtain


i∈I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−/m+/m)p′i
dy

)1/p′i

� 
i∈I2,i<0

|xB|−i−i 
i∈I2,i=0

|xB|−i log2

( |xB|
R

)


i∈I2,i>0

|xB|−i−i 2Ni

� |xB|−i∈I2
(i+i) 2Ni∈I2,i>0 i

(
log2

( |xB|
R

))#{i∈I2,i=0}
,

that is,


i∈I2

∥∥∥∥∥ v−1
i XRn\B

|xB−· |n−/m+/m

∥∥∥∥∥
p′i

� |xB|−i∈I2
(i+i) 2Ni∈I2,i>0 i

(
log2

( |xB|
R

))#{i∈I2,i=0}
,

(6.5)
so the left-hand side of (6.1) can be bounded by a multiple constant of

R−̃−(n−/m+/m)m1 |xB|−i∈I2
(i+i) 2Ni∈I2,i>0 i

(
log2

( |xB|
R

))#{i∈I2,i=0}

which is equivalent to

( |xB|
R

)−+(n−/m+/m)m1+i∈I2 ,i>0 i
(

log2

( |xB|
R

))#{i∈I2,i=0}
. (6.6)

Since i < n+( − )/m for i ∈ I2 , there exists  > 0 that verifies


i∈I2,i>0

i + #{i ∈ I2,i = 0} �
(

n+
 −

m

)
#{i ∈ I2,i > 0}. (6.7)

Using the fact that log2 t � −1t for every t � 1, we can majorize (6.6) by a constant
factor provided that

−  +
(

n+
 −

m

)
(m1 +#{i ∈ I2 : i > 0}) � −  +

(
n+

 −
m

)
(m−1) = 0.

Indeed, if this last inequality did not hold, then we would have that i > 0 for every
i ∈ I2 . We also observe that i > 0 for i ∈ I1 . This would lead to n/p >  −  , a
contradiction.
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In order to prove (d) we only consider two cases. If there exists some i ∈ I2 such
that i � 0, the proof follows exactly as in (c). If not, that is i > 0 for every i ∈ I2 ,
observe that

−  +
(

n+
 −

m

)
m1 + 

i∈I2,i>0

i = −  +
m


i=1

(
n
pi

+
 −

m

)

=  +
n
p
−

< 0,

then we can choose  > 0 small enough so that the resulting exponent for |xB|/R in
(6.6) becomes negative.

We now proceedwith the proof of (e). Let us first suppose that ̃ < min{ ,−n/p} .
We take  = ̃ −  > 0 and i = ( − )/m − i , for every i . Then we define
w(x) = |x| and vi = |x|i , 1 � i � m . These functions are locally integrable since
 > 0 and i < n/p′i . Furthermore, i < 0 for i ∈ I1 , so v−1

i ∈ RH for these index.
Then, by Lemma 6.1, it will be enough to show that condition (2.9) holds. Fix a ball
B = B(xB,R) and assume that |xB| < R . Then we get

‖wXB‖
|B|(̃− )/n

� R−̃+ = R− . (6.8)

On the other hand, if i ∈ I1 we have∥∥∥∥∥ v−1
i XRn\B

|xB −·|n−/m+/m

∥∥∥∥∥


�



k=0

∥∥∥∥∥ v−1
i XBk+1\Bk

|xB −·|n−/m+/m

∥∥∥∥∥


�



k=0

(
2kR
)−i−n+/m−/m

� R(− )/m,

since  < ̃ <  . This yields


i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB −·|n−/m+/m

∥∥∥∥∥


� Rm1(− )/m. (6.9)

Finally, since i + i = ( − )/m > 0 for i ∈ I2 , we can proceed as in page 304 to
obtain


i∈I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−/m+/m)p′i
dy

)1/p′i

� Rm2(− )/m. (6.10)

By combining (6.8), (6.9) and (6.10), the left-hand side of (2.9) is bounded by a constant
C .

We now consider the case |xB| > R . We have that

‖wXB‖
|B|(̃− )/n

� R−̃ |xB| . (6.11)
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Since |xB|> R , there exists a number N ∈N such that 2NR < |xB|� 2N+1R . For i∈I1

we write∥∥∥∥∥ v−1
i XRn\B

|xB −·|n−/m+/m

∥∥∥∥∥


�
N


k=0

∥∥∥∥∥ v−1
i XBk+1\Bk

|xB −·|n−/m+/m

∥∥∥∥∥


+



k=N+1

∥∥∥∥∥ v−1
i XBk+1\Bk

|xB −·|n−/m+/m

∥∥∥∥∥


= Si
1 +Si

2.

Proceeding as we did in (6.5) with pi = 1, we have that


i∈I1

∥∥∥∥∥ v−1
i XRn\B

|xB −·|n−/m+/m

∥∥∥∥∥


� |xB|−i∈I1
(i+i)2Ni∈I1

i . (6.12)

Finally, if i ∈ I2 our choice of i allows us to follow the argument given in page 305
to conclude that


i∈I2

(∫
Rn\B

v
−p′i
i (y)

|xB − y|(n−/m+/m)p′i
dy

)1/p′i

� |xB|−i∈I2
(i+i)2Ni∈I2 ,i>0 i

×
(

log2

( |xB|
R

))#{i∈I2,i=0}
.

Combining the inequality above with (6.11) and (6.12), the left-hand side of (2.9) can
be bounded by a multiple constant of

R−̃ |xB|−m
i=1(i+i)2Ni:i>0 i

(
log2

( |xB|
R

))#{i∈I2,i=0}

which is equal to (
R
|xB|

)−̃−i:i>0 i
(

log2

( |xB|
R

))#{i∈I2,i=0}
.

If i < 0 for every i then the exponent of R/|xB| is positive. On the other hand, if
i � 0 for every i , then

 − ̃ − 
i:i>0

i =  − ̃ −
m


i=1

i =  − ̃ − n
p

+ −  > 0,

since ̃ <  − n/p . In both cases we can repeat a similar argument as in (6.7) to
conclude that (w,�v) belongs to Hm(�p, , ̃ ) . Let us observe that, for example, if  � 
then every i is nonnegative.

If ̃ =  <  − n/p or ̃ =  − n/p <  the same estimation as above works
when we take i < 0 for every i . The second case also works when i > 0 for every i .

We finish with the proof of item (f). In this case we fix  > 0 and take
w(x) = (1+ |x|)−m1 . If gi are nonnegative fixed functions in Lp′i(Rn) for i ∈ I2 ,
we define

vi(x) =
{

e|x| if i ∈ I1,

g−1
i if i ∈ I2.
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Fix a ball B = B(xB,R) . It is enough to check condition (2.8), since ̃ =  −mn <  .
Notice that

‖wXB‖ 
i∈I1

∥∥v−1
i XB

∥∥
 � 

i∈I1

∥∥(1+ | · |)−1XB
∥∥


∥∥∥e−|·|XB

∥∥∥


� 1.

Therefore,

‖wXB‖
|B|̃/n−/n+1/p 

i∈I1

∥∥v−1
i XB

∥∥
 

i∈I2

(
1
|B|
∫

B
v
−p′i
i

)1/p′i
� 

i∈I2

‖gi‖p′i ,

for every ball B . This concludes the proof of (f). �
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